
Zs. Lendek, J. Lauber, T.M. Guerra, R. Babuška, and B. De Schutter

If you want to cite this report, please use the following reference instead:

*This report can also be downloaded via http://pub.deschutter.info/abs/11_002.html

Zs. Lendek, J. Lauber, T. M. Guerra, R. Babuška, B. De Schutter

aDelft Center for Systems and Control, Delft University of Technology Mekelweg 2, 2628 CD Delft, The Netherlands
bUniversité de Valenciennes, BP 311, Le Mont Houy, 59313 Valenciennes Cedex 9, France

Abstract

The description of the error dynamics (30) in our paper [1] contains an omission that leads to some bounds used in the conditions of Theorem 8 and Corollary 2 in the paper to be incorrectly defined. In what follows, the correct error dynamics and the corresponding conditions are given.

Instead of (30) in [1], the error dynamics¹ are actually given by

\[\dot{e} = \sum_{i=1}^{m} w_i(z)[(A_i - L_i C + M_i A_{\delta i})e + M_i (\hat{A}_{\delta i} \hat{x} + \hat{B}_{\delta i} u + \hat{\theta}_i)] + \sum_{i=1}^{m} (w_i(z) - w_i(\hat{z})) \cdot (A_i x + B_i u + M_i (A_{\delta i} x + B_{\delta i} u + \theta_i)) \]

which leads to \(\mu_{\text{max}} \) in Theorem 8 being given by \(\mu_{\text{max}} \leq \max_i \| M_i A_{\delta i} \| \), instead of \(\mu_{\text{max}} \leq \max_i \| A_{\delta i} \| \) as stated in [1].

Similarly, the correct error system (36) is given by

\[\dot{e} = \sum_{i=1}^{m} w_i(z)[(A_i - L_i C + M_i A_{\delta i})e + M_i (\hat{A}_{\delta i} \hat{x} + \hat{B}_{\delta i} u + \hat{\theta}_i)] \]

\[e_y = C e \]

¹In [1], the first \(M_i \) in the sum was omitted.

Preprint submitted to Elsevier
and as a consequence the last condition of Corollary 2 in [1] is

\[
\begin{pmatrix}
Q - \bar{\mu}I \\
\sqrt{2P} \\
\sqrt{2P} \\
I
\end{pmatrix} > 0
\]

where \(\bar{\mu} = \max_i \| M_i A_{\delta_i} \|^2 + \mu^2\), i.e., the sum of the squared bounds of the two vanishing disturbances. In [1] only the disturbance arising from the observer-model mismatch was considered.

Note that thanks to the \(M_i\) considered in the example of [1], with \(\| M_i \| = 1\), the change in the conditions does not affect the numerical results.

References