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Parameterized MPC to Reduce Dispersion of Road Traffic

Emissions

S. K. Zegeye, B. De Schutter, J. Hellendoorn, E. A. Breunesse

Abstract— This paper has two main contributions. First, it
presents a simple area-wide emission (or dispersion) model for
a freeway traffic networks. The model takes the variation of
the wind speed and direction into account. Second, it presents
a nonlinear parametrized MPC controller for freeway traffic
systems. Next, the proposed model and control approach are
illustrated with a simulation-based case study. The simulation
results show improved traffic performance with respect to the
uncontrolled system.

I. INTRODUCTION

Frequent and sustained traffic jams are day-to-day phe-

nomena many drivers encounter. Traffic jam related health

problems and economic losses are impacting most de-

veloped countries. Despite the development of complex

infrastructures and the accumulation of new knowledge and

theory of traffic system, problems related to traffic jams are

still escalating from time to time. Now, the introduction of

intelligent transportation systems (ITS) is considered to be

one of the most promising solutions in reducing the effects

of traffic jams.

Another issue related to traffic systems is their impact on

the environment. Due to the increase in fuel consumption

and in the frequency and duration of traffic congestion as

a consequence of increasing numbers of vehicles in the

fleet, the emissions of road traffic systems have increased

enormously. For example in most European cities road traf-

fic emissions account for 40% volatile organic compounds,

more than 70% of NOx, and over 90% of CO [15]. More-

over, the relationship between dispersion and emissions of

the traffic flow is complicated. Reduction of emissions may

not reduce dispersion of emissions on specific areas near

the traffic road. For example, the emission levels in areas

located near freeways could be affected by the direction and

the speed of the local wind.

Therefore, in order to improve the traffic flow while

still guaranteeing reduced area-wide emissions, one would

need to use an ITS system that controls the traffic flow in

such a way that desired objectives are attained. One such

solution could be the use of a control approach that adapts

to the variation of the traffic system and that handles the

various physical and operational constraints. In this regard,

model predictive control (MPC) and other optimal control

methods have been proposed in the literature [3], [8], [10].
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Many researchers have shown the potential of MPC control

strategies in improving the traffic systems performance.

However, despite its success in simulation-based research

[3], [8], [17], the MPC control approach did not appeal to

practitioners due to several reasons, the most important one

of which is the intensive computation time.

In this paper, we present a special class of MPC con-

trollers that results in lower computation times. We use

parametrized MPC traffic controllers that are based on the

parametrization of the traffic control measures. We further

provide an area-wide emission (dispersion) model that takes

the variation of the wind speed and wind direction into

account. We define a multi-objective cost function based

on a weighted-sum approach. The control approach and the

dispersion model are illustrated with a case study.

In the next section we discuss the traffic flow and

emission models considered in this paper. In Section III we

present a simple area-wide dispersion model, which can be

used for on-line prediction or estimation of the dispersion

levels. Section IV presents the proposed control approach.

In Section V we illustrate the proposed control approach and

the dispersion model on a case study. Finally, we conclude

the paper in Section VI.

II. TRAFFIC FLOW AND EMISSION MODELING

Since the proposed control approach requires models to

predict the states and to design the control measures of

the traffic system, in this section we discuss the flow and

emission models employed for these purposes.

A. METANET flow model

In order to make fast on-line optimizations, we use a

macroscopic traffic flow model. In particular, we select

the well known macroscopic traffic flow model called

METANET [12]. METANET is a second-order traffic flow

model. The model describes the evolution of the traffic

variables, viz. the density, the flow, and the space-mean

speed, as a system of nonlinear difference equations. The

METANET model is discrete both in time and space. Let

T be the simulation step size and k be the simulation step

counter. In the METANET model, a node is placed at a

point where there is a change in the geometry of a freeway

(such as a lane drop, an on/off-ramp, or a bifurcation). A

homogeneous freeway that connects such nodes is called

a link. Links are further divided into segments of length

500-1000 m [12]. The equations that describe the traffic

dynamics in segment i of link m are given by [12], [8]

qm,i(k) = λmρm,i(k)vm,i(k) (1)



ρm,i(k+1) = ρm,i(k)+
T

Lmλm

[qm,i−1(k)−qm,i(k)] (2)

vm,i(k+1) = vm,i(k)+
T

τ
[V [ρm,i(k)]− vm,i(k)]

+
T vm,i(k) [vm,i−1(k)− vm,i(k)]

Lm

−
T η [ρm,i+1(k)−ρm,i(k)]

τLm (ρm,i(k)+κ)
(3)

V [ρm,i(k)] = min

{

(αm +1)um,i(k),

vfree,m exp

[

−
1

am

(

ρm,i(k)

ρcr,m

)am
]}

(4)

where qm,i(k), ρm,i(k), and vm,i(k), and denote respectively

the flow, density, and space-mean speed of segment i of link

m at the simulation step k, um,i(k) denotes the variable speed

limit of segment i of link m at the simulation step k and

it equal to the free-flow speed vfree,m if there is no control,

Lm denotes the length of the segments of link m, and λm

denotes the number of lanes of link m. Furthermore, ρcr,m

is the critical density, τ a time constant, η the anticipation

constant, am the parameter of the fundamental diagram, αm

the drivers’ compliance factor, and κ is a model parameter.

For origins (such as on-ramps and mainstream entry

points) a queue model is used. The dynamics of the queue

length wo at origin o are modeled as

wo(k+1) = wo(k)+T (do(k)−qo(k)) (5)

where do and qo denote respectively the demand and outflow

of the origin o. The outflow qo is given by

qo(k) = min

[

do(k)+
wo(k)

T
, ro(k)Co,

Co

(

ρjam,m −ρm,1(k)

ρjam,m −ρcr,m

)]

, (6)

with ro(k) the ramp metering rate (where ro ∈ [0 1] for a

metered on-ramp and ro(k) = 1 for an unmetered on-ramp

or mainstream origin), ρjam,m the maximum density of link

m, and Co the capacity of the origin o.

B. VT-macro emission model

Since the outputs of traffic flow models are the inputs of

emission models, the choice of traffic flow models dictates

on the type of emission and fuel consumption that has to

be used. So, we chose VT-macro [17] as emission model.

The VT-macro model is a macroscopic emission and fuel

consumption model that we have in particular developed

for the METANET traffic flow model. The model takes

the dynamics of the average space-mean speed of the

traffic flow model into account (i.e. acceleration effects are

included).

Mathematically, the VT-macro model can be described as

Jy,m,i(k) = fy,m,i(vm,i(k),vm,i(k+1),vm,i+1(k+1),ρm,i(k))
(7)

where Jy,m,i(k)[kg/s] is the estimate or prediction of the

emission variable y ∈ Y = {CO, NOx, HC, CO2} of seg-

ment i of link m during the time period [kT,(k+1)T ] and

f is a nonlinear mapping (for detailed discussion we refer

to [17]).

III. DISPERSION MODELING

We define Vw(k) as the wind speed in the time interval

[kT,(k+1)T ] and ϕ(k) as the direction of the wind in the

same time interval. Here we model the dispersion of traffic

emissions to a neighborhood (or target zone) near to a traffic

freeway. The emissions will be considered to emanate from

the center points of the segments of the freeway1. The

emission particles will move due to wind and dispersion

effects and we will capture the trajectory of the dispersion

of the emissions by wavefronts moving orthogonal to the

wind direction and dispersion cones.

Fig. 1(a) shows the propagation of emissions of vehicles

from segment i of a link2 m at time step k. The emissions

propagate with a line wavefront in the direction of the

wind. Since the emissions from vehicles are relatively more

dense and have a higher temperature than the air particles,

the emitted gases also expand sideways. The expansion of

the emissions is inversely related to the wind speed [2].

We model this phenomenon with a divergence angle β
that depends only on k. At time step k it represents the

divergence angle that corresponds to half of the angle of

the dispersion cone (see Fig. 1). Then, it is given by the

expression

β (k) =
βmax

1+β0Vw(k)
(8)

where βmax ∈ [0, π] is the maximum angle at which the

emission is dispersed and β0 is a model parameter.

Here we approximate wavefronts emanating from seg-

ment i by lines with pl,i left and bottom-most point and pr,i

right and top-most point. Each point of the line between

pl,i(k) and pr,i(k) results in a small cone due to wind and

dispersion and we determine the pl,i(k+1) as the left and

bottom-most point of all cones and the pr,i(k + 1) as the

right and top-most point of all cones. Any emissions at a

point of the wavefront formed by a line segment joining

the points pl,i(k) and pr,i(k) diverge with an angle equal to

β (k) both to the left and to the right of the wind direction

(e.g. see the points pl,i(k) and pr,i(k) in Fig. 1(b)).

Now let us assume that a so called puff of emitted gases

from segment i of the freeway in Fig. 1(a) has arrived at

the wavefront formed by the line segment joining the points

pl,i(k−1) and pr,i(k−1) at time step k−1. The emissions

will further move to the next wavefront formed by the line

segment joining the points pl,i(k) and pr,i(k) at wind speed

1This point modeling approach can also be extended to a line modeling
approach, where the emissions are considered to emanate from a center
line parallel and equal to the segments.

2For brevity, the link index m is not used in the derivations presented
in this section.
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Fig. 1. Schematic representation of horizontal dispersion of vehicle
emissions with varying wind speed and angle.

Vw(k−1) during the time period [(k−1)T, kT ]. In general

let us assume that the wind speed or direction has changed

(see Vw(k) and ϕ(k) in Fig. 1(b)) at time step k. This means

that the dispersion speed and direction at every point of

the wavefront will change. Then, the evolution of the end

points of the wavefronts pl,i(k+1) = (xl,i(k+1),yl,i(k+1))
and pr,i(k+1) = (xr,i(k+1),yr,i(k+1)) is then respectively

modeled as

xl,i(k+1) = xl,i(k)−TVw(k)
cos(ϕ(k)−β (k))

cos(β (k))
,

yl,i(k+1) = yl,i(k)+TVw(k)
sin(ϕ(k)−β (k))

cos(β (k))
,

xr,i(k+1) = xr,i(k)−TVw(k)
cos(ϕ(k)+β (k))

cos(β (k))
,

yr,i(k+1) = yr,i(k)+TVw(k)
sin(ϕ(k)+β (k))

cos(β (k))

for cos(β (k)) 6= 0.

Consider the wavefront formed by pl,i(k) and pr,i(k) and

let Ey,i(pl,i(k), pr,i(k)) be the corresponding emission level

for emission y ∈ Y . Then, the emission level for the next

wavefront is

Ey,i(pl,i(k+1), pr,i(k+1)) = γEy,i(pl,i(k), pr,i(k)) (9)

where 0 < γ ≤ 1 is a factor that characterizes the vertical

dispersion.

Then the area that is subject to the emission Ey,i(pl,i(k+
1), pr,i(k+1)) during the time period [kT, (k+1)T ] is the

tetragon formed by the points pl,i(k), pl,i(k + 1), pr,i(k +
1), and pr,i(k). The area of this tetragon is denoted as

Ai(pl,i(k), pl,i(k + 1), pr,i(k + 1), pr,i(k)). The areal-density

of the emission in the time period is then given by

Ead,y,i(k+1) =
Ey,i(pl,i(k+1), pr,i(k+1))

Ai(pl,i(k), pl,i(k+1), pr,i(k+1), pr,i(k))
.

(10)

Let the area of the target zone be denoted by At. The

area of the intersection of the target zone and the tetragon

formed by the emission wavefronts is denoted as Aint,i(k).
We can then compute the amount of emissions dispersed to

the target area from segment i of the link as

Et,y,i(k+1) = Aint,i(k)Ead,y,i(k+1). (11)

As wavefronts are emanating from segment i at each time

step, we have to consider the sum of Et,y,i(k+ 1) over all

wavefronts emitted in the past that intersect with the target

zone. Let this total emission level be denoted by Etotal,y,i(k+
1). Thus the emission density at the target zone over the

time period [kT,(k+1)T ] due to link m will be

JD,y,m(k) =
1

At
∑

i∈Sm

Etotal,y,i(k) (12)

where Sm is the set of all segments in link m.

The total emission density at the target zone over the time

period [kT,(k + 1)T ] is then the sum of all the emission

densities of all the links over the time period [kT,(k+1)T ],
and it is described as

JD,t,y(k) = ∑
m∈L

JD,y,m(k) (13)

where L is the set of all links in the traffic network.

In the following section we presented the control ap-

proach we propose to reduce the emission levels in the target

area.

IV. PARAMETRIZED MPC

The idea of model predictive control (MPC) [14] is

based on two concepts: prediction and moving horizon.

The MPC controller uses the current state of a system as

initial condition and the model of the system to predict the

evolution of the system state with respect to the variation

of the control measures. Based on the predicted states of

the system, the controller determines the value a given

cost function. The controller then optimizes the sequence

of control inputs in such a way that the cost function is

minimized over the predicted horizon. However, only the



first control input of the optimal sequence is applied to

the system until the next control time step, after which the

controller repeats the above process all over again using a

moving horizon principle.

The main advantage of MPC is its capability to han-

dle nonlinear models, constraints, and multi-objective cost

functions. In the traffic control research world, MPC has

proven to improve the road network performance [3], [8],

[18]. However, as a consequence of its high computation

demands, the MPC controller is not yet implemented in

practice. In this regard many papers (e.g. [7], [9], [11], [16])

dealt with the reduction of the computation time of MPC.

But, none has done in a sufficiently satisfactory way to

appeal to practitioners traffic systems.

One way to reduce the computation time of the MPC con-

troller is to parametrize the control inputs with a set of few

parameters [4], [9], [11], [16]. At every control time step3

kc, the MPC controller then optimizes the parameters of the

control policy instead of the control inputs. Accordingly,

in the sequel we present two traffic control measures and

provide their parametrization with nonlinear state feedback

control policies. Note that the parametrization is just an

illustration of the control approach, but the control approach

is generic.

A. Control measures

We illustrate our approach using variable speed limits and

ramp metering as traffic control measures. In conventional

MPC, these two control measure would have been opti-

mized directly. Now, in the parametrized MPC controller the

two control measures are determined according to control

laws. The control policies (laws) of the variable speed limit

and on-ramp metering can be defined in different ways.

Here we just give only examples to illustrate our approach.

The control policy of the variable speed limit is defined

using two nonlinear functions. One function describes the

relative speed difference of a segment with respect to the

speed of a downstream segment. The second is defined as

the relative density difference of a segment with respect

to the density of downstream segment. In both functions

the relative difference between the current segment and the

downstream segment of the freeway is used. This is because

of the fact that drivers tend to adapt the speed of vehicles in

the downstream. Mathematically, these functions are given

by

f1,m(vm,i(kc),vm,i+1(kc)) =
vm,i+1(kc)− vm,i(kc)

vm,i+1(kc)+κv

, (14)

f2,m(ρm,i(kc),ρm,i+1(kc)) =
ρm,i+1(kc)−ρm,i(kc)

ρm,i+1(kc)+κρ
, (15)

3For the sake of simplicity we assume that the control step size Tc and
the simulation step size T are related by Tc =MT , for some positive integer
M. Therefore, at time instant t = kcTc = kT the control step counter kc is
an integer divisor of the simulation step counter k. They are then related
by k(kc) = Mkc.

where κv and κρ are model parameters introduced to prevent

division by 0.

Using these two functions, the control law that

parametrizes the variable speed limit is chosen to be

usl,m,i(kc + j+1) =θ0,mvfree,m +θ1,m f1,m(·)+θ2,m f2,m(·)
(16)

where j = 0,1, . . . ,Np − 1 and θ·,m are the control law

parameters.

The proposed parametrization has only 3 control parame-

ters (one could also consider varying θ·,m over the prediction

horizon) to be optimized in the parametrized MPC control

strategy. This means that the speed limit controller can

reduce the computation time if it is used with a freeway

link with more than three independent variable speed limits

(since there are at least 3×Np speed limit variables over

the prediction horizon in the conventional MPC).

Usually, the speed limits are constrained as Ll ≤
usl,m,i(kc + j + 1) ≤ Lu, where Ll and Lu are respectively

the lower and upper speed limits.

Using a similar reasoning as for (15), we define the

parametrization of the ramp metering controller to be

ur,m,i(kc + j+1) = ur,m,i(kc + j)

+θ3,m
ρcr,m −ρm,i(kc + j)

ρcr,m
(17)

where j = 0,1, . . . ,Np − 1 and θ3,m is the control law

parameter.

Similar to the speed limit control, the ramp metering rate

is constrained 0 ≤ ur,m,i(kc +1)≤ 1.

B. Performance measure

As a performance measure of the parametrized MPC

controller we consider the following measure4:

J(kc) = ζ1
TTS(kc)

TTSn
+ζ2

TE(kc)

TEn
+ζ3

DL(kc)

DLn
+ζ4

∆(kc)

∆n

(18)

where ζn ≥ 0 for n = 1,2,3,4 are weighting coefficients,

TTS(kc) = T

MNp−1

∑
k=Mkc

(

∑
(m,i)∈Iall

λmLmρm,i(k)+ ∑
o∈Oall

wo(k)

)

,

TE(kc) = ∑
y∈Y

µy

TEy(kc)

TEy,n
, DL(kc) = ∑

y∈Y

µy

DLy(kc)

DLy,n
,

∆(kc) =
MNp−1

∑
k=Mkc

∑
s∈Sall

(

‖us(k)−us(k−1)‖2
2

+‖us(k)−us−1(k)‖
2
2

)

,

with

TEy(kc) =
MNp−1

∑
k=Mkc

∑
(m,i)∈Iall

Jy,m,i(k),

4Parametrized MPC is generic as regards the choice of the performance
criteria, and so other objective functions could also be considered instead.
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Fig. 2. A 12 km freeway with 12 variable speed limits and one on-ramp.

DLy(kc) = ‖[JD,t,y(Mkc) ... JD,t,y(MNp −1)]⊤‖∞,

µy denoting the weights of the emissions y ∈ Y , and Iall

and Oall denoting respectively the set all segment-link pairs

and the set of all origins in the traffic network and Sall

denoting the set of all speed limits. Moreover, the nominal

values of the TTS, TE, TEy, DL, DLy, and ∆n are computed

by simulating the uncontrolled traffic system with all speed

limits set to vfree,m and all on-ramp metering set to 1.

C. Optimization method

One of the bottlenecks in MPC control approach is

the extensive optimization and the resulting computational

requirements. The parametrized MPC optimization problem

considered for this paper is nonlinear and nonconvex. Thus a

proper choice of an optimization technique has to be made

in order to obtain feasible optimal control values. Owing

to the nonconvex nature of the objective function, global

or multi-start local optimization methods are required.

Hence, multi-start sequential quadratic programming [13,

Section 5.3], pattern search [1], genetic algorithms [5], or

simulated annealing [6] can be used.

V. CASE STUDY

A. Freeway set up

In order to illustrate the proposed control approach and

the area-wide emission modeling we consider a case study

with a 12 km three-lane freeway stretch. The freeway is

divided into 12 equal segments with an on-ramp at the

sixth segment from the left (see Fig. 2) and each segment

is provided with a variable speed limit.

The freeway is subject to wind with speed and direction

given by

Vw(k) = 7+2sin(0.005πk+π/6)sin(0.01πk) (19)

ϕ(k) =
2π

5
+

π

4
cos(0.004πk) (20)

where the wind speed Vw(k) is expressed in m/s and the

wind direction (angle) ϕ(k) in radians. Since the dispersion

is assumed unobstructed, we consider the maximum diver-

gence of the dispersion to be βmax = π and we set β0 = 0.6.

Moreover, the case study is simulated for over an hour.

B. Performance measures

We consider a multi-objective performance criterion that

accommodates the emissions, dispersion of emissions, and

travel time. The multi-objective function is defined as (18).

In particular, we consider the objective function with µy = 1

and five different combinations of ζn for n = 1,2,3,4. In

all these combinations ζ4 = 0.01, because we want to give

less emphasis on the variation of the control inputs. The

combination of the remaining weights is tabulated in Table

I along with the results of the simulations. Moreover, the

nominal values of the performance criteria are determined

by simulating the uncontrolled traffic system with vfreem =
120 km/h.

C. Results and discussion

We simulate the system for uncontrolled and controlled

cases. In the controlled cases we consider different scenarios

by varying the weightings of the objective function given in

(18). The simulation results for these scenarios are tabulated

in Table I. The percentage change of in either of the

TTS, TE, or Total DL is described in comparison to the

uncontrolled case.

The evolution of the total dispersion level in the target

area is presented in Fig. 3. The figure depicts the total

dispersion for different control objectives. It shows that the

dispersion level becomes higher than the uncontrolled case

if the control objective is to reduce total time spent (TTS)

or the combination of TTS, total emissions (TE), and total

dispersion level (DL) (see also Table I).

Moreover, when the objective of the controller is set to

either reduce the total emissions or the dispersion level,

the travel time increases by more than 10% relative to the

uncontrolled case. However, both the total dispersion and

the total emission are then reduced respectively by more

than 33% and 47% as compared to the uncontrolled case.

An important point to notice here is the difference in TTS

when the objective of the controller is to reduce either TE

only or DL only. When the objective is the DL, the TTS

becomes less worst than when the objective of the controller

is to reduce TE (see Table I). This is because of the fact

that when the controller is focusing on the reduction of TE,

it will reduce the emissions caused by all vehicles over the

whole traffic network. However, when the intention of the

controller is to reduce the dispersion in the target area, it

only focuses on the reduction of the emissions caused by

the traffic networks that affect this particular target. Thus,

the traffic networks that do not emit emissions that affect

the target area could have better traffic flow.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a simple area-wide emission (disper-

sion of emission) model that includes time-varying wind



TABLE I

SIMULATION RESULTS FOR DIFFERENT SCENARIOS.

Scenarios
Performance measure

TTS TE Total DL

[veh.h] (g%) [kg] (g%) [mg/m2s] (g%)

Uncontrolled 1362.1 (–) 127.5 (–) 1.8 (–)
TTS 875.3 (-35.7) 145.4 (+14.0) 2.6 (+44.4)
TE 1590.3 (+16.8) 66.4 (-47.9) 1.2 (-33.3)
DL 1509.0 (+10.8) 70.8 (-44.5) 1.2 (-33.3)
5TE + DL 1532.0 (+12.5) 67.7 (-46.9) 1.3 (-27.8)
10TTS+TE+5DL 874.1 (-35.8) 120.3 (-5.6) 2.3 (+27.8)

The (g%) value denotes the percentage change of the variables with respect to the uncontrolled scenario (‘-’ means decrement and ‘+’ means
increment).
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Fig. 3. Dispersion level for different control objectives.

speed and wind direction. Moreover, we have presented

nonlinear control policies that describe the parametriza-

tion of the traffic control measures so that nonlinear

parametrized MPC can be used. We have demonstrated the

proposed control approach and the model with a simulation

based case study. We have considered different scenarios

(both uncontrolled and controlled cases) to illustrate the

potential of the parametrized MPC controller for traffic

systems.

In our future work, we will extend the area-wide emission

model from a point model to a full 2D model. We will com-

pare the performance of the parametrized MPC controller

with conventional MPC and consider more complicated

case studies. Moreover, we will investigate the effect and

correlation of queue length formed by ramp metering and

the emissions dispersion.
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