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Abstract: In this paper a new identification method for non-linear hybrid systems that have
mixed continuous and discrete states by using fuzzy clustering and principal component analysis
is described. The method first determines the hybrid characteristic of the system inspired by an
inverse form of the merge method for clusters, which makes it possible to identify the unknown
switching points of a process based on just input-output data. Using the switching points, a hard
partition of the input-output space is obtained. Then, we propose to use Takagi-Sugeno (TS)
fuzzy models with Gaussian MFs as sub-models for each partition. Thus, the overall model is
hybrid-fuzzy and will include explicitly the hybrid behavior of the system (the detected switching
points) by means of binary MFs, and in each partition all the other non-linearities by means of
TS sub-models. An illustrative experiment on a hybrid-tank system is conducted to present the
benefits of the proposed approach.

Keywords: Nonlinear system identification; hybrid and distributed system identification; fuzzy
identification; fuzzy clustering; principal component analysis.

1. INTRODUCTION

Hybrid systems represent an important class of dynamical
systems that contain continuous and discrete/integer vari-
ables. Different types of models can be used to represent
hybrid systems, for example mixed lineal dynamical mod-
els (MLD), linear complementarity, extended linear com-
plementarity, piece-wise affine (PWA), and max-min plus
scaling systems. Each sub-class has its own advantages
over the others. For example, control techniques for MLD
hybrid models, stability criteria for PWA systems, and
conditions of existence and uniqueness of solution trajec-
tories for linear complementarity systems, see Bemporad
and Morari (1999), Heemels et al. (2001) and references
within.

For non-linear systems, there are many identification
methodologies such as fuzzy and neural networks model-
ing. However, few methodologies consider non-linear mod-
eling with continuous and discrete variables, i.e., iden-
tification of hybrid systems. The identification methods
for hybrid systems are mainly focused on Piecewise ARX
(PWARX) systems. See for example Ferrari-Trecate et al.
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European 7th Framework Network of Excellence “Highly complex
and networked control systems (HYCON2)”. Also by Fondecyt Chile
Grants 1100239-111047, and by the Ministry of Science, Higher
Education and Technology of the Republic of Slovenia.

(2003), Juloski et al. (2005i), Bemporad et al. (2005),
Gegundez et al. (2008), Drulhe et al. (2008). In Juloski
et al. (2005ii) a nice comparison between some of those
methods is presented, and in Camacho et al. (2010) a
review of identification methods for hybrid systems can
be found. In Lauer et al. (2010) a nonlinear hybrid system
identification is proposed using kernel functions in order to
estimate arbitrary nonlinearities without prior knowledge.

Although most of the developments have been made in
conventional fuzzy system a few hybrid fuzzy identification
methods have been proposed. Palm and Driankov (1998)
presented a hierarchical identification for fuzzy switched
systems. The proposed method considers a black-box fuzzy
identification by using fuzzy clustering and measurable
discrete states in order to obtain a model for continu-
ous state and discrete transitions. Next, Girimonte and
Babuška (2004) described two structure-selecting methods
for non-linear models with mixed discrete and continuous
inputs. The results show that fuzzy clustering is faster in
terms of computation time.

In this paper, we propose a new identification method for
non-linear hybrid systems that identifies first the discrete
transitions (switching points) and then all other kind of
non-linearities by only using input-output data of the
process, where prior knowledge of discrete modes is not
required. The outline of the paper is as follows. In Section
2, the hybrid fuzzy modeling and the identification prob-
lem are presented. In Section 3, an identification method



based on fuzzy clustering and the principal components,
is presented. Section 4 shows the results of the proposed
hybrid fuzzy modeling for a hybrid tank system. Lastly,
Section 5 presents the conclusions and further research.

2. PROBLEM STATEMENT

For the modeling of hybrid systems the most popular
model types used in the literature are piecewise affine
(PWA) system and mixed logical and dynamical (MLD)
system. In this paper we propose the use of another type
of model called hybrid-fuzzy system, which combines the
characteristics of fuzzy models to represent nonlinearities,
and the hybrid system to include quantized variables.

We consider hybrid discrete-time nonlinear dynamic sys-
tems with input u(t) ∈ Rm, and to explain the identi-
fication method we consider a single output y(t) ∈ R
(the method is easily extensible for multiple outputs).

Let ut−1 =
[

u(t− 1)T , . . . ,u(t− nb)
T
]T

, and yt−1 =

[y(t− 1), . . . , y(t− na)]
T
be, respectively, past inputs and

outputs up to time t− 1, na and nb are the model orders.
We will assume that the discrete dynamics (transitions) of
the system occur when yt−1 satisfies some conditions, and
they will not depend on the inputs. This type of hybrid
systems is described in general form as:

y(t) =

s
∑

i=1

fi(y
t−1,ut−1)̺i(y

t−1),

̺i(y
t−1) =

{

1, if yt−1 ∈ χi

0, otherwise
,

(1)

where s is the number of discrete modes (sub-models). The
local behavior of the system is described by the functions
fi(·) and the discrete mode ̺i(y

t−1) is a binary variable.
The regions χi form a complete partition of the output
regressor set χ, i.e.,

⋃s
i=1 χi = χ and χi ∩ χj = ∅, ∀i 6= j.

The aim in this work is to present a systematic method
for determining the functions fi(·) and the regions χi

given only the input-output data of the process. The
functions fi(·) could be any non-linear function that will be
identified by the TS models and the regions χi are assumed
to be convex polyhedra, described by

χi = {yt−1 ∈ Rna : Hiy
t−1 � hi} (2)

where Hi ∈ Rqi×na , hi ∈ Rqi i = 1, ..., s, and �
denotes componentwise inequality, where some inequalities
are strict to prevent the boundaries of the regions from
overlapping. The number of linear inequalities defining the
i-th polyhedral region is qi. In this paper, as a consequence
of the algorithm, the resulting Hi, i = 1, ..., s, are diagonal
matrices, so the partition will be a hyperrectangle.

The system given by (1) can be represented by a two-level
fuzzy model, which was described by Tanaka et al. (2001).
The corresponding two levels are the local fuzzy level and
the discrete/quantized level. The local fuzzy level is a set
of TS fuzzy models with local validity in one region of an
estimated partition χi, i = 1, ..., s, where s is the estimated
number of regions. The discrete/quantized level is given

by a set of crisp functions δi(y
t−1), which activate the i-th

local TS model if yt−1 is in χi.

Let us assume that input-output data (y(t),yt−1,ut−1),
t = 1, ..., N is available . The structure of a hybrid-fuzzy
model to be identified for the variable y(t) is described as:

y(t) =

s
∑

i=1

fTS
i (zt−1,yt−1,ut−1)δi(y

t−1),

δi(y
t−1) =

{

1, if yt−1 ∈ χi

0, otherwise
,

fTS
i (zt−1,yt−1,ut−1) =

Ri
∑

j=1

βij(z
t−1)yij(y

t−1,ut−1),

yij(y
t−1,ut−1) = (aij)

Tyt−1 + (bij)
Tut−1 + rij ,

βij(z
t−1) =

p
∏

r=1
Aij,r(zr(t− 1))

Ri
∑

j=1

p
∏

r=1
Aij,r(zr(t− 1))

,

(3)

where p is the number of inputs at the premises, the

vector of the premises is zt−1 = [z1(t− 1), . . . , zp(t− 1)]
T

and are permitted to be inputs, outputs. We will assume

zt−1 =
[

(yt−1)T , (ut−1)T
]T

, so p = na + m · nb. The

index i represents the ith region, (aij)
T , (bij)

T , rij are
the parameters of the fuzzy model fTS

i (·) for the region i
on rule j, Ri is the number of rules of the fuzzy model at
the ith region, Aij,r(zr(t − 1)) is the membership degree
for the input zr(t − 1) at the ith region and rule j, and
βij(z(t − 1)) is the activation degree of the jth rule that
belongs to the fuzzy model of the ith region.

Note also that the model given by (3) is a Takagi-Sugeno
fuzzy model, with s · Ri rules and activation degree
βij(z

t−1)δi(y
t−1). One of the most important part of the

hybrid-fuzzy model is the fuzzy rule base. The rule i, j is
the following:

Rij : if yt−1 ∈ χi and z1(t − 1) is Aij,1 and z2(t − 1)
is Aij,2 and .... and zp(t − 1) is Aij,p then yij(t) =
(aij)

Tyt−1 + (bij)
Tut−1 + rij, j = 1, .., Ri, i = 1, .., s.

Note that the first component yt−1 ∈ χi of the fuzzy rule
evaluates the binary membership function δi(y

t−1) and
it explicitly incorporates the discrete transitions of the
system.

By only using a finite input-output data set of the process,
the identification problem of a hybrid-fuzzy model given
by (3) consists of estimating the following parameters: s,
χi, i = 1, .., s, Ri, Aij,r(·), (aij)T ,(bij)

T , and rij . As ex-
plained in Bemporad et al. (2005), usually an identification
procedure is carried out by minimizing a cost function:

VN =
1

N

N
∑

t=1

J

(

y(t)−
s
∑

i=1

fTS
i (zt−1,yt−1,ut−1)δi(y

t−1)

)

(4)

where J is a penalty function for the error, typically a
quadratic function. The optimization problem should also



include additional terms if we want to avoid overfit, or if we
want meaningful fuzzy rules. The minimization of (4) is in
general a non-convex non-linear mixed-integer optimiza-
tion problem. In this paper we propose a new method for
the identification of hybrid-fuzzy systems based on well-
known principles, that identifies first the discrete transi-
tions and then all other kind of non-linearities.

3. HYBRID-FUZZY IDENTIFICATION METHOD

A new fuzzy-hybrid identification method is developed
based on fuzzy clustering and principal component. The
method first allows to identify the discrete transitions
(switching points) and then all other kind of non-linearities
by only using input-output data, where prior knowledge of
the discrete modes is not required.

As a motivation example, let us consider the hybrid tank
system in Figure 1. In the figure, A1, A2 and A3 are the
cross-section of the tanks, S1, S2 and S3 are the cross-
section of the outlet holes, g is the acceleration due to
gravity, Q(t) is the input flow, and h(t) is the level of the
tank. The hybrid tank system is divided into three region
because the cross-section of the tank is larger when the
level is higher than h1 and h2.

A1

A2

A3

h1

h2
(if h(t) ≥ h1)

(if h(t) ≥ h2)

Q(t)

S1

S1

√

2gh(t)

S2
S2

√

2g
(

h(t)− h1

)

S3
S3

√

2g
(

h(t)− h2

)

Fig. 1. Hybrid Tank System

Thus, for a fixed input flow, it will take more time to
increase the level when it is higher than h1 or h2, as
compared h(t) when it is lower, because the cross-section
is larger. This means that the level values h1 and h2

are switching points in the sense that those levels are
the border of the three different operating regions, the
dynamics of which are different. Next, the hybrid-fuzzy
identification method is presented.

3.1 Hybrid-fuzzy Model Identification Procedure

Throughout this paper we assume that N input/output
data have been collected:

Φ =











y(1) (y0)T (u0)T

y(2) (y1)T (u1)T

...
...

...
y(N) (yN−1)T (uN−1)T











N,na+m·nb+1

, (5)

where N denote the number of data samples, y(t) ∈ R
is the variable we want to estimate with the hybrid-fuzzy

model, yt−1 ∈ Rna are past outputs up to time t − 1,
ut−1 ∈ Rm·nb are past inputs up to time t−1, and na and
nb are the model orders.

The identification procedure consists of the following seven
steps:

Step 1 : Determine the fuzzy clusters over the data Φ, using
the G-K algorithm Gustafson and Kessel (1978). This
algorithm searches for hyperplanes in an n-dimensional
space. Then, it is suitable for the identification of hybrid-
fuzzy models because the consequents of hybrid-fuzzy
models are hyperplanes in the premise-consequent product
space. The algorithm will cluster the data given a specified
number of cluster c and the parameters for the cluster
fuzziness and the stopping criterion. The G-K algorithm
provides the centers of clusters vl = [v1l , ..., v

na+m·nb+1
l ]T ,

a covariance matrix for each fuzzy cluster l, with na +m ·
nb + 1 eigenvectors {ϕ1,l, . . . , ϕna+m·nb+1,l}, and with the
corresponding eigenvalues {λ1,l, . . . , λna+m·nb+1,l}.
It is well known that G-K algorithm does not give an
indication of the correct number of clusters c needed. A
large number of clusters will result in a complicated rule-
base model, while a small number of clusters result in a
poor model. It is also important to preserve the small
clusters in the interesting regions, which may have been
found when clustering with an initially large number of
clusters. So to obtain the optimum number of clusters we
propose using the compatible cluster merging method, just
like it is suggested for the identification of TS models in
Babuška (1998), Kaymak and Babuška (1995).

Step 2 : To select the eigenvector ϕ∗

l = [φ1
l , ..., φ

na+m·nb+1
l1

]T

associated with the maximum eigenvalue λ∗

l for each clus-
ter l = 1, . . . , c:

λ∗

l = max{λ1,l, λ2,l, . . . , λna+m·nb+1,l}. (6)

We propose to detect the switching points by analyzing
the most important eigenvectors (the principal vectors or
the principal components), in which directions the most
information is given. Inspired by the merge method for
clusters Kaymak and Babuška (1995), we will look for
clusters whose centers are sufficiently close (consecutive
clusters), but instead of merging parallel hyperplanes
clusters, we will split the output-regressor space when
those consecutive clusters are very different (angle between
the hyperplanes is big). We assume that the switching
points are in the outputs, so the analysis will be done
for each component of the output-regressor space y(t−k),
k = 1, ..., na.

Step 3 : For every cluster l = 1, ..., c and every component
of the output regressor space y(t − k), k = 1, ..., na, to
calculate the vector π̂lk, which represents the projection
of the eigenvector ϕ∗

l on the subspace given by the inputs
and the output y(t− k), and which is given by:

π̂lk =
Φkϕ

∗

l

‖Φkϕ∗

l ‖2
, ∀l ∈ {1, ..., c}, ∀k ∈ {1, ..., na}, (7)



where ϕ∗

l is the eigenvector chosen in step 2 and Φk is the
matrix dimension (na +m ·nb +1)× (na +m ·nb +1), the
elements of which are defined as:

(Φk)ℓ,℘ =

{

1 if ℓ = ℘ = k + 1,
1 if ℓ = ℘ and ℓ > na + 1,
0 if otherwise.

(8)

Note that the vector is normalized, so ‖π̂lk‖2 = 1.

Step 4 : For every vector π̂lk determine π̂u
lk which represents

the projection of π̂lk in the subspace generated by the
inputs, and which is obtained in the following way:

π̂u
lk =

Φuπ̂lk

‖Φuπ̂lk‖
, ∀l ∈ {1, ..., c}, ∀k ∈ {1, ..., na}, (9)

where π̂il is the vector obtained in Step 3, and Φu is the
matrix of dimension (na +m · nb + 1)× (na +m · nb + 1),
the elements of which are defined as:

(Φu)ℓ,℘ =

{

1 if ℓ = ℘ and ℓ > na + 1,
0 if otherwise.

(10)

Note that the vector is normalized, so ‖π̂u
lk‖ = 1. Finally,

for each cluster l and every output variable y(t − k),
compute the cluster slope Γlk = tan(γ̂lk) given by:

Γlk =

√

1

(π̂T
lkπ̂

u
lk)

2
− 1, ∀l ∈ {1, ..., c}, ∀k ∈ {1, ..., na},

(11)

Step 5 : In this step the idea is to determine possible
switching points for every variable y(t − k). For doing
this, if l1 and l2 are two consecutive clusters, with center
vl1 and vl2 in descending order for the variable y(t − k),

(vk+1
l1

< vk+1
l2

), to evaluate the rate ∆Γl1l2k given by:

∆Γl1l2k = |Γl1k − Γl2k| . (12)

The candidate switching point should be in between the
coordinates vk+1

l1
and vk+1

l2
. We propose estimating the

location of the switching point V l1l2
k in the following way:

V l1l2
k =

v
k+1

l1
+
√

λ∗

l1
φ
k+1

l1

λ∗

l1

+
v
k+1

l2
−

√
λ∗

l2
φ
k+1

l2

λ∗

l2

1
λ∗

l1

+ 1
λ∗

l2

. (13)

where λ∗

l1
and λ∗

l2
are the eigenvalues obtained in Step 2

corresponding to clusters l1 and l2 respectively and φk+1
l1

and φk+1
l2

are the k+1-th coordinates of the corresponding
eigenvectors.

The next step is to choose the switching point candidates
V l1l2
k the rate of which ∆Γl1l2k satisfies a criterion. A sensi-

tivity analysis could be performed to evaluate whether the

inclusion of a switching point improves the performance
of the prediction model or not. Then, we will add one
switching point, we will identify the hybrid-fuzzy model,
and then we will analyze again Step 5, to determine the
inclusion of another switching point. The process will finish
once the performance of the hybrid-fuzzy model is not
improved significantly by the inclusion of new switch-
ing points. So, let assume we have generate a partition
{χi}si=1. We now analyze the inclusion of a new switching
point in the model, by splitting the region χi into two new
regions divided by the new switching point. So, let consider
the switching point candidate, with the maximum rate,
given by:

Vs = {V l1l2

k
: (l1, l2, k) = argmax{∆Γl1l2k}}. (14)

Step 6 : To split the region χi into two new regions. Recall
that the region χi is defined as follows:

χi =
{

yt−1 : Hiy
t−1 � hi

}

,

where Hi ∈ Rqi×na , hi ∈ Rqi i = 1, ..., s, the symbol �
denotes componentwise inequality, where some inequalities
are strict to avoid the boundaries of the regions to have
multiple values. Given the new switching point Vs in the
variable y(t−k), the two new regions are defined as follows:

χi
1 =

{

yt−1 : Hiy
t−1 � hi ∧ y(t− k) ≤ Vs

}

.

χi
2 =

{

yt−1 : Hiy
t−1 � hi ∧ −y(t− k) < −Vs

}

.

Step 7 : For the sub-regions χi
1 and χi

2, a local TS
model is identified. First, we split the data belonging to
the region χi into the two new regions, by the rule: if
y(t − k) ≤ Vs then (y(t), (yt−1)T , (ut−1)T ) ∈ χi

1, else
(y(t), (yt−1)T , (ut−1)T ) ∈ χi

2, t = 1, ..., N . Then, for each
new partition, just considering data that belongs to the
sub-region, the number of rules Ri and the membership
functions Aij,r(·) are obtained with a clustering method
(G-K). Each TS model is optimized for the number of
fuzzy clusters and their regressor structure is obtained by
a sensitivity analysis.

The next step is to identify the consequent parameters of
each rule of the TS model, see Karer et al. (2007). Let us
write the consequent parameters for the fuzzy rule j in the
region i as follow:

Θij =

[

aij
bij

rij

]

na+m·nb+1,1

, (15)

The model parameters for the rule j of region i can be
obtained using the least-squares identification method as
follows:

Θij = (ΨT
ijΨij)

−1ΨT
ijYij (16)



where the matrices Ψij and Yij are the following:

Ψij =











βij(z
0)[(y0)T (u0)T 1]

βij(z
1)[(y1)T (u1)T 1]

...
βij(z

Nij−1)[(yNij−1)T (uNij−1)T 1]











, (17)

Yij =











βij(z
0)y(1)

βij(z
1)y(2)
...

βij(z
Nij−1)y(Nij)











Nij ,1

, (18)

where Nij is the number of input-output data pairs corre-
sponding to the rule j of the region i considering only the
data that belongs to the region i and βij(z(t−1)) ≥ δ, with
δ a small positive number essential for obtaining suitable
conditioned matrices.

4. SIMULATION RESULTS

4.1 Hybrid Tank System

Let us consider the hybrid tank system shown in Figure 1,
a modification of the one used in Gegundez et al. (2008).
The following non-linear equations describe the dynamic
of the tank system:

dh

dt
=























1

A1
(Q(t)− F1(t)) if h(t) ≤ h1

1

A2
(Q(t)− F1(t)− F2(t)) if h1 < h(t) ≤ h2

1

A3
(Q(t)− F1(t)− F2(t)− F3(t)) if h(t) ≥ h2

,

(19)

where h(t)[m] is the level of the tank, u(t) = Q(t)[m3/s]

is the input flow, outflows are F1(t) = S1

√

2gh(t),

F2(t) = S2

√

2g(h(t)− h1), F3(t) = S3

√

2g(h(t)− h2),
A1 = 0.0154[m2] is the cross-section of the first region of
the tank, the cross-section of the second and third regions
are given by A2 = 3A1, A3 = 9A1, S1 = S2 = S3 =
0.0005[m2] are the cross-section of the outlet holes, and
g = 9.81[m2/s] is the acceleration due to gravity. The
hybrid tank system is divided into three regions because
the cross-section of the tank is three times bigger when the
level is higher than h1 = 0.2[m] and then three time bigger
when the level is higher than h2 = 0.4[m]. The identifica-
tion problem is to find the relation between h(t) and Q(t)
considering the input/output data. The main goal is to
find the number of switching regions and the switching
point (in this case h(t) = 0.2 and h(t) = 0.4), which
defines the partition. The input/output data considered
are yt−1 = h(t−1) as the output and ut−1 = Q(t−1) as the
input. In order to evaluate the performance of the hybrid-
fuzzy model (with one and two switching points detected)
and TS model (with no switching point included), the Root
Mean Squared (RMS) error is used.

The signals were sampled with Ts = 10[s]. For the input
a uniformly distributed random signal with minimum
value 0 and maximum value 0.005 was used. A total of
1000 samples were used as training set, and 1000 as the
validation set.

For the hybrid-fuzzy models, a switching point was esti-
mated to be in h(t− 1) = 0.385[m] (the real value is 0.4).
After splitting the data into the new regions h(t − 1) ≥
0.385 and h(t− 1) < 0.385, the rates between consecutive
clusters belonging to each region are calculated again, the
switching point being estimated to be in h(t−1) = 0.25[m]
(the real value is 0.2). There are three subregions (s = 3):
The first one is χ21, where h(t− 1) < 0.25. The second is
χ22, where h(t−1) < 0.385 and h(t−1) ≥ 0.25. The third is
χ23, where h(t−1) ≥ 0.385. The structure of hybrid-fuzzy
model is given by:

Rij : if h(t − 1) ∈ χi and h(t − 1) is Aij,1 and Q(t − 1)
is Aij,2, then hij(t) = aijh(t − 1) + bijQ(t − 1) + rij,
j = 1, .., Ri,

where Aij,r(zr(t − 1)) = e−0.5(c1,ij,r(zr(t−1)−c2,ij,r))
2

. The
parameters for hybrid-fuzzy model is given in Table 1.

Table 1. Parameters of hybrid-fuzzy model-2

χ23

j c1,1j,1 c2,1j,1 c1,1j,2 c2,1j,2 a1j1 b1j1 r1j
1 4.484 183.27 0.4689 0.0023 -0.1617 0.771 81.02

2 5.360 153.32 0.4403 0.0022 -0.1675 0.777 81.95

3 5.118 160.56 0.5224 0.0026 -0.1572 0.767 79.68

χ22

j c1,2j,1 c2,2j,1 c1,2j,2 c2,2j,2 a2j1 b2j1 r2j
1 7.823 129.14 0.3513 0.0018 0.0213 0.211 98.24

2 4.712 214.38 0.2462 0.0012 0.0119 0.224 101.43

3 4.440 227.54 0.2857 0.0014 0.0137 0.221 101.07

χ21

j c1,3j,1 c2,3j,1 c1,3j,2 c2,3j,2 a3j1 b3j1 r3j
1 6.679 146.86 0.0933 0.0005 0.0539 -0.036 102.64

2 5.555 176.58 0.0277 0.0001 0.0531 -0.043 103.58

3 5.623 174.44 0.1562 0.0008 0.0511 -0.033 103.95

4 9.106 107.71 0.1488 0.0007 0.0515 -0.025 102.77

Comparative Analysis. Table 2 contains the RMS errors
divided by the number of data points for the hybrid-fuzzy
(H-F) and TS models, considering the validation data set
for 1, 5, and 10, step-ahead prediction. Figure 2 show the
measured output and the output predicted by H-F model
with two switches (H-F model 2).

Table 2. RMS error, TS and hybrid-fuzzy
model, validation data.

STEPS. TS H-F1 H-F2

1 0.0405 0.0354 0.0353

5 0.0420 0.0378 0.0363

10 0.0448 0.0395 0.0378

A switching point was detected at h(t− 1) = 0.385. In the
case of h(t−1), the real switching point was set to 0.4 [m],
which is a pretty fairly good estimation. The detection of
the second switch was more difficult, because of the effect
of the switching point at h(t − 1) = 0.385 in the clusters
close to the border. From the Figure 2, and Table 2, we
can say that the main advantage of hybrid-fuzzy modeling
is its fuzzy rules, which can be used directly to detect the
modes of the system.
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Fig. 2. Measured and predicted (a) output, (b) and modes
using H-F Model 2

5. CONCLUSION

In this paper a new identification method for non-linear
hybrid systems that identifies discrete transitions by using
only input-output data has been presented. A hybrid-
fuzzy model was identified, which consist of a local fuzzy
level and a discrete/quantized level. Thus, the hybrid-
fuzzy model incorporates explicitly the hybrid behavior
of the process. Moreover, the method was implemented
and applied to a tank-system. The algorithm is a mixture
of existing methods (principal component analysis, fuzzy
clustering) and demonstrated to be very useful in the
detection of switching points by simulation. The compar-
isons demonstrated the better performance of hybrid-fuzzy
models compared to the conventional TS model when com-
paring prediction performance. However, we must point
out that the main advantage of hybrid-fuzzy modeling are
the rules with explicit information about the modes of the
plant.

In further research, new approaches of hybrid-fuzzy mod-
eling will be analyzed such as a fuzzy clustering that
generates both the fuzzy and hard partitions. The stability
issues of the proposed hybrid-fuzzy models can also be
studied. State-space model identification and estimation
is also an interesting topic for this class of non-linear
systems. Online clustering, or learning methods could be
also applied in a further stage.

ACKNOWLEDGEMENTS

We thanks Gorazd Karer and Patricio Torres for their
contributions in the initial stages of this research.

REFERENCES
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