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Convergence Analysis of Ant Colony Learning
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Mekelweg 2, 2628 CD Delft, The Netherlands (e-mail: j.m.vanast@tudelft.nl,
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Abstract: In this paper, we study the convergence of the pheromone levels of Ant Colony Learning
(ACL) in the setting of discrete state spaces and noiseless state transitions. ACL is a multi-agent approach
for learning control policies that combines some of the principles found in ant colony optimization
and reinforcement learning. Convergence of the pheromone levels in expected value is a necessary
requirement for the convergence of the learning process to optimal control policies. In this paper, we
derive upper and lower bounds for the pheromone levels and relate those to the learning parameters and
the number of ants used in the algorithm. We also derive upper and lower bounds on the expected value
of the pheromone levels.

Keywords: Evolutionary algorithms in control and identification; Reinforcement learning control

1. INTRODUCTION

Ant Colony Learning (ACL) is an algorithmic framework for
the automatic learning of control policies for non-linear sys-
tems with continuous or discrete state spaces (van Ast et al.,
2009, 2010). The framework is based on the Ant Colony Op-
timization (ACO) class of algorithms, which is inspired by the
foraging behavior of ants (Dorigo and Blum, 2005). In ACL
, a collection of agents – called ants – jointly interact with
the system at hand in order to find an optimal control policy,
i.e., an optimal mapping between states and actions. Through
the stigmergic interaction by means of pheromones, the ants
are guided by each other’s experience towards better control
policies. In discrete time, the control policy will lead to a se-
quence of state-action pairs starting in a given initial state and
terminating with the action that brings the state of the system
to the desired value. A sequence of state-action pairs is called
a solution. A predefined cost function evaluates solutions and a
solution is then called optimal if it has the lowest cost compared
to the cost of all possible solution trajectories from the initial
state to the goal state. A policy is called optimal if for all states
in the state space the solutions are optimal.

In this paper we present a theoretical study on the convergence
of the pheromone levels of ACL . This is a step towards a
convergence proof of the algorithm to optimal control policies.
We derive upper and lower bounds on the pheromone levels,
as well as on the expected value on the pheromone levels.
Furthermore, we relate those bounds to the learning parameters
and the number of ants used in the algorithm. Convergence
analysis of ACL is different from the convergence analysis of
the ACOgb,τmin

class of ACO algorithms (Stützle and Dorigo,
2002). The convergence proof of Stützle and Dorigo (2002)
mainly relies on the global-best update rule, with which the
pheromones are only updated if they belong to the best solution
found so far. With ACL , all solutions found in a trial are used
to update the pheromone levels. This requires a different type
of convergence analysis.

This paper is structured as follows. In Section 2, the ACL
framework is presented. Section 3 presents a closed expression

for the total pheromone update that takes place during a trial of
the algorithm. In Section 4 upper and lower bounds are derived
for the pheromone levels. Based on these results, the upper and
lower bounds on the expected value of the pheromone levels is
derived in Section 5. The paper concludes with Section 6.

2. ANT COLONY LEARNING

2.1 The Optimal Policy Learning Problem

Assume that we have a nonlinear dynamic system, character-

ized by a discrete-valued state vector q = [q1 q2 . . . qn]
T

∈
Q, where Q has a finite number of elements. Also assume
that the system can be controlled by an input u ∈ U that can
only take a finite number of values and that the state can be
measured at discrete time steps, with a sampling time Ts with t
the discrete time index. The sampled system is denoted as:

q(t+ 1) ∼ p(q(t),u(t)),

with p a probability distribution function over the state-action
space. The nonlinear mapping function h is called the control
policy:

u(t) = h(q(t)).

The optimal control problem we consider is to control the
system from any given initial state q(0) = q0 to a desired
goal state q(t) = qg in at most t ≤ T steps and in an optimal
way, where optimality is defined by minimizing a certain cost
function:

J(s) = J(q̃, ũ), (1)

with s a solution and q̃ = q(1), . . . ,q(T ) and ũ =
u(0), . . . ,u(T − 1) respectively the sequences of states and
actions in that solution. The problem is to find a control policy
that, when applied to the system in q0, results in a sequence
of state-action pairs (u(0),q(1)), (u(1),q(2)), . . ., (u(T −
1),q(T )) that minimizes this cost function. In our case, we aim
at finding control policies for non-linear systems, which in gen-
eral cannot be derived analytically from the system description
and the cost function.



The cost function must satisfy for any solution s:

0 <
τ0

ρ
≤ J−1

max ≤ J−1(s) ≤ J−1
min, (2)

with Jmax = max
s

J(s) and Jmin = min
s

J(s) respectively the

largest and smallest possible value of the cost function. The pa-
rameter τ0 represents the initial value of the pheromone levels
and ρ denoted the global pheromone decay rate. These param-
eters will be further explained in Section 2.2 and Section 2.5
respectively. Note that this requirement is not at all restrictive,
since adding a constant τ0

ρ
to the cost function renders this

requirement satisfied, without changing the optimal solution.
Also note that we can trivially extend the optimal control prob-
lem that we consider here to include a set of goal states, denoted
by Qg. In that case, we can include a single virtual goal state to
which all states qg ∈ Qg lead with probability one and a cost
of zero.

2.2 Outline of the ACL Algorithm

The general outline of the ACL algorithm is as follows. Initially,
all M ants are distributed randomly over the state space of
the system and the pheromone levels τqu associated with each
state-action pair (q,u) are set to an initial value τqu(0) = τ0.
In what is called a trial, all ants make interaction steps with
the system. First, they decide based on the pheromone levels
which action to perform, after which they apply this action to
their own copy of the system. They store the state-action pair
to their personal record, called their partial solution sp and
the pheromone level at that state-action pair τqu is annealed,
according to (4), through the local pheromone update. Each
copy of the system responds to the input by changing its state,
after which the ants repeat the process by choosing a new
action until they reach the goal state qg, which terminates
the trial. After all ants have terminated their trial, or after a
predefined number of trials, all partial solutions are added to the
multiset Strial. This set is used in the global pheromone update
step, where all solutions in the set are evaluated over the cost
function, and the state-action pairs contained in the solutions
receive a pheromone update accordingly.

From the output of the algorithm, which are the pheromone
values, the control policy can be derived. In the following, we
explicitly distinguish between the steps in the inner loop and the
steps in the outer loop of the algorithm. In the inner loop, the
iterations are indexed by t, while in the outer loop, the iterations
are indexed by k. In order to understand the timing of the
pheromone updates unambiguously, the pheromone variables
in the inner loop receive the superscript “local”: τ local

qu
. Before

starting the inner loop, the current pheromone levels are copied
to the local pheromone levels: τ local

qu
(0) = τqu(k) for all state-

action pairs. The first step in the inner loop is the selection of
the action.

2.3 Action Selection

In the action selection step, each ant c determines which action
to apply to the system in a given state qc. There are various
possible forms for the action selection, but the analysis in this
paper is based on the ǫ-greedy action selection rule. Here, the
amount of exploration is kept constant, due to the inclusion of
an explicit exploration probability ǫ:

uc =







arg max
ℓ∈Uqc

(

τ local
qcℓ

(t)
)

with probability 1− ǫ

random(Uqc
) with probability ǫ,

(3)

where random(Uqc
) denotes the random selection of an action

from the action set Uqc
in state qc using a uniform distribution.

2.4 Local Pheromone Update

After every step, each ant c performs a local pheromone update
for the (qc,uc)-pair just visited:

τ local
qcuc

(t+ 1) = (1− γ)τ local
qcuc

(t) + γτ0, (4)

with γ ∈ [0, 1) the local pheromone decay rate. The purpose
of the local pheromone update is to stimulate exploration of
the state-action space, by making it less attractive for an ant
to choose the same action in a certain state as its predecessor.
When all ants have reached the goal, or when the inner loop has
timed-out, the algorithm continues with the global pheromone
step in the outer loop.

2.5 Global Pheromone Update

After completion of the trial (which, let us assume, happens
when t = T ), the pheromone levels are updated according to
the following global pheromone update step:

τqu(k + 1) =(1− ρ)τ local
qu

(T ) + ρ
∑

s∈Strial(k):
(q,u)∈s

J−1(s),

∀(q,u) : ∃s ∈ Strial(k) : (q,u) ∈ s, (5)

with Strial the multiset of all candidate solutions found in the
trial and ρ ∈ (0, 1] the global pheromone decay rate. Note that
elitism in the global pheromone update is not possible, since
the best solution would then always be the solution starting
just prior to the goal state with the action taking the system to
the goal state immediately. Since we aim at learning optimal
control policies from any initial state, we must also include
every solution found in the update. The pheromone deposit is
equal to J−1(s) = J−1(q̃, ũ), the inverse of the cost function
over the sequence of discrete state-action pairs in s. Note that
minimizing the cost corresponds to maximizing the pheromone
levels corresponding to the optimal solution. After the global
pheromone update, the algorithm continues for k+1 at the start
of the outer loop until the maximal number of trials have taken
place (i.e., when k = K).

2.6 Control Policy

The control policy can be extracted from the pheromone levels
as follows:

u = h(q) = argmax
ℓ∈Uq

(τqℓ), (6)

in which ties are broken randomly. This equation means that the
control policy assigns the action to a given state that maximizes
the associated pheromone levels.

3. TOTAL PHEROMONE UPDATE

Let us now derive an expression for the total effect of the
pheromone updates during one trial. At the start of a trial k,
the current pheromone levels are copied to the local pheromone
levels, τ local

qu
(0) = τqu(k) for all (q,u)-pairs. In the first



trial, when τ local
qu

(0) = τqu(0) = τ0 for all (q,u)-pairs, the
local pheromone update (4) has no effect. Only after some
pheromone variables have received a pheromone deposit from
the global pheromone update (5), these pheromone levels can
become larger than τ0. Let us assume that the trial is ended
when t = T and that Mqu(k) ants have visited the (q,u)-pair
in the given trial. It is then easy to verify that the pheromone
levels have then been updated according to:

τ local
qu

(T ) = (1− γ)Mqu(k)(τ local
qu

(0)− τ0) + τ0

= (1− γ)Mqu(k)(τqu(k)− τ0) + τ0. (7)

The global pheromone update is applied to τ local
qu

(T ) at the end

of a trial, if (q,u) is an element of the solution of one or more
ants. We can aggregate (7) and (5) to get an expression for the
total pheromone update at the end of a trial:

τqu(k + 1) = (1− ρ)
{

(1− γ)Mqu(k)(τqu(k)− τ0) + τ0

}

+ ρ
∑

s∈Strial(k):
(q,u)∈s

J−1(s), if Mqu(k) > 0, (8)

τqu(k + 1) = τqu(k), otherwise, (9)

with Mqu(k) the number of ants that have visited (q,u) during
trial k. From (8) - (9) we can see that:

(1) If a (q,u) is not visited by any of the ants in a given trial,
the pheromone level τqu will not be updated in that trial.

(2) If a (q,u) is visited by one or more ants in a given trial,
τqu will be updated in that trial, and may increase or
decrease in value depending on the pheromone deposits
of the ants and the values of γ and ρ.

By introducing κ as the counter of the number of trials in which
the pheromone level of a state-action pair (q,u) receives a
global pheromone update, we can write (8) - (9) as:

τupd
qu

(κ+ 1) = (1− ρ)
{

(1− γ)Mqu(κ)(τupd
qu

(κ)− τ0) + τ0

}

+ ρ
∑

s∈Strial(κ);
(q,u)∈s

J−1(s), (10)

in which the superscript “upd” is used to avoid confusion
between pheromone updates indexed with k and κ.

4. BOUNDS ON THE PHEROMONE LEVELS

We will proceed our analysis by deriving lower and upper
bounds for the pheromone levels. Starting with the lower
bound, we prove the following proposition:

Proposition 4.1. The lower bound on the pheromone levels is
τ0.

Proof. By induction, we can show that a pheromone level
can never become smaller than τ0 when using the pheromone
update expression from (10):

τupd
qu

(0) =τ0

τupd
qu

(κ+ 1) =(1− ρ)
{

(1− γ)Mqu(κ)(τupd
qu

(κ)− τ0) + τ0

}

+ ρ
∑

s∈Strial(κ):
(q,u)∈s

J−1(s)

≥(1− ρ)







(1− γ)Mqu(κ)(τupd
qu

(κ)− τ0)
︸ ︷︷ ︸

≥0 by induction

+τ0







+ ρMqu(κ)J
−1
max

≥(1− ρ)τ0 + ρJ−1
max ≥ (1− ρ)τ0 + τ0 ≥ τ0,

in which we have used the condition from (2).

In order to derive the upper bound on the pheromone levels, we
use the following lemma:

Lemma 4.2. Consider a first-order scalar difference equation:

y(k + 1) = ay(k) + b,

with a ∈ [0, 1), b ∈ R, and an initial point y(0). If y(0) ≤ b
1−a

,

then y(k) is non-decreasing with the final value:

lim
k→∞

y(k) =
b

1− a
.

Proof. The final value follows trivially from the final value
theorem of the z-transform (Åström and Wittenmark, 1990).
We can prove that the sequence y(k) is non-decreasing as
follows. Using:

y(k) = aky(0) + (ak−1 + . . .+ a+ 1)b

y(k + 1) = ak+1y(0) + (ak + ak−1 + . . .+ a+ 1)b

we can derive the following expression for the difference be-
tween two consecutive time steps of this difference equation:

y(k + 1)− y(k) = (ak+1 − ak)y(0) + akb

= ak(b+ ay(0)− y(0)).

Since a ∈ [0, 1), we have ak ≥ 0. So, in order to make y(k)
non-decreasing, we need that: (b + ay(0) − y(0)) ≥ 0, which

is equal to requiring that y(0) ≤ b
1−a

.

Using this lemma, we can prove the following proposition:

Proposition 4.3. For any (q,u)-pair, the pheromone levels are
bounded from above:

τupd
qu

(κ) ≤
βupper + ρMJ−1

min

1− αupper
,

with

αupper = (1− ρ)(1− γ),

βupper = (1− ρ)
[
(1− γ)M (−τ0) + τ0

]
,

and with Jmin = min
s

J(s) the smallest possible value of the

cost function. Note that for this theoretical analysis, it is not
necessary to know the value of Jmin.

Proof. Considering a given (q,u)-pair, let us rewrite (10) as
follows:

τupd
qu

(κ+ 1) =(1− ρ)(1− γ)Mqu(κ)τupd
qu

(κ)

+ (1− ρ)
[

(1− γ)Mqu(κ)(−τ0) + τ0

]

+ ρ
∑

s∈Strial(κ):
(q,u)∈s

J−1(s).



This equation is of the form:

τupd
qu

(κ+ 1) = α(κ)τupd
qu

(κ) + β(κ) + δ(κ).

Let us now introduce θqu(κ), which satisfies the following
difference equation:

θqu(κ+ 1) = αupperθqu(κ) + βupper + δupper,

in which αupper, βupper, and δupper are upper bounds of α(κ),
β(κ), and δ(κ) respectively:

α(κ) ≤ αupper = (1− ρ)(1− γ),

β(κ) ≤ βupper = (1− ρ)
[
(1− γ)M (−τ0) + τ0

]
,

δ(κ) ≤ δupper = ρMJ−1
min.

The upper bound for α(κ) is obtained by taking Mqu(κ) = 1
for all κ, while the upper bounds for β(κ) and δ(κ) are obtained
for Mqu(κ) = M for all κ. We take the same initial values

for τupd
qu

and θqu, so θqu(0) = τ0. Using Lemma 4.2, we can

now show that θqu(κ) is a non-decreasing function of κ. We
immediately see that αupper ≥ 0 and we must show that:

βupper + δupper

1− αupper
≥ θqu(0) = τ0.

This condition is satisfied if

(1− ρ)
[
(1− γ)M (−τ0) + τ0

]
+ ρMJ−1

min

1− (1− ρ)(1− γ)
≥ τ0,

or

(1− ρ)
[
(1− γ)M (−τ0) + τ0

]
+ ρMJ−1

min − τ0

+ (1− ρ)(1− γ)τ0 ≥ 0.

Recalling the ranges for ρ, viz. (0, 1] and for γ, viz. [0, 1), we
can show that the latter inequality holds, as follows:

(1− ρ)




(1− γ)M (−τ0) + τ0
︸ ︷︷ ︸

≥0






︸ ︷︷ ︸

≥0

+ ρMJ−1
min

︸ ︷︷ ︸

≥τ0

−τ0

︸ ︷︷ ︸

≥0

+ (1− ρ)(1− γ)τ0
︸ ︷︷ ︸

≥0

≥ 0.

Moreover, by induction it follows that τupd
qu

(κ) ≤ θqu(κ):

τupd
qu

(0) = θqu(0)

τupd
qu

(κ+ 1) = α(κ)τupd
qu

(κ) + β(κ) + δ(κ)

≤ αupperθqu(κ) + βupper + δupper
= θqu(κ+ 1).

We can use Lemma 4.2 to get lim
κ→∞

θqu(κ) =
βupper + δupper

1− αupper
.

Since we have shown that θqu(κ) is non-decreasing, we have
now arrived at the conclusion that:

τupd
qu

(κ) ≤ θqu(κ) ≤
βupper + ρMJ−1

min

1− αupper
.

Note that this upper bound is only tight for M = 1.

5. BOUNDS ON THE EXPECTED VALUE OF THE
PHEROMONE LEVELS

The bounds derived in the previous section are useful as they
give us information about the range in which the pheromone
levels reside. Moreover, the bounds give the relations between
the global and local pheromone decay rates ρ and γ, the number
of ants M , and the initial value of the pheromone levels τ0.

However, two shortcomings of these bounds prevent us from
drawing conclusions about convergence of the algorithm:

(1) Our upper bound is not tight for M > 1.
(2) Our upper bound is the same for all pheromone levels,

associated with all (q,u)-pairs.

Especially the second issue prevents us from analyzing whether
and when the pheromone levels associated with the optimal
state-action pairs become larger than the pheromone levels
associated with suboptimal state-action pairs. In this section,
our aim is to find expressions for the evolution of individual
pheromone levels. However, two factors in the algorithm in
particular complicate such an analysis:

(1) The total pheromone update from (10) contains Mqu(κ),
the number of ants that have visited the (q,u)-pair in trial
κ, which is dependent on many unknown factors, such as
the other pheromone levels and the exploration process.

(2) The total pheromone update of τupd
qu

(κ) depends on the

pheromone deposits J−1(s) from all solutions found in
trial κ. The update of a particular pheromone level thus
depends on all state-action pairs prior to (q,u) and all
state-action pairs following (q,u), which also depends
on many unknown factors, such as the other pheromone
levels and the exploration process.

There are too many uncertainties involved in the algorithm
in order to find a closed expression of the final pheromone
levels. This is inherent to learning algorithms that contain
random variables, such as exploration, and in which the credit
assignment, such as the distribution of rewards in reinforcement
learning (Sutton and Barto, 1998), or the distribution of the
pheromone deposits in ACL , depends on a series of decision
variables.

In the following, we eliminate the uncertainty arising from
exploration by looking at the expected value of the pheromone
levels. We eliminate the uncertainty arising from the state-
action pairs prior to (q,u) and the state-action pairs following
(q,u) by considering the situation depicted in Figure 1.

u q

u

u

u

u u

u

qq

=

=

3

2

1

N

g

*

−

’

Fig. 1. From a state q, the action u will take the system to
another state q′, from which there are N possible actions.
The action u∗ in this state will bring the system to the
goal state optimally. The action ū does so sub-optimally,
but still with a lower cost than the other actions.

Here, we regard the Mqu(κ) ants to start in state q and all
choose the action u. All ants are taken to q′ after which they can
choose between N possible actions. Without loss of generality,
we assume that the action u1 = u∗ then takes an ant to the
goal state immediately and with the lowest cost compared to the
other available actions. It is thus considered to be the optimal
action. The action u2 = ū is the second-best action. It takes
an ant to the goal state with a higher cost compared to u1, but
with a lower cost compared to all the other actions. Let us also



assume that the inverse of the cost resulting from all possible
actions is ordered as follows:

J−1
min,q′ = J−1(q′,u1 = u∗) > J−1(q′,u2 = ū)

= J−1
second,q′ > . . . > J−1(q′,uN ) = J−1

max,q′

Here J−1
q′ is a short-hand expression for the cost that results

from an action chosen in q′ and possible other state-action
pairs following q′. The subscripts “min”, “second”, etc. then
denote respectively the lowest, or next to lowest possible cost
to resulting in this manner. By definition, J−1(q′,u1 = u∗) =
J−1
min,q′ and J−1(q′,uN ) = J−1

max,q′ .

We will analyze the behavior of the expected value of τupd
qu

(κ).
Since the cost resulting from the state-action pair (q,u) is
independent from the action chosen in q′, any constant cost for
J−1(q,u) will do for our analysis. Without loss of generality
and for the sake of simplicity, we take J−1(q,u) = 0, although
formally this is impossible, since J−1(q,u) ≥ J−1

max > 0
for any (q,u)-pair. Note that it thus also holds that J−1

min,q =

J−1
min,q′ , J

−1
second,q = J−1

second,q′ , etc. We assume in this section

that the optimal action u∗ from q′ is currently also associated
with the highest pheromone level and is thus also designated to
be optimal. During learning, this does not have to be the case,
since other actions may be associated with higher pheromone
levels and u∗ is thus not yet known to be the optimal action.

Computing the expected value of τupd
qu

(κ) involves taking the

expected value of the number of ants Mqu(κ) in the exponent,
which severely complicates deriving an analytical expression
for the expected value of τupd

qu
(κ). We must thus shift our aim

by choosing to derive upper and lower bounds on the expected
value of τupd

qu
(κ) instead.

Proposition 5.1. For any state-action pair (q,u), the expected
value of the pheromone levels is bounded from above:

E[τupd
qu

(κ)] ≤
βupper + ρMJ−1

exp,q

1− αupper
, (11)

with

αupper = (1− ρ)(1− γ),

βupper = (1− ρ)
[
(1− γ)M (−τ0) + τ0

]
,

J−1
exp,q = (1− ǫ)J−1

min,q + ǫJ−1
avg,q,

and J−1
avg,q the inverse of the average cost expected to result

when moving from q to the goal.

Proof. When choosing u∗, the pheromone level τupd
qu

is in-
creased the most when:

τupd
qu

(κ+ 1) = (1− ρ)(1− γ)
︸ ︷︷ ︸

αupper

τupd
qu

(κ) + ρMJ−1
min,q

+ (1− ρ)
[
(1− γ)M (−τ0) + τ0

]

︸ ︷︷ ︸

βupper

.

When choosing ū, the pheromone level τupd
qu

is increased the
most when:

τupd
qu

(κ+ 1) = (1− ρ)(1− γ)
︸ ︷︷ ︸

αupper

τupd
qu

(κ) + ρMJ−1
second,q

+ (1− ρ)
[
(1− γ)M (−τ0) + τ0

]

︸ ︷︷ ︸

βupper

.

The largest increase of τupd
qu

for the other actions follows in a
similar manner. The probability that the optimal action u∗ is
chosen is:

p(u∗) = 1− ǫ+
ǫ

N
= 1−

(
N − 1

N

)

ǫ,

namely the probability of not exploring plus the probability of
selecting that action while exploring (which is uniformly dis-
tributed). The probability of choosing any of the other actions
is p(ui) =

ǫ
N

, for ui 6= u∗. The expected value of τupd
qu

when
increasing the most can now be computed as follows:

Eupper[τ
upd
qu

(κ+ 1)]

=

[

1−

(
N − 1

N

)

ǫ

]

(αupperτ
upd
qu

(κ) + βupper + ρMJ−1
min,q)

+
[ ǫ

N

]

(αupperτ
upd
qu

(κ) + βupper + ρMJ−1
second,q)

...

+
[ ǫ

N

]

(αupperτ
upd
qu

(κ) + βupper + ρMJ−1
max,q)

=αupperτ
upd
qu

(κ) + βupper +

[

1−

(
N − 1

N

)

ǫ

]

ρMJ−1
min,q

+
[ ǫ

N

]

ρMJ−1
second,q + . . .+

[ ǫ

N

]

ρMJ−1
max,q

︸ ︷︷ ︸

N−1 terms

=αupperτ
upd
qu

(κ) + βupper + [1− ǫ]ρMJ−1
min,q

+
[ ǫ

N

]

ρM(J−1
min,q + J−1

second,q + . . .+ J−1
max,q)

=αupperτ
upd
qu

(κ) + βupper + ρMJ−1
exp,q,

where J−1
exp,q = (1 − ǫ)J−1

min,q + ǫJ−1
avg,q is the expected

pheromone deposit on τupd
qu

. Since

Eupper[τ
upd
qu

(κ)] ≥ E[τupd
qu

(κ)] for all κ,

the following difference equation describes the evolution of the
upper bound of the expected value of τupd

qu
(κ):

Eupper[τ
upd
qu

(κ+ 1)] =αupperEupper[τ
upd
qu

(κ)] + βupper

+ ρMJ−1
exp,q.

Since we can show that

Eupper[τ
upd
qu

(0)] = τ0 ≤
βupper + ρMJ−1

exp,q

1− αupper
,

we know from Lemma 4.2 that Eupper[τ
upd
qu

(κ)] is non-
decreasing and that:

E[τupd
qu

(κ)] ≤ Eupper[τ
upd
qu

(κ)] ≤
βupper + ρMJ−1

exp,q

1− αupper
.

Note that J−1
avg,q is generally not known, although it might be

possible to estimate it. Similar to the upper bound, we can
derive a lower bound on the expected value of pheromone
levels.

Proposition 5.2. For any state-action pair (q,u), in the limit
for κ → ∞, the expected value of the pheromone levels is
bounded from below:

lim
κ→∞

E[τupd
qu

(κ)] ≥
βlower + ρJ−1

exp,q

1− αlower
, (12)

with

αlower = (1− ρ)(1− γ)M ,

βlower = (1− ρ) [(1− γ)(−τ0) + τ0] ,

J−1
exp,q = (1− ǫ)J−1

min,q + ǫJ−1
avg,q.



Proof. When choosing u∗, τupd
qu

is increased the least when:

τupd
qu

(κ+ 1) = (1− ρ)(1− γ)M
︸ ︷︷ ︸

αlower

τupd
qu

(κ)

+ (1− ρ) [(1− γ)(−τ0) + τ0]
︸ ︷︷ ︸

βlower

+ρJ−1
min,q,

since for all κ α(κ) = (1− ρ)(1− γ)Mqu(κ) is the smallest for

Mqu(κ) = M and β(κ) = (1−ρ)
[
(1− γ)Mqu(κ)(−τ0) + τ0

]

is the smallest for Mqu(κ) = 1. The rest of the proof follows
easily along the same lines as the proof of Proposition 5.1.

The expected value of the pheromone levels lies between these
bounds, Elower[τ

upd
qu

(κ)] ≤ E[τupd
qu

(κ)] ≤ Eupper[τ
upd
qu

(κ)],
for all κ. In the limit for κ → ∞, the expected value of the
pheromone levels lies between the derived upper and lower
bounds:

βlower + ρJ−1
exp,q

1− αlower
≤ lim

κ→∞
E[τupd

qu
(κ)] ≤

βupper + ρMJ−1
exp,q

1− αupper
.

The expressions for α(κ), αupper, αlower, β(κ), βupper, and
βlower are presented in Table 1.

Table 1. The expressions for α(κ) and β(κ) and
their bounds.

α(κ) and its upper and lower bound

α(κ) = (1− ρ)(1− γ)Mqu(κ)

αupper = (1− ρ)(1− γ)

αlower = (1− ρ)(1− γ)M

β(κ) and its upper and lower bound

β(κ) = (1− ρ)
[
(1− γ)Mqu(κ)(−τ0) + τ0

]

βupper = (1− ρ)
[
(1− γ)M (−τ0) + τ0

]

βlower = (1− ρ) [(1− γ)(−τ0) + τ0] = τ0γ(1− ρ)

6. CONCLUSIONS

In this paper, we have analyzed the evolution of the pheromone
levels in Ant Colony Learning. In particular, we have studied
the situation in which from a state q, an action u will take the
system to another state q′, from which there are N possible
actions. There, the pheromone level τqu was dependent on the
action chosen in the state q′ further “downstream” towards the
goal. The goal would be reached after choosing the optimal
action u∗ in q′. Because of the unpredictability of the number
of ants that visit a particular state, we have derived upper and
lower bounds on the pheromone levels, followed by upper and
lower bounds on the expected value of the pheromone levels.
In future research, we will extend the convergence analysis
towards a convergence proof of the algorithm to optimal control
policies. The convergence analysis of the pheromone levels,
as presented in this paper, is an essential step for this. Future
research must also focus on the applicability of the convergence
results to real-world control problems, where the structure of
the control problem must be taken into account.
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