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Abstract: In order to control urban traffic with model-based control methods, a proper traffic model is
very important. This traffic control model needs to have enough descriptive power to reproduce relevant
traffic phenomena, and it also has to be fast enough to be used in practice. Therefore, macroscopic
urban traffic flow models are usually applied as control models. These models are normally sampled
temporally and spatially into discrete models so as to be simulated using digital computers. In this
paper, a spatiotemporally discrete urban traffic model with a variable sampling time interval is proposed
for model-based predictive control, which allows to balance modeling accuracy and computational
complexity. The model is analyzed and evaluated based on the model requirements for control purposes.
In addition, conditions are given to selecting suitable sampling time intervals for the models that are
used to control urban traffic networks.

Keywords: Macroscopic traffic modeling; Urban traffic control; Urban traffic network.

1. INTRODUCTION

Traffic models can be mainly classified into three categories
based on the modeling details: microscopic models, macro-
scopic models, and mesoscopic models. Microscopic mod-
els are detailed traffic models that describe the dynamics of
each individual vehicle, like car-following models. In contrast,
macroscopic models are much rougher models focusing only on
the dynamics of traffic flows, i.e. the average behavior of groups
of vehicles instead of individual vehicles. Mesoscopic models
combine both the properties of the microscopic models and the
macroscopic models. A first-order macroscopic model was pro-
posed by Lighthill and Whitham (1955) to describe the dynamic
of traffic flows, and it was extended into second-order macro-
scopic models by Payne (1971). But, this model was criticized
for not being able to reproduce enough descriptive accuracy
for modeling the phenomena of real traffic by Daganzo (1995).
In general, macroscopic models are approximations of traffic
dynamics, and they ignore some details of individual vehicles
and make a lot of simplifications, so macroscopic traffic models
are in general not as accurate as the models with higher level-
of-detail. However, this statement does not always hold in prac-
tice. On some occasions, macroscopic modeling approaches
may provide better results than modeling approaches with a
higher level-of-detail (Hoogendoorn and Bovy, 2001). In ad-
dition, macroscopic models open a way for efficiently running
the models using digital computers, and thus they are applied
in applications that are characterized by high computational
requirements, such as traffic control.

Macroscopic models also have different level-of-details. Usu-
ally, the more detailed the traffic dynamics is modeled, the

more complex the model will be, and the heavier computational
burden the model will have. Therefore, when selecting a traffic
model in practice, a criterion needs to be followed. The criterion
(Papageorgiou, 1998) is that the model should have sufficient
descriptive power to reproduce all important phenomena for the
intended application, and at the same time the execution speed
of a simulation should be fast enough for this particular appli-
cation. Thus, we need to find a trade-off between the descriptive
accuracy of the model and the computational complexity.

In urban areas, the traffic flows are influenced a lot by the traf-
fic signals. Therefore, the store-and-forward model (Gazis and
Potts, 1963) was proposed to describe the stop-and-go traffic
flow dynamics controlled by the traffic lights for urban roads.
The store-and-forward model, later used for control by Diakaki
et al. (2002), is a simple model with a low computational com-
plexity, but it only applies for saturated traffic, i.e. when the
vehicle queues resulting from the red phase cannot be dissolved
completely at the end of the following green phase. The model
proposed by Barisone et al. (2002) and extended by Dotoli
et al. (2006) can describe vehicle queues and the time delay
for vehicles reaching the queues in a link, and is able to de-
scribe different scenarios, i.e. unsaturated, saturated, and over-
saturated traffic scenarios. The model proposed by Kashani
and Saridis (1983) has a lower modeling power, but cannot
describe scenarios other than saturated traffic either. The model
of van den Berg et al. (2003); Lin and Xi (2008) is capable of
simulating the evolution of traffic dynamics (including vehicle
queues) in all traffic scenarios by updating the discrete-time
model in small simulation steps. To reduce the computational
complexity of this model, Lin et al. (2009) proposed a model
with a longer sampling time interval based on the previous



model, but has intersection cycle times that can differ from
intersection to intersection. The model is much faster than the
previous model, with only a limited loss in modeling accuracy.

Actually, all the macroscopic urban traffic models mentioned
above are spatiotemporally discrete models, which are spatially
sampled into road segments and temporally sampled with a
sampling time interval. For urban areas, the roads are com-
paratively short and divided by intersections with traffic lights,
and thus an urban road is usually taken as a road segment.
The sampling time interval can vary for different urban traffic
models. A trade-off also needs to be made when selecting the
sampling time interval for the spatiotemporally discrete urban
traffic model. Normally, a higher sampling frequency results in
a more accurate model, but also gives rise to more computations
because of having to update the model more frequently. When
the sampling time interval becomes too large, the spatiotempo-
rally discrete model cannot represent the continuous traffic flow
behavior anymore. Therefore, an additional criterion (Courant-
Friedrichs-Lewy (CFL) condition (Courant et al., 1967) for
urban traffic models) needs to be satisfied when sampling urban
traffic models into spatiotemporally discrete models, so as to
keep the descriptive ability of these models.

In this paper, a spatiotemporally discrete urban traffic model
with a variable sampling time interval is proposed for model-
based predictive control, which allows to balance modeling ac-
curacy and computational complexity. The model is derived by
sampling the first-order continuous traffic flow model spatially
and temporally. A CFL condition is deduced for the spatiotem-
porally discrete model to make sure the descriptive ability of
the model can be still guaranteed. Experiments are designed
to verify whether the models have sufficient descriptive power
to reproduce the important phenomena for traffic control, and
whether the computation speeds of models are fast.

2. NOTATIONS

In order to describe the model, we define J as the set of
nodes (intersections), and L as the set of links (roads) in the
urban traffic network. Link (u,d) is marked by its upstream
node u (u ∈ J) and downstream node d (d ∈ J). The sets of
the upstream nodes of input links and downstream nodes of
output links for link (u,d) are Iu,d ⊂ J and Ou,d ⊂ J (e.g., for
the situation of Fig. 1 we have Iu,d = {i1, i2, i3} and Ou,d =
{o1,o2,o3}).

The variable notations (see also Fig. 1) used in the model are
listed as follows:

Iu,d : set of upstream nodes of input links of link (u,d),
Ou,d : set of downstream nodes of output links of link

(u,d),
k : simulation step counter for the urban traffic

model,
nu,d(k) : number of vehicles in link (u,d) at step k,
qu,d(k) : queue length (expressed as the number of vehi-

cles) at step k in link (u,d), qu,d,o is the queue
length of the sub-stream turning to link (d,o),

ml
u,d,o(k) : number of vehicles leaving link (u,d) and turn-

ing to link (d,o) at step k,
ma

u,d(k) : number of vehicles arriving at the (tail of the)
queue in link (u,d) at step k, ma

u,d,o(k) is the

number of arriving cars in the sub-stream going
towards link (d,o),

me
u,d(k) : number of cars entering link (u,d) at step k,

Su,d(k) : available storage space of link (u,d) at step k
expressed in number of vehicles,

α l
u,d(k) : average flow rate leaving link (u,d) at step k,

α l
u,d,o(k) is the leaving average flow rate of the

sub-stream going towards link (d,o),
αa

u,d(k) : average flow rate arriving at the tail of the queue
in link (u,d) at step k, αa

u,d,o(k) is the arriving av-

erage flow rate of the sub-stream going towards
link (d,o),

αe
u,d(k) : average flow rate entering link (u,d) at step k,

βu,d,o(k) : fraction of the traffic in link (u,d) anticipating to
turn to link (d,o) at step k,

µu,d,o : saturation flow rate leaving link (u,d) turning to
link (d,o),

gu,d,o(k) : green time length during step k for the traffic
stream towards link (d,o) in link (u,d),

bu,d,o(k) : boolean value indicating whether the traffic sig-
nal at intersection d for the traffic stream in link
(u,d) turning to link (d,o) is green (1) or red (0)
at step k,

vfree
u,d : free-flow vehicle speed in link (u,d),

Cu,d : capacity of link (u,d) expressed in number of
vehicles,

Nlane
u,d : number of lanes in link (u,d),

∆cu,d : offset between node u and node d, which rep-
resents the offset time between the cycles of the
upstream and the downstream intersections at the
beginning of every control time step,

lveh : average vehicle length.

3. DISCRETE TIME DELAY

In this paper, the urban traffic models are discrete-time models
with a time delay, during which a vehicle travels from the
beginning of the road until it reaches the queues waiting in the
road. In Åström and Wittenmark (1996), a method is presented
to sample a continuous-time system with a time delay into a
discrete-time system. Given this method, the discrete time delay
that the vehicles take to reach the end of the queues in a link,
will be obtained. Let a linear continuous time-invariant system
with time delay γ ∈ R

+ be described by 1

˙̃X(t) = AX̃(t)+BŨ(t − γ) . (1)

Let us now sample this system using a sampling period T .
Define

δ = floor
{ τ

T

}

, γ = rem{τ ,T} , (2)

where floor{x} refers to the largest integer smaller than or equal
to x, and rem{x,y} is the remainder of the division of x by y. So
δ is an integer, and the time delay τ can be expressed as

τ = δ ·T + γ 0 ≤ γ < T . (3)

If the input of the system (Ũ(t)) is assumed to be piece-
wise constant during each sampling time interval, the sampled
discrete-time system will be

X(k+1) = ΦX(k)+Γ0U(k−δ )+Γ1U(k−δ −1) , (4)

where

Γ0 =
∫ T−γ

0
eAsdsB (5)

1 .̃ represents a continuous variable.
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Fig. 1. A link connecting two traffic-signal-controlled intersections

Γ1 = eA(T−γ)
∫ γ

0
eAsdsB . (6)

Thus, the vehicles that enter into a link normally will run with
free-flow speed for a certain time, and finally join the tail of
the queues. This time period is a time delay that is needed
before the vehicles join the queues waiting at the stop-line of
the link. Then, the queue length in a link is updated by the
number of vehicles leaving the link and the number of delayed
vehicles entering the link. The differential equation describing
the evolution of the queue length can be therefore written as

˙̃qu,d,o(t) = β̃u,d,o(t)α̃
e
u,d(t − τ)− α̃ l

u,d,o(t) , (7)

i.e. the rate of changing for the queue length ( ˙̃qu,d,o(t)) is equal
to the difference between the input flow rate (delayed by τ and
then divided by multiplying the current turning rate) and the

output flow rate. In (7), the traffic flow turning rate (β̃u,d,o(t)),
and the traffic flow rate entering or leaving the queue (α̃e

u,d(t)

and α̃ l
u,d,o(t)), are all piece-wise constant during the sampling

time intervals. Then, according to the addition principle of
linear equations, (7) can be divided into two equations, as

˙̃q1
u,d,o(t) =−α̃ l

u,d,o(t) (8)

˙̃q2
u,d,o(t) = β̃u,d,o(t)α̃

e
u,d(t − τ), (9)

such that

q̃u,d,o(t) = q̃1
u,d,o(t)+ q̃2

u,d,o(t) . (10)

To sample differential equation (8) without a time delay into a
discrete equation, we define A = 0 and B =−1, then according
to (4), (5), and (6), we have

q1
u,d,o(k+1) = Φq1

u,d,o(k)+Γα l
u,d,o(k) (11)

where

Φ = eAT = 1

Γ =
∫ T

0
eAsdsB =−T (12)

Similarly, we can sample differential equation (9) with a time
delay τ into a discrete equation. Since, in Section 4 the time
delay τ will vary slowly with time t, then according to (2) and
(3) we can approximately have

δ (k) = floor

{

τ(k)

T

}

, γ(k) = rem{τ(k),T} , (13)

and
τ(k) = δ (k) ·T + γ(k) 0 ≤ γ(k)< T . (14)

Next, we define Aτ = 0 and Bτ = 1, and then according to (4),
(5), and (6), (9) results in

q2
u,d,o(k+1) =Φτ q2

u,d,o(k)+βu,d,o(k)
(

Γ0αe
u,d(k−δ (k))

+Γ1αe
u,d(k−δ (k)−1)

)

, (15)

where

Φτ = eAT = 1

Γ0 =
∫ T−γ(k)

0
eAsdsBτ = T − γ(k)

Γ1 = eA(T−γ(k))
∫ γ(k)

0
eAsdsBτ = γ(k) (16)

Therefore, by adding (11) and (15) together, we derive

qu,d,o(k+1) = qu,d,o(k)−Tα l
u,d,o(k)

+βu,d,o(k)
(

(T − γ(k))αe
u,d(k−δ (k))

+ γ(k)αe
u,d(k−δ (k)−1)

)

, (17)

and the arriving average traffic flow at the tail of the queues

αa
u,d(k) =

T − γ(k)

T
αe

u,d(k−δ (k))+
γ(k)

T
αe

u,d(k−δ (k)−1) .

(18)

4. SPATIOTEMPORALLY DISCRETE URBAN TRAFFIC
MODEL

4.1 Traffic dynamics on a link

Suppose the sampling time interval for intersection d ∈ J and
all the links that connect to intersection d is Td and kd is the
corresponding time step counter. The cycle time of intersection
j (∈ J) can be defined as

c j = M jTj, (19)

where M j and Tj are integers, and 0 < Tj ≤ c j. Sampling time
intervals and cycle times can be different for intersections.

Therefore, a spatiotemporally discrete urban traffic model can
be derived as follows (for more details see (Lin et al., 2009)):

The leaving average flow rate over Td is determined by:

α l
u,d,o(kd) = min

(

µu,d,o ·gu,d,o(kd)/Td , (20)

qu,d,o(kd)/Td +αa
u,d,o(kd),

µu,d,o

∑
u′∈Id,o

µu′,d,o

·
Cd,o −nd,o(kd)

Td

)

,

where µu,d,o is the saturation flow rate that can leave link (u,d)
turning to link (d,o) depending on the physical structure of
link (u,d). The leaving flow rate is the minimum value of
three flow rate values, average saturated flow rate, average



unsaturated flow rate, and average over-saturated flow rate,
which are given respectively by the three terms in (20). The first
term calculates the average saturated flow rate, which depends
on the saturation flow rate µu,d,o and green time duration; the
second term calculates the average unsaturated flow rate based
on the vehicles waiting in and arriving the queues; the third
term calculates the average over-saturated flow rate depending
on the proportional storage capacity of the downstream link

The flow rate entering link (u,d) will arrive at the end of the

queues after a continuous time delay τ(kd) =
(Cu,d−qu,d(kd))·lveh

Nlane
u,d ·vfree

u,d ·Td
.

Then with δ (kd) and γ(kd) derived from formulas (2) and (3),
according to (17) the delayed flow rate arriving at the end of
queues is

αa
u,d(kd) =

cd − γ(kd)

cd

·αe
u,d (kd −δ (kd))+

γ(kd)

cd

·αe
u,d (kd −δ (kd)−1) . (21)

The flow rate entering link (u,d) is made up from the flow rates
from all the input links:

αe
u,d(kd) = ∑

i∈Iu,d

α l
i,u,d(kd). (22)

4.2 Synchronization between two intersections

In (22), the flow rate entering link (u,d) is provided by the
combination of the flow rates leaving the upstream links. Recall
that we may have different sampling time intervals between
upstream and downstream intersections (Tu 6= Td). Thus, the
simulation time steps may be not equal to each other. Therefore,
we have to synchronize the leaving and entering flow rates. First
of all, a least common multiple time interval has to be defined
for integer N j as

Tlcm = N j · c j for all j ∈ J, (23)

Then, in each time interval Tlcm, we will recast the flow rates
expressed in the timing of intersection u into the timing of
intersection d. First, we transform the discrete-time leaving
flow rates from the upstream links into continuous time, as

α̃ l
i,u,d(t) = α l

i,u,d(ku), ku ·Tu ≤ t < (ku +1) ·Tu, (24)

and then sample them again to obtain the average flow rates in
time step kd so as to be able used by the downstream link

αe
i,u,d(kd) =

1

Td

∫ (kd+1)·Td+∆cu,d

kd ·Td+∆cu,d

α̃ l
i,u,d(t)dt , (25)

where ∆cu,d represents the offset time between the cycle times
of the upstream and the downstream intersections at the begin-
ning of a control time step. Then, the flow rate entering link
(u,d) can be computed by

αe
u,d(kd) = ∑

i∈Iu,d

αe
i,u,d(kd). (26)

5. CFL CONDITION FOR URBAN TRAFFIC MODELS

The maximum number of vehicles that can leave link (u,d) ∈
L with a saturation flow rate (also called as link-intersection
capacity) should not exceed the number of vehicles on this link

µu,dTd ≤ nu,d(kd)≤Cu,d , (27)

where the number of vehicles on link (u,d) is bounded by its
storage capacity Cu,d , and the link-intersection capacity µu,d is
the sum of the saturation flow rates that leave link (u,d) turning
into different directions:

µu,d = ∑
o∈Ou,d

µu,d,o. (28)

Then, by dividing the number of vehicles on link (u,d) into
two parts, the number of vehicles in the queue (qu,d(kd)) and
the number of vehicles running freely on the link ( fu,d(kd)), we
get

Td ≤
nu,d(kd)

µu,d
=

qu,d(kd)+ fu,d(kd)

µu,d
. (29)

Lu,d

lfree
u,d (kd) l

queue
u,d (kd)

du

u1

u2

u3

Fig. 2. Illustration of the free-speed flow and the queues

According to traffic theory, the traffic flow running with free-
flow speed on the link always has a lower flow rate than the link-
intersection capacity, i.e. α free

u,d (kd) ≤ µu,d , and the traffic flow

rate for the vehicles moving in queues is also lower than the
link-intersection capacity, i.e. α

queue
u,d (kd) ≤ µu,d . Hence, (29)

can be further written into

Td ≤
qu,d(kd)

α
queue
u,d (kd)

+
fu,d(kd)

α free
u,d (kd)

=
ρ

queue
u,d (kd)l

queue
u,d (kd)

α
queue
u,d (kd)

+
ρ free

u,d (kd)l
free
u,d (kd)

α free
u,d (kd)

=
l
queue
u,d (kd)

v
queue
u,d (kd)

+
lfree
u,d (kd)

vfree
u,d

, (30)

where ρ
queue
u,d (kd) and ρ free

u,d (kd) are the density of the queue

and the density of the free-running traffic flow on link (u,d)
at time step kd respectively. Furthermore, because the length of
link (u,d) equals to the sum of the queue length and the free-

running link length, i.e. l
queue
u,d (kd)+ lfree

u,d (kd) = Lu,d , and since

the average speed of the vehicles waiting in queues is bounded
as 0 ≤ v

queue
u,d (kd)≤ vfree

u,d , we have

Td ≤
Lu,d

v
queue
u,d (kd)

. (31)

Since (31) should hold for all values of v
queue
u,d (kd), and since

v
queue
u,d (kd)≤ vfree

u,d , (31) can be further written as

Td ≤ min

(

Lu,d

v
queue
u,d (kd)

)

=
Lu,d

vfree
u,d

. (32)

Hence, we derive a sufficient condition for the sampling time
interval Td of the model, as

Td ≤
Lu,d

vfree
u,d

, (33)

which is exactly a CFL condition. The condition can be inter-
preted intuitively as requiring that the distance vfree

u,d Td traveled
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by the traffic flow in one time step should not exceed one
spatial step ∆x. In practice, this CFL condition can be used as
a criterion for selecting proper sampling time intervals for the
spatiotemporally discrete traffic models.

However, for urban intersections, the sampling time intervals
of intersection d not only depend on the link (u,d), but also on
the rest of the links connecting to this intersection. We define
Ud ⊂ J as the set of the upstream intersections of intersection
d ∈ J. Therefore, to guarantee that the spatiotemporally discrete
urban traffic model can correctly represent the urban traffic
dynamics, the simulation time interval Td (i.e. sampling time
interval) needs to satisfy condition:

Td ≤ min
u′∈Ud

(

Lu′,d

vfree
u′,d

)

. (34)

6. MODEL ASSESSMENT

In this section, we will evaluate the effectiveness of the pro-
posed spatiotemporally discrete urban traffic model, and ana-
lyze its sensitivity from a control point of view. Experiments
are designed to demonstrate how the Total Time Spent (TTS,
frequently selected as traffic control performance criterion) will
change when varying the green time lengths of traffic signals.
The evaluated urban road network is shown in Fig. 3.

As Fig. 3 shows, the length of the links in the network are
450 m and 900 m. The vehicle anticipating turning rates β
are constant, i.e. 0.33 for left turn, through turn, and right turn
respectively. The saturation flow rates µ are 1800 veh/h, 1600
veh/h, and 1500 veh/h respectively for turning through, left, and
right in each link. The average vehicle length lveh is set to 7
m, and the free-flow speed vfree

u,d is 50 veh/h. Then the storage

capacities C are 193 veh for link (1,2) and link (2,1), and 386
veh for the rest of the links in the network. Fixed-time control
is executed for each intersection, where the phases, the cycle
times, and the green time lengths are all constant during each
simulation. The phases and their order for all the intersections
are given in Fig. 4. The green time lengths and cycle times
are listed in Table 1. The symbol g j,i stands for the green time
length of the ith phase for intersection j. The offsets between
intersections are specified as 0 s. The network input flow rates
of the network are set to be equal to each other and constant in
time (2000 veh/h). The simulation time duration is 30 min.

Table 1. Traffic signal fixed-time control setup

Intersection Phase 1 (s) Phase 2 (s) Cycle time (s)

1 45 45 90

2 g2,1 90−g2,1 90

3 g3,1 90−g3,1 90
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Fig. 5. TTS of the network in Fig. 3 for discrete model with
different sampling time intervals

In order to evaluate how the evaluation performance (TTS)
changes with the traffic signals, we allow the green time lengths
of intersection 2 and 3 to change within a given interval,
g2,1,g3,1 ∈ {15,20,25,30,35,40,45,50,55,60,65,70,75}. The
lower bound and the upper bound for a green time duration is
15 s and 75 s, and g2,2 and g3,2 change accordingly with g2,1 and
g3,1, due to the cycle time constraint of each intersection, i.e.
gi,2 = Ti − gi,1. The proposed spatiotemporally discrete traffic
model is sampled by different sampling time intervals (simu-
lation time intervals), i.e. T =1 s, 30 s, and 90 s respectively.
Then, for each set-up of the traffic signals, all the sampled
discrete traffic models are run for the same period of time
(30 min). According to the CFL condition for urban traffic
models in Section 5, the upper bounds of the sampling time
intervals for every intersection are T1,max = T2,max = 32 s and
T3,max = 64 s. Therefore, when T1 = T2 = T3 = 30, the urban
CFL conditions are satisfied in all the three intersections, as
30 < T1,max = T2,max < T3,max; when T1 = T2 = T3 = 90, the
urban CFL condition is violated. The results are shown in Fig. 5
and Fig. 6 for the TTS of the entire network and for the TTS of
link (1,2), in which the urban CFL condition is easier noticed
to be violated.

From Fig. 5 and Fig. 6, we can see that the spatiotemporally
discrete traffic model can describe a more detailed variation
of the TTS changing with the green time lengths, when the
sampling time interval is small. For T = 1 s and T = 30 s, the
shapes of the TTS curves are very similar to each other for both
the entire network and the single link (1,2). Generally speaking,
the larger the sampling time interval is, the faster the model will
run. For the discrete traffic models with sampling time intervals
as 1 s and 30 s, the time needed to run the simulation is 5.6 s and
0.4 s respectively. Consequently, the spatiotemporally discrete
model with T = 30 s is a better choice for urban traffic network
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(b) Link (1,2) (T = 30 s)
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Fig. 6. TTS of link (1,2) in Fig. 3 for discrete model with
different sampling time intervals

control, because it can guarantee a similar performance as the
model with T = 1 s, but requires less computing time.

For the spatiotemporally discrete model with sampling time
90 s, the time needed to run the simulation is even less, 0.2 s.
But, the sampling time becomes too large so as to violate the
CFL condition. Thus, the model fails to describe the traffic phe-
nomena correctly. In Fig. 5(c), the values of the TTS become
much higher than that of the models with T = 1 s and T = 30 s.
In Fig. 6(c), the TTS curve becomes very flat, which does not
capture the variation of TTS values anymore. Therefore, even
though the model with T = 90 s is very fast, but it does not have
sufficient accuracy to be used as a control model. Consequently,
in this case study, the spatiotemporally discrete urban traffic
model with sampling time T = 30 s is comparatively more
suitable to be used as a prediction model for the urban traffic
controllers, as it gives a good trade-off between the modeling
accuracy and the computational complexity.

7. CONCLUSIONS

In this paper, a macroscopic spatiotemporally discrete urban
traffic model with a variable sampling time interval is proposed
for traffic control. Applying varying sampling time intervals
allows to balance the modeling accuracy and the computational
complexity of the traffic models, and allows to search for
the best trade-off for specific control requirements. A CFL
condition is deduced for the spatiotemporally discrete urban
traffic model to make sure the descriptive ability of the model
can be still guaranteed, when the sampling time interval grows.

Experiments are designed to verify whether the model has suffi-
cient descriptive power to reproduce the necessary phenomena
for traffic control, and whether the computation speed of the
model is high enough. The experiment results illustrate that the
higher the sampling frequency is, the more detailed the model
will be, but also the more computation time is needed. Hence,
a trade-off can be made between the computation time and the
accuracy by selecting a proper sampling time interval.
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