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Abstract: As an alternative to the rather intensive computations when using the nonlinear
traffic flow model METANET in a model-based predictive control context, a piecewise-affine
(PWA) approximation of the model is proposed. Here, several model equations amongst which
the fundamental diagram are approximated by a PWA function. Some selected methods to
determine this approximation are shortly discussed. In addition, we make use of model properties
and physical insight to improve the PWA approximation. For the purpose of traffic control, the
PWA approximation of the METANET model can be used in a model predictive control (MPC)
framework. In view of the on-line optimization used by MPC and the related trade-off between
accuracy and computational speed, in a case study the accuracy of various approximations is
compared to the original nonlinear formulation of METANET.
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1. INTRODUCTION

For model-based predictive control of traffic networks one
needs both a model that tracks the traffic states (flow,
velocity, etc.) and an optimization approach that com-
putes e.g., variable speed limits yielding an optimal traffic
throughput. In this paper the second-order macroscopic
model METANET is chosen, in which traffic is perceived
as a flow. Such a model is commonly used as it has shown
to provide good accuracy while it does not require as much
computation time as microscopic models that take individ-
ual vehicles into account (see e.g., Hoogendoorn and Bovy
(2001)). Further, we use the Model Predictive Control
(MPC) approach, which predicts the evolution of states
and determines the corresponding optimal decision vari-
ables. After implementation of the first set of these inputs
the process is repeated. MPC has been frequently adopted
when solving control problems as it easily incorporates
various constraints and adapts well to structural changes
in the system due to the moving horizon strategy (see e.g.,
Maciejowski (2002); Rawlings and Mayne (2009)).

Now, given a nonlinear nonconvex model (METANET) the
on-line optimization problem of MPC will be difficult to
solve quickly to optimality. For this reason the choice of
a piecewise-affine (PWA) approximation of the nonlinear
functions is made, which results in an MPC optimization
problem that can be more easily solved as a mixed linear
integer program (MILP). However, since integer programs
are proven NP-complete (Garey and Johnson, 1979), at-
tention should be paid to keeping the number of binary
variables small as they increase the MILP’s complexity. At
the same time, the fewer such variables are allowed in the
approximation, the larger the discrepancy with the original
function. In other words, constructing a PWA formulation

of the METANET model to be used in an MPC framework
is nontrivial, yet it may result in a good solution in less
time than when using the original nonlinear model.

In this paper, first the original METANET traffic model
will be briefly stated (Section 2), after which we point at
some possible methods for PWA approximation (Section
3). The adapted model equations are given in Section 4.
In Section 5 the MPC formulation in traffic control is
presented and a final case study in Section 6 shows the
effect of the proposed piecewise-approximated METANET
equations on the total time spent (TTS) by vehicles in a
particular network, where several levels of accuracy of the
approximations are evaluated.

2. METANET

The original METANET model developed by Messmer
and Papageorgiou (1990) is discrete in time and space:
the traffic network can be seen as a graph where links
represent homogeneous parts of a freeway, further divided
into segments of 500-1000m. The nodes connecting links
represent changes in the freeway like on-ramps and the
merging of lanes. As regards the discretization in time,
typically a simulation time step Ts of about 10 s is used.

The following equations represent the evolution of traffic
flow qm,i (veh/h), density ρm,i (veh/km/lane), and space-
mean speed vm,i (km/h) for segment i of link m for time
step k:

qm,i(k) = λmρm,i(k)vm,i(k) (1)

ρm,i(k + 1) = ρm,i(k) +
Ts

Lmλm

[qm,i−1(k)− qm,i(k)] (2)



vm,i(k + 1) = vm,i(k) +
Ts

τ
[V [ρm,i(k)]− vm,i(k)]

+
Tsvm,i(k) [vm,i−1(k)− vm,i(k)]

Lm

−
Tsη [ρm,i+1(k)− ρm,i(k)]

τLm (ρm,i(k) + κ)
, (3)

with λm the number of lanes andLm the length (m) of the
segments of link m. The time constant τ , η, and κ are
model parameters. Commonly used values of these and
other parameters are provided in Section 6.

The desired speed is represented by

V [ρm,i(k)] = min

[

vfree,m exp

[

−
1

am

(

ρm,i(k)

ρcr,m

)am
]

,

(1 + α)vcontrol,m,i(k)

]

, (4)

including variable-speed control, i.e., having as decision
variable the speed limit vcontrol,m,i(k) (km/h) (Hegyi et al.,
2005a). In case of no speed control the desired-speed
equation consists only of the first term. Here, vfree,m
(km/h) denotes the free-flow speed and α is a non-
compliance factor. Further, am is a model parameter and
ρcr,m (veh/km/lane) denotes the critical density.

Mainstream origins and on-ramps are modeled as a queue
where wo (veh) represents the queue length at origin o:

wo(k + 1) = wo(k) + Ts(do(k)− qo(k)). (5)

Here, do (veh/h) denotes the traffic demand and qo (veh/h)
the outflow of origin o:

qo(k)=min

[

do(k)+
wo(k)

Ts
, ro(k)Co,Co

(

ρjam,m−ρm,1(k)

ρjam,m−ρcr,m

)]

,

(6)

for a metered on-ramp with ramp-metering rate ro(k) ∈
[0, 1]. For non-metered on-ramps or mainstream ori-
gins, ro(k) is set to 1. Further, Co (veh/h) and ρjam,m

(veh/km/lane) represent the capacity of origin o and the
maximum density of link m connected to the given origin.

For the first segment of an outgoing link of each origin,
the following speed-drop factor is added to speed equation
(3) with δ a model parameter:

−
δTsqo(k)vm,1(k)

Lmλm(ρm,1(k) + κ)
. (7)

The METANET model can be further complemented to
take into account e.g., merges and drops of lanes and the
resulting speed drops, mainstream metering, or it can be
adapted to different models for dynamic speed limits (see
e.g., Kotsialos et al. (1999); Hegyi et al. (2005a,b)).

3. PWA APPROXIMATION

A PWA function consists of a collection of affine functions
defined on polyhedra and can be written in general:

f(x) = aTi x+ bi if x ∈ Ωi,

where x ∈ R
n denotes the independent variable and

ai ∈ R
n, bi ∈ R are the constant vectors for each of the N

convex polyhedra Ωi in the x-space, such that ∪iΩi = R
n

and int(Ωi) ∩ int(Ωj) = ∅ for all i, j, i 6= j.

In the remainder of this section several possible approxi-
mation methods are shortly discussed. Here it should be

noted that there is a difference in complexity between the
approximation of single-variable and bivariate (or mul-
tivariate in general) functions, which both occur in the
METANET setting we consider in this paper. For more
information on the various available methods for PWA
function approximations, see e.g., the overviews by Ferrari-
Trecate et al. (2003) and Azuma et al. (2010).

Least-squares optimization For single-variate nonlinear
functions one could determine the number of regions or
intervals of the PWA function and optimize both the
intervals and parameters of the affine functions using least-
squares optimization, i.e., minimizing the squared differ-
ence between the original function and the approximation.
E.g., the following PWA problem may be solved in a
least-squares manner – here given for an approximation
of a function f defined on an interval [xmin, xmax] by a
continuous PWA function fPWA(x) with 3 intervals:

min
α,β,γ,δ,ǫ,ζ

∫ xmax

xmin

(fPWA(x)− f(x))
2
dx

s.t.

fPWA(x) =



























γ +
x− xmin

α− xmin
(δ − γ) for xmin ≤ x < α

δ +
x− α

β − α
(ǫ− δ) for α ≤ x < β

ǫ+
x− β

xmax − β
(ζ − ǫ) for β ≤ x ≤ xmax.

Piecewise-affine identification An alternative approach
is hybrid or piecewise-affine identification. In general, the
three available methods described here create local data
sets after which the clustering algorithm creates local affine
models by classifying the points. Similar models are again
grouped into clusters, depending on the number of regions
required (Ferrari-Trecate et al., 2003).

Amongst the available methods for pattern recogni-
tion the most precise for bivariate identification is the
algorithm Multi-category Robust Linear Programming
(MRLP) (Bredensteiner and Bennett, 1999). However, this
method is computationally expensive and generally works
for the identification of up to three polytopes based on
up to 200 data points. This is due to the fact that one
linear program is solved to find boundaries of all regions
simultaneously. Alternatively, the clustering algorithms
(Proximal) Support Vector Classification (P)(SVC) can be
used, yet for multivariate estimation the original domain
of the variables may then not be completely covered by
the union of computed subregions. In contrast to MRLP
the SVC approach (Vapnik, 1998) solves several quadratic
programs in order to sequentially find boundaries between
two regions or half-spaces at a time. The most time-
efficient algorithm PSVC (Fung and Mangasarian, 2001)
only requires a single system of linear equations. Compared
to the non-proximal version, it assigns data points to
the closest of two parallel half-planes that are maximally
separated, leading to a strongly convex objective.

These algorithms are part of the Hybrid Identification
Toolbox (HIT) (Ferrari-Trecate, 2005), a platform em-
bedded within the Multi-Parametric Toolbox (MPT) for
Matlab (Kvasnica et al., 2004).
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Fig. 1. Fundamental diagrams of traffic flow

Partially piecewise-constant approximation A simple yet
rough approximation approach for bivariate functions that
uses relatively few auxiliary variables is by segmentation
of the domain of one of the variables, where in each region
or subdomain that variable is assigned a constant value. In
general, a bivariate function f(x, y) can be approximated
as follows. Assume that based on the relative ranges
xmax−xmin

xmax
and ymax−ymin

ymax
or the magnitude of the partial

derivatives, variable x is selected to be taken constant in
each region. Now a selection of N consecutive intervals
[xi, xi+1] for i = 1, . . . , N − 1 and with x1 = xmin,
xN = xmax, we can set e.g.,

f(x, y) ≈ f(
xi + xi+1

2
, y) for x ∈ [xi, xi+1].

Now, if f is linear in y (as will be the case for several func-
tions appearing in the METANET model), this approach
results in a PWA approximation of f . Alternatively the
least-squares optimization approach discussed above can
be applied for each function f(xi+xi+1

2 , y).

This approach is a more basic case of PWA approximation
but it can deliver adequate approximation results for
some functions. For single-variate functions this partially
piecewise-constant approach may also be applied, but in
general it is not very difficult to obtain a more accurate
PWA formulation for this class of functions. In Section
6 the effect of each of these methods is shown; first we
consider each nonlinear METANET equation separately.

4. PWA APPROXIMATION OF METANET

In this section the nonlinear METANET equations will
be approximated by PWA functions, after which the new
model can be incorporated into the PWA-MPC traffic
control approach. When applied to this specific case it pays
off to use additional information in the approximations,
e.g., the fundamental diagrams of traffic flow depicted
in Figure 1 (see also May (1990)) that represent the
equilibrium relations between speed, flow, and density.
Note further that (2), (5), and (6) do not need to be
approximated as the first two functions are already linear
and the latter equation is PWA.

4.1 Nonlinear flow equation (1)

Starting with the traffic flow, which is a function of density
and speed (1), a simple approximation approach is to
take one of the variables piecewise-constant. Having the
smallest domain, we decide to do so for velocity variable
vm,i(k) and substitute this continuous variable by the
mean value of each subdomain. So (1) is transformed into

qm,i(k) = λmρm,i(k)
vj + vj+1

2
for vm,i(k) ∈ [vj , vj+1].

The intervals [vj ,vj+1] can be chosen by taking into con-
sideration the shape of the function or determined in a
more sophisticated way using optimization (cf. Section 3).

In the approximation of the bivariate equation (1) it is
important to take into account the shape of fundamental
diagram shown in Figure 1(a) and (b). To be more precise,
in order to increase the accuracy of the approximation
while trying to keep the number of regions or affine pieces
small, one can assign different weights to data points
or areas where a small error is important. Looking at
the shape of the fundamental diagram it can be inferred
that a situation in which the density and speed are
simultaneously close to their maximum value is not likely
to occur in real life; a similar argument holds for low speeds
and densities. Thus, the focus should be on a good match
in the regions determined by the fundamental diagram.

Note further that the approximated flow variable is used
in (2), where the difference in flow between two segments
is multiplied by a relatively small constant of about 9.26 ·
10−4 h/km/lane (taking the standard parameter values).
Therefore, the effect of the approximation error made in
the flow equation is relatively small when looking at the
total model. However, qm,i(k) can take up large values
of up to 6.5 · 104 veh/h. Also, one should realize that the
iterative procedure of the optimization method causes this
error to re-appear also in variables for later time steps of
the prediction horizon.

The accuracy of the approximation therefore remains an
important issue: for an approximation error of roughly
10% in the factor vm,i(k)ρm,i(k), the relative error in
qm,i(k) will be of the same order. On the other hand, when
adopting a piecewise-constant approach where only the
velocity is approximated, an error of 10% in the velocity
(on average 6 km/h) can bring down the impact on the
relative error of qm,i(k) with a few percent.

4.2 Speed equations (3)–(4)

Within the speed equation (3) several issues should be
dealt with, i.e.:

• the density variable arising in an exponential factor
in the first term of (4),

• multiplication of speed variables,
• division of density variables by another density,
• subtraction of the term written separately in (7).

Density arising in the exponential term of equation (4)
This exponential function represents the fundamental

diagram of speed as a function of traffic density. As can
be seen from the curve of Figure 1(a), approximation by
only one affine equation would yield a too small accuracy



due to the quick convergence of the function – w.r.t. the
maximum density of 180 veh/km/lane – to zero. Instead an
approximation using 2 or 3 pieces based on least-squares
optimization can be considered (see Section 6).

From Figure 1(b) of the fundamental diagram, we can
further deduce that the critical density ρcrit of 33.5
veh/km/lane is especially important. For this purpose
weighting can be added here, as well as to the area around
a small density and close to the free-flow speed to improve
performance in this critical region.

Multiplication of speed variables – vm,i(k)[vm,i−1(k) −
vm,i(k)] Rather than choosing for a piecewise-affine
approximation, here, we can choose to simply keep the
first velocity variable vm,i−1(k) either constant at a value
determined by historical data (in general) or equal to
the currently measured value (in receding horizon). Note
that the error caused by this method is overall relatively
small due to the multiplication of the replaced velocity
by the relatively small term Ts/Lm (2.78 · 10−3 s/m if the
parameters are taken to be as before). For an approxi-
mation error of roughly 10% in the approximated speed
variable, and given an average difference between velocity
of two segments of 20 km/h, the approximation results in
a relative error on vm,i(k + 1) of less than a percent.

Alternatively, a more exact approximation could also be
obtained using a similar method to that of bivariate
equation (1).

Division by density –
ρm,i+1(k)−ρm,i(k)

ρm,i(k)+κ
As in the previous

step, the density term in the denominator is kept con-
stant at a historically-based value or taken according the
last measurements. However, note that the multiplication

factor
Tsη

τLm

in the numerator is rather large (33.33 km),

making the effect of the error of the approximated denom-
inator not insignificant. On the other hand, the addition of
the relatively large factor κ = 40 veh/km/lane in the de-
nominator again reduces the error. For an approximation
error of 10% in density, the relative error on vm,i(k) will be
on average (taking the difference in density between two
segments to be 30 veh/km/lane) of the same order.

Subtraction of the term in (7) Final adaptations are
made to this speed-drop term by adopting the same con-
stant approach of substituting the density in the denom-
inator as in the paragraph above, combined with the
substitution of qo(k)vm,1(k) as in the piecewise-affine ap-
proximation of the flow equation (1).

It should be noted though that the impact of this term
on the speed equation from which it is subtracted – and
only for the first segment of an on-ramp’s outgoing link
– is not large: for the standard parameters we get a

factor
1.1·10−5qo(k)vm,1(k)

ρm,1(k)+40 . Thus, taken the relatively small

multiplicative factor in the numerator, alternatively also
speed variable vm,1(k) may be fixed at a constant value.

Finally, the on-ramp flow equation (6) is already PWA,
finalizing the reformulation of the METANET model.
However, in order to obtain a directly implementable op-
timization problem some further adaptations using binary
auxiliary variables are needed, as will be explained next.

4.3 From PWA to MILP

To make the resulting PWAMETANET model a directly
solvable problem when incorporated with the MPC op-
timization method, the PWA model can be written as a
mixed integer linear program (MILP) with some decision
variables of an integer and some of a rational domain. The
following statements provide a summary that covers the
conversion (adapted from Bemporad and Morari (1999)).

Here, binary dummy variables (denoted by δ ∈ {0, 1}) are
introduced to indicate whether a certain region Ωi of the
PWA model is selected, i.e., whether a PWA function y :
X → R equals one of the affine pieces f : X → R (defined
over a bounded set X ⊂ R

n), or to represent a product of
binary variables. The constants m, M denote respectively
a lower and upper bound of f over X. Finally, c denotes an
arbitrary constant and ǫ represents the machine precision
used to turn a strict inequality into a non-strict inequality
(i.e., turning the equivalence statement below into an
inequality implementable on digital computers).

Now we have

• f(x) ≤ c ⇔ δ = 1 is equivalent to:
{

f(x) ≤ c+ (M − c)(1− δ)

f(x) ≥ c(1− δ) + ǫ+ (m− ǫ)δ.

• δ = δ1δ2 is equivalent to:






−δ1 + δ ≤ 0

−δ2 + δ ≤ 0

δ1 + δ2 − δ ≤ 1.

• y = δf(x) is equivalent to:














y ≤ Mδ

y ≥ mδ

y ≤ f(x)−m(1− δ)

y ≥ f(x)−M(1− δ).

Concerning the implications of this conversion for the ease
of computation of the final MPC problem, the number
of regions and thus binary variables added can cause the
solver to require drastically increasing computation times.
However, a division using fewer regions may further in-
crease the approximation error. Therefore an appropriate
balance between speed and accuracy has to be found.

5. MPC FOR TRAFFIC CONTROL

Using MPC, based on measurements of the current state
variables, at time step k future states are predicted for a
prediction horizon of Np steps. Optimizing the objective
function over this horizon, the trajectory of optimal deci-
sion variables is determined. Implementing the first input,
the procedure is repeated in a moving horizon fashion.

Amongst the possible optimization goals for traffic models
are the maximization of traffic throughput, the spreading
of traffic density, and the minimization of travel time or the
variation in control variables. We chose as our objective the
minimization of total time traffic spends (TTS) (veh.h) in
the system, i.e., the time vehicles wait at on-ramps and in
mainstream origin queues before joining the freeway plus
the time they spend on the freeway itself:



JTTS = Ts

Nsim
∑

k=1





∑

(m,i)∈Iall

Lmλmρm,i(k) +
∑

o∈Oall

wo(k)



 ,

where Nsim expresses the simulation time over which we
optimize, Iall is the set of pairs of indices (m, i) of all links
and segments in the network, and Oall denotes the set of
indices of all origins. Note that the TTS is linear in the
state variables ρm,i(k) and wo(k).

The objective of the MPC controller is to reduce the TTS
over the prediction horizon Np, i.e.,

JMPC
TTS (k)=Ts

Np
∑

j=1





∑

(m,i)∈Iall

Lmλmρm,i(k+j)+
∑

o∈Oall

wo(k+j)



 .

In practice, one often adds a penalty term on input
deviations and a control horizon Nc < Np is introduced
after which the control signals are taken constant, i.e.,
k+Nc−1
∑

j=1

{

aramp

∑

o∈Oall

|ro(k + j)− ro(k + j − 1)|+

aspeed
∑

(m,i)∈Call

|vcontrol,m,i(k + j)− vcontrol,m,i(k+j−1)|

}

,

where aramp and aspeed are weighting coefficients and Call

is the set of all pairs of indices (m, i) of links and segments
in which a variable speed limit is active. By introducing
auxiliary variables and using the transformation properties
given above, this penalty term can also be transformed
into a linear function subject to a system of mixed integer
equations. We thus end up with an MILP optimization
problem, for which efficient solvers are available (see e.g.,
(Atamtürk and Savelsbergh, 2005)).

6. CASE STUDY

In this section the rewritten PWA formulation of the
METANET traffic model is compared with a standard
nonlinear formulation w.r.t. the total time spent (TTS). As
a benchmark we use the case study of Hegyi et al. (2005a),
looking at a two-lane freeway consisting of 6 segments,
where segment 3 and 4 include a dynamic speed limit and
an on-ramp is placed between segment 4 and 5.

L
1

D
1

L
2

2

O
1

ramp metering

O

speed limit 
segment 3 segment 4

speed limit

Fig. 2. Set-up of the case study

We take the standard parameter settings used by both
Hegyi et al. (2005a) and Kotsialos et al. (1999): vfree =
102 km/h, Ts = 10 s, τ = 18 s, κ = 40 veh/km/lane,
η = 60 km2/h, ρmax = 180 veh/km/lane, δ = 0.0122,
am = 1.867, Co1 = 4000 veh/h (mainstream origin),
Co2 = 2000 veh/h (on-ramp), ρcrit = 33.5 veh/km/lane,
Lm = 1km, and α = 0.1. We simulate the freeway for a
simulation horizon Nsim corresponding to 40min.

Coming back at the approximations made in the META-
NET model, Figures 3 and 4 show the most important
approximations, i.e., of the nonlinear flow equation (1)
and the fundamental diagram (4), obtained using PWA
identification and least-squares optimization, respectively.
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Fig. 4. Fundamental diagram – PWA approximation

Table 1 shows a selection of results for different levels of
approximation. The description under ‘method’ refers to
the approximation used, where ‘all approximations’ refers
to the best approximation results for the fundamental
diagram and flow equation, next to the substitution of the
velocity and density variables by constants as discussed
in Section 4. Thus, only the last row reflects a fully PWA
model, as opposed to the approximation of only a subset of
nonlinear equations in the other rows. Note further that
the traffic scenario is run without applying control, i.e.,
not yet making use of variable ramp metering rates and
speed limits.

It is interesting to see that taking the speed and density
variables constant as explained in Section 4 can be done
with only a small deterioration of the TTS w.r.t. the
original nonlinear model, whereas a more accurate approx-
imation of the fundamental diagram and flow equation re-
sults in a relatively large deviation from the original TTS.
At the same time, the constant values are easy to tune:
they can be adapted either separately or simultaneously
to yield the results closest to the original TTS, which is



Table 1. Comparison of TTS for some levels of
approximation and the relative error w.r.t. the

original model

Method TTS in veh.h (% error)

Original nonlinear 1.46 · 103

v(k) constant 1.46 · 103 (0.01%)
ρ(k) constant 1.46 · 103 (0.01%)
Both v(k), ρ(k) constant 1.412 · 103 (3.3%)
Fundamental diagram with 2 pieces 1.33 · 103 (8.84%)
Fundamental diagram with 3 pieces 1.41 · 103 (3.4%)
Flow eq., partially piecewise-constant 1.24 · 103 (15%)
All approximations, PWA 1.23 · 103 (15%)

not possible for the PWA approximation of real functions.
Overall, the deterioration due to approximation of the
entire METANET model is not very small and should be
improved by more elaborate tuning of the approximations.

7. CONCLUSIONS AND FURTHER RESEARCH

In the current paper, a PWA formulation of the traffic
model METANET was made in order to ease the com-
putational complexity of the original nonlinear nonconvex
model-based traffic control problem. Several methods to
approximate the nonlinear functions were discussed and
a small case study showed the performance of the PWA
formulation w.r.t. the total time spent (TTS) of traffic in
the system. It turned out that, indeed, our approximations
(without much tuning) resulted in a good overall perfor-
mance, indicating it is fruitful to further extend the study.

It should be kept in mind that one specific traffic situation
is tested; as part of future research an extensive assess-
ment and (sensitivity) analysis of various approximations
for different set-ups and scenarios could be made, e.g.,
incorporating vehicular emissions. Moreover, in this paper
a fully controlled case is not yet run, while such an MPC
optimization may reduce the effect of the approximation
errors by means of adapting the control variables in a
receding horizon approach, improving the final value of the
objective function (TTS). At the same time a controlled
simulation would give information concerning the running
time under different levels of approximation and is there-
fore a logical next step. In addition, application-specific
knowledge could be used as was done in e.g., the approx-
imation of the flow equation based on the fundamental
diagram. Also in the choice between taking a variable
constant or approximating it more accurately, information
from other model equations can prove useful. Here, one
may benefit from a more systematic method allowing for
a quick approximation while removing the need for much
tuning. A bounded-error approach could be an example,
including options to weigh data points that require a good
match more heavily.
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