
Delft University of Technology
Delft Center for Systems and Control

Technical report 11-020

Feasible-cooperation distributed model
predictive control scheme based on game

theory∗

F. Valencia, J.J. Espinosa, B. De Schutter, and K. Staňková

If you want to cite this report, please use the following reference instead:
F. Valencia, J.J. Espinosa, B. De Schutter, and K. Staňková, “Feasible-cooperation
distributed model predictive control scheme based on game theory,” Proceedings of
the 18th IFAC World Congress, Milan, Italy, pp. 386–391, Aug.–Sept. 2011. doi:10.
3182/20110828-6-IT-1002.02231

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/11_020.html

https://doi.org/10.3182/20110828-6-IT-1002.02231
https://doi.org/10.3182/20110828-6-IT-1002.02231
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/11_020.html


Feasible-Cooperation Distributed Model

Predictive Control Scheme Based on Game

Theory ⋆

Felipe Valencia ∗ Jairo J. Espinosa ∗ Bart De Schutter ∗∗
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Abstract: This work deals with the formulation of a distributed model predictive control scheme
as a decision problem in which the decisions of each subsystem affect the decisions of the other
subsystems and the performance of the whole system. This decision problem is formulated as a
bargaining game. This formulation allows each subsystem to decide whether to cooperate or not
depending on the benefits that the subsystem can gain from the cooperation. A solution based
on game theory is proposed. The convexity and feasibility properties of the proposed solution
are also presented. The proposed control scheme is tested on a case study with a chain of two
continuous stirred tank reactors followed by a non-adiabatic flash separator.

Keywords: Distributed model predictive control, game theory, bargaining game, negotiation
model.

1. INTRODUCTION

Large-scale systems are systems composed of several in-
teracting components. Their operation is based on con-
trollers that face different situations according to their
own interests. For the control of large-scale systems, dis-
tributed and hierarchical control schemes based on model
predictive controllers have been proposed, due to their
ability to handle complex systems with hard input and
state constraints (Camponogara et al., 2002; Di Palma and
Magni, 2004; Dunbar and Desa, 2007; Necoara et al., 2008;
Negenborn et al., 2009), and for their ability to obtain
a good performance starting from rather intuitive design
principles and simple models (Di Palma and Magni, 2004).

Some approaches of hierarchical and distributed model
predictive control are proposed in (Camponogara and
Talukdar, 2007; Doan et al., 2008; Dokucu et al., 2008;
Dunbar and Murray, 2006; Hennet, 2003; Jia and Krogh,
2002; Laabidi et al., 2008; Stephanopoulos et al., 2000;
Talukdar et al., 2005; Tatjewski, 2008; Vargas-Villamil and
Rivera, 2000; Venkat et al., 2008; Wang and Cameron,
2007; Wang et al., 2008; Wisnewski and Doyle, 1998; Wu
et al., 2009). However, the hierarchical approaches do not
guarantee the lack of competition among control layers
because each layer may take its own decisions without tak-
ing lower layers into account. The distributed approaches
may force the subsystems to cooperate, regardless of the
benefits produced by the cooperative behavior, and might

⋆ This research has been supported by the European 7th Frame-
work Network of Excellence “Highly-complex and networked control
systems (HYCON2)”, and by the European 7th framework STREP
project “Hierarchical and distributed model predictive control (HD-
MPC)”, contract number INFSO-ICT-223854.

steer the subsystems to operating points in where they do
not perceive any benefit.

In order to deal with these drawbacks of the distributed
control schemes, it is possible to assume that the local
controllers may “bargain” among themselves, and that
in that way an agreement may be achieved. With such
assumptions, the distributed Model Predictive Control
(MPC) problem can be reformulated as an n-persons
cooperative game. The n-person cooperative game involves
n individuals that can collaborate for mutual benefit.
The individuals communicate with each other in order
to (jointly) decide which strategy is the best for each
individual, based on the profit received for each of them
by the cooperative behavior (Nash, 1950a).

In this work, based on the Nash theories about the bargain-
ing problem (Nash, 1950a) and two-persons cooperative
games (Nash, 1953) distributed model predictive control
is analyzed as a game. The convexity and the feasibility of
the proposed control scheme are presented. In order to test
the proposed control scheme, a chain of two reactors and
one adiabatic flash separator is used as simulation testbed.

This paper is composed as follows. In Section 2 the dis-
tributed model predictive control framework is presented.
In Section 3 a game-theoretical formulation of distributed
model predictive control is introduced, and the negotiation
model is explained in Section 4. In Section 5 the case
study is introduced and the results of the simulations are
explained. Section 6 presents the conclusions.



2. DISTRIBUTED MODEL PREDICTIVE CONTROL
(DMPC)

Consider the nonlinear system given by

ẋ(t) = fx(x(t), u(t))

y(t) = fy(x(t), u(t))
(1)

where fx(.), fy(.) are smooth C1 functions, and x ∈ Rn,
u ∈ Rm, and y ∈ Rz denote the state, input, and output
vector of the dynamical system (1).

Assume that at each time step k the system (1) can
be approximated by a discrete-time linear time-invariant
system

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(2)

In the following, we focus on the trajectories of the states
x and their constraints. However, the method described
in this work can easily be extended to the cases in which
the output y is considered in the cost function and in the
constraints.

Assume that the state update equation of (2) can be
decomposed into M subsystems such that the behavior
of each subsystem can be expressed as

xi(k + 1) =

M∑

j=1

[Aijxj(k) +Bijuj(k)] (3)

where xi ∈ Rni , and ui ∈ Rmi denote the state and input
vector of the subsystem i, i = 1, . . . ,M , and Aij , Bij

are submatrices of the entire linear model of the system,
i.e., submatrices of A, B. This model is also used in
(Camponogara et al., 2002; Doan et al., 2008; Du et al.,
2001; Necoara et al., 2008; Venkat et al., 2008).

Let x̃(k) = [xT (k), . . . , xT (k + Np)]
T and ũ(k) =

[uT (k), . . . , uT (k+Nu)]
T . From the system decomposition

(3), the cost function L(x̃(k), ũ(k)) can be expressed as
(Venkat et al., 2006b, 2008)

L(x̃(k), ũ(k)) =
M∑

i=1

(
Np−1∑

t=0

xT
i (k + t)Qixi(k + t)

+

Nu∑

t=0

uT
i (k + t)Riui(k + t) + xT

i (k +Np)Pix(k +Np)

)

(4)

with Pi, Qi, Ri ≥ 0.

Substituting the equation (3) for xi(k + t) into (4) yields

L(x̃(k), ũ(k)) =

M∑

i=1

φi(ũ(k);x(k)) (5)

where

φi(ũ(k);x(k)) = ũT (k)Quuiũ(k) + 2xT (k)Qxuiũ(k)

+ x̃TQxxix̃(k)
(6)

where Quui ≥ 0, for i = 1, . . . ,M . In the following,
the term x̃TQxxix̃(k) will not be included into the cost
function because the value of this term is independent of
the value of the control inputs.

In (6) the arguments for φi(ũ(k);x(k)) indicate that the
argument of φi is ũ(k) and x(k) is parameter of φi. Clearly,

φi is a positive-definite quadratic function of ũ(k) and thus
it is convex in ũ(k).

Let Ωi = ΠNu

j=0Λi be the set of feasible control actions

for ũi(k), where ũi(k) = [uT
i (k), . . . , u

T
i (k + Nu)]

T , and
let Λi be the feasible set for the control action ui(k +
j), for j = 0, . . . , Nu determined by the physical and
operational limits of subsystem i. Assume that 0 ∈ Λi, and
that Λi is convex and independent of k for i = 1, . . . ,M .
Note that Ω = ΠM

i=1Ωi. Then, the MPC problem can be
written as (Li et al., 2005; Necoara et al., 2008; Venkat
et al., 2006b, 2008) 1

min
ũ(k)

M∑

i=1

φi(ũ(k))

subject to: ũi(k) ∈ Ωi, for i = 1, . . . ,M

(7)

Let σr(ũi(k), ũ−i(k)) = φr(ũ(k)), where

ũ−i(k) = [ũT
1 (k), . . . , ũ

T
i−1(k), ũ

T
i+1(k), . . . , ũ

T
M (k)]T

for ũi(k) ∈ Ωi, and ũ−i(k) ∈ Ω−i, with Ω−i = Ω1 ×
. . .Ωi−1 × Ωi+1 × . . . × ΩM . In order to solve the opti-
mization problem (7) in a distributed fashion, two main
approaches have been proposed in the literature (Venkat
et al., 2008, 2006a,b): the communication-based approach
and the feasible-cooperation approach. In this paper we
focuse on the feasible-cooperation approach, because there
exists evidence (e.g. the cases presented by Venkat et al.
(2008)) that the communication-based MPC may lead
to unacceptable closed-loop performance or closed-loop
instability.

In the feasible-cooperation approach, the local cost func-
tion φi(.) is replaced by a cost function that measures
the system-wide impact of the local control inputs. This
is done with the purpose of avoiding competition and to
increase the cooperation among subsystems in a DMPC
scheme. Venkat et al. (2008, 2006b) propose to use a
convex combination of the controller objectives:

φi(ũ(k)) =

M∑

r=1

wrσr(ũi(k), ũ−i(k)) (8)

where wr > 0,
∑M

i=1 wr = 1, as a cost function of each
subsystem, because this is the simplest choice for such an
objective function. Also, the subsystems must carry out a
negotiation process in order to select the best control ac-
tions, with respect to the performance of the entire system.
Let ũi,q(k) = [uT

i,q(k), . . . , u
T
i,q(k +Nu)]

T , where q denotes
the iteration number at time step k of the negotiation
process (q = 1, . . . , qmax, with qmax the maximum number
of iterations of the negotiation process). Let ũ−i,q(k) =
[ũ∗T

1,q(k), . . . , ũ
∗T
i−1,q(k), ũ

∗T
i+1,q(k), . . . , ũ

∗T
M,q(k)]

T , where the

superscript ∗ denotes the optimal value of ũj,q(k), for
j = 1, . . . , i−1, i+1, . . . ,M . Then, the optimization prob-
lem (7) can be solved in a cooperative way by computing
the solution of the optimization problem (Venkat et al.,
2008, 2006b)

min
ũi,q(k)

M∑

r=1

wrσr(ũi,q(k), ũ−i,q−1(k))

subject to: ũi,q(k) ∈ Ωi

(9)

1 For the sake of simplicity of notation we will not indicate the
dependence of φi on x(k) explicitly in the remainder of this paper
and thus write φi(u(k)) instead φi(u(k);x(k)).



for q = 1, . . . , qmax, where after each iteration q the
subsystems communicate their optimal solution to the
other subsystems.

In the next section, theoretical concepts of game theory
will be used in order to deal with the feasible-cooperation
MPC (FC-MPC) problem as a decision problem in which
the decisions of each subsystem affect the decisions of the
other subsystems.

3. FC-MPC AS A GAME

A game is defined as the tuple (N, {Ωi}i∈N , {φi}i∈N ),
whereN = {1, . . . ,M} is the set of players, Ωi is a finite set
of possible actions of player i, and φi : Ω1×. . .×ΩM −→ R
is the payoff function of the ith player (Akira, 2005).

Based on the definition of a game, the FC-MPC problem
can be defined as a tuple G = (N, {Ωi}i∈N , {φi}i∈N ),
where N = {1, . . . ,M} is the set of subsystems, Ωi is the
non-empty set of feasible control actions for subsystem i,
and φi : Ω1×. . .×ΩM −→ R, is the cost function of the ith
subsystem. From this point of view, FC-MPC is a game in
which the players are the subsystems, the actions are the
control inputs, and the payoff of each subsystem is given by
the value of its cost function. Moreover, in FC-MPC the
subsystems can cooperate in order to obtain a common
benefit. So, FC-MPC can be analyzed as a cooperative
game.

Following the cooperative game theory introduced in
(Nash, 1950b, 1953; Peters, 1992), the formulation of FC-
MPC as a game is completed by introducing the concept of
disagreement point. The disagreement point of subsystem
i, di(k), at time step k, is given by di(k) = φi(ũ

d(k)),
where ũd(k) are the control inputs solving the following
optimization problem

min
ũi(k)

max
ũ
−i(k)

φi(ũ(k))

subject to: ũi(k) ∈ Ωi

ũ−i(k) ∈ Ω−i

(10)

Note that the optimization problem (10) defines the worst
case for subsystem i. Then, di(k) is the best benefit that
the ith subsystem can achieve given the worst case.

According to (Nash, 1950a, 1953), the solution of the
cooperative game associated with the DMPC problem can
be computed as the solution of the following optimization
problem:

max
ũ(k)

ΠM
i=1 [di(k)− φi(ũ(k))]

wi

subject to: di(k) > φi(ũ(k)), for i = 1, . . . ,M

ũi(k) ∈ Ωi, for i = 1, . . . ,M

(11)

The maximization problem (11) can be rewritten equiva-
lently as

max
ũ(k)

M∑

i=1

wi log [di(k)− φi(ũ(k))]

subject to: di(k) > φi(ũ(k)), for i = 1, . . . ,M

ũi(k) ∈ Ωi, for i = 1, . . . ,M

(12)

Thus, (11) can be solved in a distributed fashion by solving
(12) following the feasible-cooperation approach presented

in Section 2. Consequently, the local optimization problem
for subsystem i is given by the maximization problem

max
ũi(k)

M∑

r=1

wr log [dr(k)− σr(ũi(k), ũ−i(k))]

subject to: dr(k) > σr(ũi(k), ũ−i(k)), for r = 1, . . . ,M

ũi(k) ∈ Ωi

(13)

In the next section, we propose a negotiation model to
solve the FC-MPC game. Properties like convexity and
feasibility are also discussed.

4. NEGOTIATION MODEL

A negotiation model consists of a sequence of steps whose
outcome is the solution of the game in a cooperative or
non-cooperative fashion. The negotiation model proposed
in this work is based on the algorithm proposed by Nash
(1953) for two-person cooperative games.

At each time step k, at each iteration q, q = 1, . . . , qmax,
the proposed steps to solve the FC-MPC game are:

1. Let di(k) denote the disagreement point of subsys-
tem i at time step k. Then, given the initial condi-
tions, x(k), all subsystems compute their disagree-
ment points di(k) according to (10) in a separated
way.

2. After computing the disagreement points, each sub-
system sends its disagreement point to the other
subsystems.

3. Each subsystem solves the optimization problem (13).
If (13) is feasible, let ũ∗

i,q(k) be an optimal solu-
tion (so it satisfies the constraints, i.e., dr(k) >
σr(ũ

∗

i,q(k), ũ−i,q−1(k)), for r = 1, . . . ,M). If (13) is
not feasible, subsystem i decides not to cooperate.
In this step, if q = 1, then ũd

i (k) is considered as
initial condition for subsystem i, for solving (13).
Otherwise, ũi,q−1(k) is considered as initial condition
for subsystem i, for solving (13).

4. The subsystems that decide to cooperate update their
control actions by a convex combination ũi,q(k) =
wiũ

∗

i,q(k) + (1 − wi)ũi,q−1(k). The subsystems that
decide not to cooperate select their control actions
by ũi,q(k) = wiũ

d
i (k) + (1− wi)ũi,q−1(k).

5. Each subsystem sends its control actions to the other
subsystems. If ‖ũi,q(k)− ũi,q−1(k)‖ 6 ξ (ξ > 0) for all
subsystems, or if q = qmax, or if the maximum allow-
able time for the computation of the optimal control
input ũ∗(k) = [ũ∗T

1 (k), . . . , ũ∗T
M (k)]T is reached, the

first element of the control sequence ũi,q(k) is applied
and each subsystem returns to step 1. Else, each
subsystem returns to step 3.

At time step k+1 the initial conditions for subsystem i for
solving (10) are determined by the shifted control sequence
ũi,0(k + 1) = [u∗T

i,qend
(k + 1, k), . . . , u∗T

i,qend
(k + Nu, k), 0]

T ,
where u∗

i,qend
(k + 1, k) denotes the optimal value of the

control inputs for subsystem i at iteration qend at the
time step k + 1 given the conditions at time step k. From
the negotiation model we have that only the disagreement
point is communicated by the subsystems at each time step



k and that the subsystems transmit only their sequence of
control actions at each iteration q.

Now we have:

Proposition 1. The maximization problem (13) is a con-
cave optimization problem.

Proof. The optimization problem (13) can be written as

min
ũi(k)

(
−

M∑

r=1

wr log [dr(k)− σr(ũi(k), ũ−i(k))]

)

subject to: dr(k) > σr(ũi(k), ũ−i(k)), ∀r ∈ N

ũi(k) ∈ Ωi

(14)

The function − log[g(x)] is a convex function if g(x) >
0 and −g(x) is a convex function (Rockafellar, 1970,
Theorem 5.1). In the case of the optimization prob-
lem (14), the function log [dr − σr(ũi(k), ũ−i(k))] satis-
fies [dr(k)− σr(ũi(k), ũ−i(k))] > 0 because of the con-
straint dr(k) > σr(ũi(k), ũ−i(k)), for r = 1, . . . ,M ,
and it is a convex function because dr(k) is fixed and
σr(ũi(k), ũ−i(k)) is a convex function with respect to
ũi(k), for r = 1, . . . ,M .

Since the function

Ci = −

M∑

r=1

wr log [dr(k)− σr(ũi(k), ũ−i(k))]

is a convex combination of M convex functions, it is
also a convex function with respect to ũi(k). Hence, the
optimization problem (14) is convex and therefore the
optimization problem (13) is concave. ✷

From Proposition 1, it follows that the optimization prob-
lem (13) can be solved efficiently using interior point meth-
ods like active-set algorithms, linear search algorithms,
or gradient-based algorithms (Boyd and Vandenberghe,
2004).

Proposition 2. The input sequences for subsystem i gen-
erated by the negotiation model at time step k from a
feasible starting point are feasible for time steps k+1, k+
2, . . . for the original MPC problem, i.e., ũi,q(k) ∈ Ωi for
i = 1, . . . ,M .

Proof.

Since σi(ũi(k), ũ−i(k)) is a convex function, and because
Ωi and Ω−i are both convex sets, ũ∗

−i(k) ∈ Ω−i and

ũd
i (k) ∈ Ωi exist for all iterations q = 1, . . . , qend, for all

i = 1, . . . ,M .

Let ũi,0(k) ∈ Ωi denote the initial solution at time step k.
By the negotiation model, if at iteration q = 1 at time step
k subsystem i decides not to cooperate, its control actions
are given by the convex combination ũi,1(k) = wiũ

d
i (k) +

(1 − wi)ũi,0(k). Since ũi,0(k) ∈ Ωi, ũ
d
i (k) ∈ Ωi and Ωi is

convex, any convex combination of ũi,0(k) and ũd
i (k) also

belongs to Ωi. Then, ũi,1(k) ∈ Ωi for i = 1, . . . ,M .

If at iteration q = 1 at time step k subsystem i decides to
cooperate, the control actions of subsystem i are given
by the convex combination ũi,q(k) = wiũ

∗

i,q(k) + (1 −
wi)ũi,0(k). Since ũi,0(k) ∈ Ωi, ũ∗

i (k) ∈ Ωi, and Ωi is
convex, any convex combination of ũi,0(k) and ũ∗

i (k) also
belongs to Ωi. Then, ũi,1(k) ∈ Ωi for i = 1, . . . ,M .

At iteration q = 2, ũi,1(k) ∈ Ωi, then ũi,2(k) ∈ Ωi indepen-
dently of the decision of subsystem i about to cooperate
or to not. This remains for the subsequent iterations q =
2, 3, . . . , qend. Therefore, the sequence of control actions
for subsystem i generated by the negotiation model from
a feasible starting point remains feasible for all iteration
q = 1, . . . , qend, at time step k.

For time step k + 1, the initial conditions for subsystem i
for solving (10) are given by the shifted control sequence
ũi,0(k + 1) = [u∗T

i,qend
(k + 1, k), . . . , u∗T

i,qend
(k + Nu, k), 0]

T .

Recall that Ωi = ΠNu

j=0Λi and that 0 ∈ Λi. Since ũ∗

i,qend
(k)

is feasible, we have ui,qend(k, j) ∈ Λi for j = 1, . . . , Nu.
Hence, ũi,0(k + 1) ∈ Ωi. Therefore, the input sequences
generated by the negotiation model for subsystem i, (i =
1, . . . ,M) belong to Ωi for the time step k + 1. The same
conclusions can be derived for the subsequent time steps
k + 2, k + 3, . . . Thus, the input sequences generated by
the negotiation model for subsystem i are feasible for the
time steps k, k + 1, . . . ✷

Recall that the origin belongs to Ω = Ω1× . . .×ΩM . Then,
a possible choice for the initial condition for subsystem i
at time step k = 0 is ũi,0(0) = 0, for i = 1, . . . ,M .

Regarding the optimality of the proposed FC-MPC ap-
proach we should demonstrate that the solution of (13)
is a non-symmetric Nash solution of the DMPC prob-
lem. Then, it has to be shown that such a solution is
unique and belongs to the Pareto front of the feasible
set {ũi(k) ∈ Ωi : dr(k) > σr(ũi(k), ũ−i(k))}. The proof
of these statements will be included in future work.

In the next section, simulation results of the application
of the proposed control scheme to a plant with two con-
tinuous stirred tank reactors followed by a flash separator
are presented.

5. APPLICATION: TWO REACTOR CHAIN WITH
FLASH SEPARATOR

The example of a chain of two continuous stirred tank reac-
tors (CSTRs) followed by a non-adiabatic flash separator
was taken from Venkat et al. (2006b). All the simulations
were performed using Matlab. For solving the optimization
problem (13) the active-set algorithm provided by the
fmincon function of the optimization toolbox of Matlab
was used. The description of the system is presented below.

Consider a plant with two CSTRs followed by a non-
adiabatic flash separator, as shown in Fig 1. In each of
the CSTRs, the desired product B is produced through

the irreversible first-order reaction A
k1−→ B, k1 being the

Arrhenius constant of the reaction. An undesirable side

reaction B
k2−→ C results in the consumption of B and in

the production of the unwanted side product C (here, k2
is the Arrhenius constant of this reaction). The product
stream from CSTR-2 is sent to a non-adiabatic flash
separator to separate the excess of A from the product B
and the side product C. The model of the plant is given in
(Venkat et al., 2006b). To apply the proposed distributed
control scheme, each reactor and the flash separator are
considered as subsystems, whose model is given by (3).
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The performance of the proposed control scheme will be
evaluated for a scenario in which a 15.79 percent increase
in the level of Hm is made at time t = 200s, and a set-
point change corresponding to a 5.56 percent decrease in
the level of Hr is made at time t = 400s. Figs. 2 to 4 show
the performance of the proposed control scheme for these
set-point changes. In this simulation we have taken the
prediction horizon Np = 25, the control horizon Nu = 10,
the weight of each subsystem w = 0.33, the sample time
Ts = 10s, and the maximum iterations per time step
qmax = 5.
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Fig. 3. Evolution of the level and the temperature of
CSTR-2, their reference values, and the control in-
puts.
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Fig. 4. Evolution of the level and the temperature of the
non-adiabatic flash, their reference values, and the
control inputs.

From Figs. 2 to 4 it is possible to conclude that the
proposed control scheme stabilizes the closed-loop system.
As a response to the set-point change of Hm, CSTR-
1 and CSTR-2 jointly decide to decrease and increase
their feed flow rates, respectively, in order to softly drive
the system to the new desired operating point, while the
flash separator decides to increase the recycle flow in
order to regulate its level and the level of the CSTR-1.
This indicates a cooperative behavior among the MPC
controllers. In Fig. 5 the computation time incurred by
the computation of the solution of the FC-MPC problem
as a game is presented.
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Fig. 5. Evolution of the delay associated with the solution
of the FC-MPC problem as a game.

From Fig. 5 it is possible to conclude that the computation
of the FC-MPC problem as a game in the case of the chain
of reactors presented in this section is always less than the
sample time, i.e. less than 10s.

6. CONCLUSIONS

In this work, the distributed model predictive control
problem was considered. A new formulation for the fea-
sible cooperation model predictive control approach was
proposed based on concepts of game theory. In this new
formulation, a disagreement point was introduced, allow-
ing the subsystems to decide whether to cooperate or not,
depending on the benefit perceived by each subsystem by
the cooperative behavior. The benefit of each subsystem
was computed as the difference between the disagreement
point and the value of the local cost function when the



subsystems decide to cooperate. The convexity and the
feasibility of the proposed method were demonstrated.
However, the stability of the proposed approach remains
as an open problem.

The proposed control scheme was tested using a chain
of two reactors followed by a non-adiabatic flash. The
reference values of the reactors were changed in different
directions at different times, keeping the values of the ref-
erences of the other subsystems constant. In this case, the
three subsystems cooperate in order to jointly select the
best control actions in the sense of the local performance
without decreasing the entire system performance.
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