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Abstract: In this paper we discuss dynamic traffic management of railway traffic networks at an
operational level. We design a model predictive controller based on measurements of the actual
train positions. The core of the model predictive control approach is the railway traffic model,
for which a switching max-plus linear system is proposed. If the model is affine in the controls,
the optimisation problem can be recast as a mixed-integer linear programming problem. To this
end we present a permutation-based algorithm to model the rescheduling of trains running on
the same track. We apply the algorithm to a simple railway traffic network simulation model
and show a significant reduction of delays compared to the uncontrolled case.

Keywords: Switching max-plus linear models, model predictive control, mixed-integer linear
programming, railway traffic management.

1. INTRODUCTION

Current practice in the operational-level management of
railway traffic networks is mostly based on predefined
rules and on the ability of traffic controllers and train
dispatchers to detect and avoid conflicting situations. De-
lays caused by technical failures, fluctuation of passenger
volumes, and/or weather conditions can be partly ab-
sorbed by a stable and robust timetable (Goverde, 2007).
In the case of large delays, network managers might be
forced to re-route or to change the order of trains, break
connections, or even cancel a scheduled service to prevent
the accumulation of delays in the network. In this paper
we design a predictive feedback controller that computes
the most effective actions, based on measurements of the
actual train positions. The control measures are restricted
to changing the order of trains running on the same track.

A railway network with rigid connection constraints and
a fixed routing schedule can be modelled using max-plus-
linear (MPL) models (Heidergott and de Vries, 2001). An
MPL model is linear in the max-plus algebra (Baccelli
et al., 1992), which has maximisation and addition as its
basic operations. Max-plus-linear systems can be charac-
terised as discrete event systems in which only synchroni-
sation and no concurrency or choice occurs (Baccelli et al.,
1992). In the railway context, synchronisation means that
some trains should give predefined connections to other
trains, and a fixed routing schedule means that the order
of departure is fixed. In this paper we model a controlled
railway system using the switching max-plus-linear system
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description of van den Boom and De Schutter (2006).
In this description we use a number of MPL models,
each model corresponding to a specific mode, describing
the network by a different set of connection and order
constraints. We control the system by switching between
different modes, allowing us to change the order of trains
to minimise the delays of all trains in the network while
considering the cost of the control actions.

In the case that only changes in the order of subsequent
trains are allowed, we have shown in van den Boom and De
Schutter (2007) how the resulting optimisation problem
can be recast as a mixed-integer linear programming
(MILP) problem. In this paper we present an algorithm
to extend the model and the approach to change the order
of any number of trains and we show that the problem
still yields an MILP. We show that for a simple network
model the proposed method yields good results.

2. MODEL

Consider a periodic railway operations system that follows
a schedule with period T . In nominal operation mode, we
assume that all the trains follow a pre-scheduled route,
with a fixed train order and predefined connections. If for
any of the reasons mentioned before delays are introduced
in the network, it might be advantageous to change the
train order so as to minimise delays. In this case we
will operate in a perturbed mode with an associated new
schedule. First we discuss the nominal operation mode.



2.1 Nominal operation

Consider an unperturbed railway operations system where
each train running on each track of the railway network
has a number assigned to it. For the sake of simplicity we
will say ‘train i’ to denote the (physical) train on (virtual)
track i, and ‘station i’ to denote the (virtual) station at
the beginning of track i (cf. Figure 1). Let n be the number
of ‘virtual’ tracks in the network. We say virtual to denote
that some of the virtual tracks or stations may actually
be the same physical track or station (corresponding to
different trains using the same track or station). This
means that the actual number of tracks is usually smaller
than n.

We assume that overtaking actions can only take place
at stations and that sufficient infrastructure capacity is
available.

Let di(k) be the time instant at which train i departs from
its departure station for the kth time, and let ai(k) be the
time instant at which train i arrives at its arrival station
for the kth time. Let ri(k) (ri+n(k)) be the scheduled
departure (arrival) time for this train according to the
timetable.

j

i

station j

station i

track j
track i

Fig. 1. A part of a railway network.

Let pi be the predecessor track of train i, i.e., the track that
ended at station i, and let Ci(k) be the set of trains that
give a connection to train i in the kth cycle. Let Fi(k) be
the set of trains that move over the same track as train i, in
the same direction as train i, and that are scheduled before
train i in the kth cycle. Let Wi(k) be the set of trains
that move over the same track as train i, in the opposite
direction of train i, and are scheduled before train i in
the kth cycle. Furthermore, let ti(k) be the running time
of train i in the kth cycle. Define a minimum connection
time cij(k) for passengers to get from train j to train i
for each train j ∈ Ci(k) in the kth cycle, and define a
minimum dwell time sj(k) of train j at station j in the
kth cycle to allow passengers to board or alight the train.
Finally, define a minimum headway time hij(k) between
two different trains i and j moving over the same track
and in the same direction in the kth cycle, and a minimum
headway time wij(k) between two different trains moving
over the same track and in the opposite direction in the
kth cycle. Throughout this paper the minimum headway
times for arrival and departure constraints are assumed to
be equal.

The departures and arrivals of train i are subject to the
following constraints:

• Time schedule constraint:

di(k) > ri(k), (1)

ai(k) > ri+n(k), (2)

where ri(k) = ri(0) + kT with ri(0) the initial sched-
uled departure time, and with a similar definition for
the arrivals.

• Running time constraint:

ai(k) > di(k − δii) + ti(k), (3)

where δii = 0 if train i is scheduled to arrive at its
destination in the same cycle as its departure, and
δii = m if it arrives m cycles after its departure.

• Continuity constraints:

di(k) > api
(k − δipi

) + spi
(k), (4)

where δipi
= m if the (k − m)th train pi arriving at

the physical station corresponding to virtual station
i continues as the kth train i.

• Connection constraints:

di(k) > aj(k − δij) + cij(k), ∀j ∈ Ci(k), (5)

where δij = m if the (k − m)th train j gives a
connection to the kth train i.

• Headway constraints:

di(k) > dj(k − δij) + hij(k), ∀j ∈ Fi(k), (6)

ai(k) > aj(k − δij) + hij(k), ∀j ∈ Fi(k), (7)

where δij is defined similarly as above.
• Meeting constraints:

di(k) > aj(k − δij) + wij(k), ∀j ∈ Wi(k), (8)

where again δij is defined similarly as above.

Note that in nominal operation generally all δij ’s are equal
to zero or one, but in perturbed operation other values of
δij are possible. Moreover, note that in the general case
the δij ’s could depend on k.

Since a train is allowed to depart as soon as all constraints
are satisfied, we have

di(k) = max
j∈Ci(k)

{

ri(k), api
(k − δipi

) + spi
(k),

max
j∈Ci(k)

(aj(k − δij) + cij(k)),

max
j∈Fi(k)

(dj(k − δij) + hij(k)),

max
j∈Wi(k)

(aj(k − δij) + wij(k))
}

, (9a)

ai(k) = max
j∈Ci(k)

{

ri+n(k), di(k − δii) + ti(k),

max
j∈Fi(k)

(aj(k − δij) + hij(k))
}

. (9b)

Note that in an undisturbed, well-defined timetable the
term ri(k) in (9a) will be the largest. However, if due to
unforeseen circumstances one of the trains has a delay, the
corresponding term can become larger than the others,
and train i will depart later than the scheduled departure
time ri(k).

Consider a network with n trains and define the vectors
x(k) = [d1(k), . . . , dn(k), a1(k), . . . , an(k)]

T ∈ R
2n and

r(k) ∈ R
2n. By defining ε = −∞, Rε = R ∪ {ε}, and

appropriate matrices Am ∈ R
2n×2n
ε , m = m1, . . . ,m2 with

m1 = mini,j(δij) and m2 = maxi,j(δij), we can rewrite
(9a) and (9b) as:

xi(k) = max

(

ri(k),max
j,m

(

xj(k−m) + [Am]ij

)

)

, (10)

where [Am]ij is the (i, j)th entry of Am.



Now we introduce the notation of the max-plus algebra
(Baccelli et al., 1992). The max-plus-algebraic addition
(⊕) and multiplication (⊗) are defined as:

x⊕ y = max(x, y),

x⊗ y = x+ y,

for x, y ∈ Rε, and

[A⊕B]ij = aij ⊕ bij = max(aij , bij),

[A⊗ C]ij =
n
⊕

k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj),

for A,B ∈ R
m×n
ε , C ∈ R

n×p
ε . In regards to the order of

evaluation ⊗ has preference over ⊕.

The max-plus-algebraic zero matrix ε is defined as:

εij = ε, ∀i, j.

In max-plus notation (10) becomes

xi(k) = ri(k)⊕

2n
⊕

j=1

m2
⊕

m=m1

xj(k −m)⊗ [Am]ij ,

and in matrix-notation we obtain

x(k) =

m2
⊕

m=m1

Am ⊗ x(k −m)⊕ r(k). (11)

2.2 Perturbed operation

In nominal operation we have assumed that some trains
should give predefined connections to other trains, and
that the order of trains on the same track is fixed. However,
if one of the preceding trains has a too large delay,
then it is sometimes better — from a global performance
viewpoint — to let a connecting train depart anyway or
to change the departure order on a specific track. This is
done in order to prevent an accumulation of delays in the
network. In this paper we consider the switching between
different operation modes, where each mode corresponds
to a specific order of train departures and arrivals. Note
that any change of train order leads to a new model, similar
to the nominal equation (11), but now with adapted
system matrices Am(ℓ(k)) for the ℓth mode. A system
operating in a perturbed mode ℓ(k) can be described as

x(k) =

m2
⊕

m=m1

Am(ℓ(k))⊗ x(k −m)⊕ r(k), (12)

where mode ℓ(k) = 0 corresponds to the nominal
timetable.

3. THE RAILWAY CONTROL PROBLEM

3.1 Timing aspects

Discrete event systems are different from conventional
time-driven systems in the sense that the event counter
k is not directly related to a specific time. Let t be a given
time instant and let k be such that x(k −m2), . . . , x(k −
1) are completely known, i.e., xi(k − j) ≤ t ∀i, ∀j ∈
{1, 2, . . . ,m2}. So at time instant t in cycle k, some of the
components of x(k) may already be known while others
may still lie in the future. In (van den Boom and De

Schutter, 2007) we have presented a method to address
the timing issues in the control of switching MPL systems.
This method is made more specific here for the model in
(9a) and (9b).

The case of full state information is considered, since the
components of x(k) correspond to departure and arrival
times, which are in general easy to measure.

Furthermore, we may have measurements of trains in cycle
k that have already departed or arrived at time instant
t. If so, we denote these as dpast(k|t) and apast(k|t) re-
spectively. Sometimes there is information available about
the estimated running time for trains that have not yet
arrived at their destination at time t. With this infor-
mation we can make an estimation t̂est(k|t) of the future
running times. If no further information is available on a
specific running time we take the nominal running time
[t̂est(k|t)]i = ti(k). All these values can be substituted in
the matrices Am(ℓ(k)) to make the future system descrip-

tion Âm(ℓ(k|t)) as accurate as possible.

Due to the fact that time does not explicitly enter the
max-plus recurrence in (12) it could happen that if an
event is delayed by a precedence constraint and if due to a
rescheduling action this hindering constraint in removed,
then the delayed event could, in theory, be rescheduled in
the past. To avoid this issue it should be considered that a
departure event cannot be rescheduled before the current
decision time t.

3.2 Control problem

Let Np be the prediction horizon and define the set U(k+
j|t) ⊂ {0, 1}nu for j = 0, 1, ..., Np with nu the dimension
of the control space, as the set of possible future control
actions for the k + jth cycle at time instant t with the
relation between k and t as defined in Section 3.1. Note
that this includes the fact that certain control actions may
no longer be feasible, as at time instant t some trains might
have already departed and therefore their order can no
longer be changed. So, a mode ℓ(k) will be encoded as a
binary array with nu bits (see Section 4 for details).

To select the optimal set of possible future control actions,
we define the following optimal control problem at time
instant t:






































min
u(k|t),u(k+1|t),...,u(k+Np|t)

J(k|t)

x̂(k + j|t) =

m2
⊕

m=m1

Âm(ℓ(k + j|t))⊗

x̂(k + j −m|t)⊕ r(k + j)

x̂(k − i) = x(k − i) for i = 1, . . . ,m2

u(k + j|t) ∈ U(k + j|t)

(13)

where the performance index J(k|t) is given by

J(k|t) =

Np
∑

j=0

(

2n
∑

i=1

σi êi(k + j|t) +

nu
∑

l=1

ρl ul(k + j|t)

)

.

(14)
Here ê(k + j|t) is the vector with the expected delays
(êi(k + j|t) = x̂i(k + j|t) − ri(k + j) ≥ 0), and σi, ρl are
positive weighting scalars. The first term of (14) is related
to the sum of all predicted delays, and the second term



denotes the penalty for all switched train orders during
cycle k + j.

To compute the predictions of x̂(k + j|t) in (13) we made
use of the fact that at time t we have dpast(k|t), apast(k|t),

and t̂est(k+ j|t) available, so that the estimates Âm(ℓ(k+
j|t)) of all future Am(ℓ(k + j)) could be computed.

In principle we now have all elements to solve the optimal
control problem (13). Note that if the railway timetable
is well-defined and there is some margin in the schedule,
there will always be an integer N such that for Np ≥ N
in the nominal case (u(k + j|t) = 0 ∀j ≥ 0) the delays
will vanish (ê(k + j|t) = 0 ∀j ≥ Np) (Heidergott and de
Vries, 2001). By choosing Np = N in (14) we are sure
that enough delay terms are taken into account. In many
cases a smaller value for Np will be sufficient. A major
advantage of a small prediction horizon Np is that the
computational complexity of the optimisation problem is
drastically reduced.

4. MODE ENCODING USING AN AFFINE MODEL

In (van den Boom and De Schutter, 2007) we have shown
that by restricting the change in departure order of two
successive trains, the railway network model can be writ-
ten in affine form with respect to the controls, and the
optimisation problem in (13) can be recast into an MILP
problem. Affinity with respect of the controls means that
the system matrix can be written as:

Âm(ℓ(k)) = Âm,0 +

nu
∑

v=1

Âm,v(k)uv(k), (15)

with uv(k) ∈ {0, 1} and Âm,v(k) ∈ R
2n×2n
ε , v = 1, 2, ..., nu.

Note that matrix Âm(ℓ(k)) depends now on the control
u(k) and a mode ℓ(k) is determined by a certain combi-
nation of control entries uv(k), i.e., ℓ depends on u(k):
ℓ(k) = L(u(k)). Equation (15) describes the actual config-

uration of the network Âm(ℓ(k)) as the sum of the nominal

network configuration Âm,0 and so called mode matrices

Âm,v(k). To allow for the required manipulations stated

by (15) we substitute all elements of Âm,0 that are equal
to ε by β, a large negative real number (β ≪ 0).

In this section we extend the model to the case of changing
the order of non-successive trains scheduled to run on the
same physical track based on a permutation method. In
Section 5 we show how the resulting optimisation problem
in (13) can be recast as an MILP problem.

4.1 Permutation method

Let us assume that T = {1, 2, ..., nt} is the set containing
all physical tracks in the network with nt the total number
of physical tracks. The method computes for each physical
track all the allowed permutations of the currently sched-
uled train sequence. A permutation is called allowed if it
does not violate a continuity constraint as introduced in
Section 2.1.

In the following a superscript τ denotes the association to
the τth physical track with τ ∈ T . Each permutation of
trains on each physical track τ ∈ T is described with a
binary control vector

u(τ)(k) = [u
(τ)
1 (k), . . . , u

(τ)
στ (k)

(k)]T,

with u
(τ)
v (k) ∈ {0, 1}, v = 1, 2, . . . , στ (k) and

στ (k) =

(

nτ (k)

2

)

=
nτ (k)(nτ (k)− 1)

2

the number of control entries for the τth physical track
and nτ (k) the number of trains scheduled to run on the
τth physical track in cycle k. Note that στ (k) represents
the number of 2-permutations of nτ (k) trains on the τth

physical track in cycle k. Therefore, a control u
(τ)
v (k), v =

1, 2, ..., στ (k) is then to be associated to the permutation
of the order of two specific trains scheduled to run on
the same physical track τ with respect to the currently
scheduled sequence of trains. This means that if in a given
permutation the order of two trains is swapped, then the
associated control will be equal to one. On the other hand,
if the order of the two trains does not change with respect
to the currently scheduled sequence, then the associated
control will be equal to zero.

To define the mode matrices Âm,v(k) in (15) two cases have
to be accounted for: the case that a control is associated to
changing the order of two trains that are scheduled in the
same direction, and the case that a control is associated
to changing the order of two trains that are scheduled
in opposite directions. In either case the mode matrices
will implement the removal of an existing precedence
constraint between two trains and the addition of a new
one. Let us assume that a control u

(τ)
v (k) is associated

to the allowed permutation of the pth and qth train on
track τ in cycle k, with q < p, i.e., the qth train is
originally scheduled before the pth train in a cycle. Then

the corresponding mode matrix Â
(τ)
m,v(k) can be written as

[Â(τ)
m,v(k)]ij =



















β − hpq(k) if (i, j) = (p, q),
hqp(k)− β if (i, j) = (q, p),
β − hpq(k) if (i, j) = (n+ p, n+ q),
hqp(k)− β if (i, j) = (n+ q, n+ p),
0 otherwise.

In the case that train q is scheduled before and in opposite

direction as train p, then matrix Â
(τ)
m,v(k) is written as

[Â(τ)
m,v(k)]ij =

{

β − wpq(k) if (i, j) = (p, n+ q),
wqp(k)− β if (i, j) = (q, n+ p),
0 otherwise.

Now (15) can be written as

Âm(ℓ(k)) = Âm,0 +

nt
∑

τ=1

στ (k)
∑

v=1

Â(τ)
m,v(k)u

(τ)
v (k), (16)

where affinity with respect of the controls is still preserved.
The total number of controls nu is then calculated as

nu =

nt
∑

τ=1

στ (k) =

nt
∑

τ=1

nτ (k)(nτ (k)− 1)

2
,

where we have assumed that the total number of trains in
the network is constant over all cycles k.

5. REFORMULATION AS A MIXED-INTEGER
LINEAR PROGRAMMING PROBLEM

Now we show that the model predictive control problem
(13) with Âm(ℓ(k)) given by (16) can be recast into an



MILP problem. Assuming that in general m1 = 0 and
m2 ≥ m1, we outline now the main ideas behind this
transformation. For the sake of simplicity of notation we
drop the notation ·̂ and |t for a prediction from now on.
Define the vectors

x̃(k) = [xT(k), ..., xT(k +Np)]
T,

ũ(k) = [uT(k), ..., uT(k +Np)]
T,

z̃(k) = [xT(k − 1), ..., xT(k −m2)]
T,

ℓ̃(k) = [ℓ(k), ..., ℓ(k +Np)]
T,

r̃(k) = [rT(k), ..., rT(k +Np)]
T,

where x̃(k) represents the partially known or completely
unknown states and z̃(k) represents the completely known
states at cycle k as introduced in Section 3.1. Note that
by defining the matrices

Ã(ℓ̃(k)) =








A0(ℓ(k)) A−1(ℓ(k)) · · · A−Np
(ℓ(k))

A1(ℓ(k + 1)) A0(ℓ(k + 1)) · · · A1−Np
(ℓ(k + 1))

...
...

. . .
...

ANp
(ℓ(k +Np)) ANp−1(ℓ(k +Np)) · · · A0(ℓ(k +Np))









where Am(k + j) = ε for m < m1 and for m > m2, and

B̃(ℓ̃(k)) =






















A1(ℓ(k)) · · · Am2−1(ℓ(k)) Am2
(ℓ(k))

A2(ℓ(k + 1)) · · · Am2
(ℓ(k + 1)) ε

. .
.

. .
. ...

Am2
(ℓ(k +m2 − 1)) · · · ε ε

ε · · · ε ε

...
. . .

...
...

ε · · · ε ε























,

we can write

x̃(k) = Ã(ℓ̃(k))⊗ x̃(k)⊕ B̃(ℓ̃(k))⊗ z̃(k)⊕ r̃(k). (17)

Note that x̃(k) appears in both sides of (17). This is

not a major problem if the matrix Ã(ℓ̃(k)) has a strictly
lower triangular structure, which can always be achieved
by a renumbering of the departures and arrivals (Goverde,

2010). Furthermore, due to (16) the matrices Ã(ℓ̃(k)) and

B̃(ℓ̃(k)) will be affine in ũ(k), and there exist matrices Ãv

and B̃v such that:

Ã(ℓ̃(k)) = Ã0 +

nu
∑

v=1

Ãv ũv(k),

B̃(ℓ̃(k)) = B̃0 +

nu
∑

v=1

B̃v ũv(k).

Note that ℓ̃(k) is a function of ũ(k), which can be expressed

as ℓ̃(k) = L̃(ũ(k)). The objective function J(k) is linear in
ũ(k) and x̃(k), and can be written as:

J(k) = cTe x̃(k) + cTu ũ(k), (18)

where the constant term −cTe r̃(k) has been omitted since
it does not affect the optimisation. Let us now show that
(17) can be written as

x̃i(k) = max(r̃i(k),max
j

(x̃j(k) + [Ã(ℓ̃(k))]ij),

max
j

(z̃j(k) + [B̃(ℓ̃(k))]ij)), (19)

which can be transformed into






























x̃i(k) ≥ r̃i(k),

x̃i(k) ≥ x̃j(k) + [Ã0]ij +

nu
∑

v=1

[Ãv]ij ũv(k) ∀j,

x̃i(k) ≥ z̃l(k) + [B̃0]il +

nu
∑

v=1

[B̃v]il ũv(k) ∀l.

(20)

It is clear that all these constraints are linear in x̃(k) and
ũ(k), and we end up with the linear inequality constraint:

Ac

[

x̃(k)
ũ(k)

]

≤ bc(k), (21)

where bc(k) contains all known elements of (20) at cycle
k.

Let us now briefly show that any optimal solution of (18)
subject to (20) satisfies (19). In order to show this we show
that it is not possible for the optimal solution to have all
strict inequalities in (20), i.e., at least one of the three
inequalities holds with equality. Indeed, since the right-
hand side of the first and third inequalities are known,
since the matrices Ãv can be turned into a strictly lower
triangular matrix, and since the coefficient ce of x̃(k) in
J(k) is positive, then by contradiction it holds that if all
inequalities in (20) hold in the strict sense then x̃(k) cannot
be optimal.

So we have a linear objective function (18) that has to be
minimised subject to the linear constraints (21) over real
variables x̃(k) and binary variables ũ(k). Hence, we finally
end up with an MILP.

6. EXAMPLE

Now we compare the proposed control method for a simple
railway traffic network with different delay scenarios. For
all simulations the prediction horizon was set to Np = 6.
The weights in (18) were set equal to 1 for all departure
components of x̃(k) and equal to 10−6 for all arrival
components. The penalty on the controls was set equal
to 10−3. The network used to run the simulations is given
in Figure 2.

A B C

Fig. 2. A simple railway network.

The network has three stations denoted as A, B, and C.
In this example we are only interested in trains in the
direction A-C and so we consider only a single track. At
all three stations there are multiple platforms which means
there is sufficient capacity for take over operations. The
period of the timetable is T = 60 [min]. During every
period there are four local trains and four intercity trains
running from station A to C. Both types of train make
a stop at station B, the local train also stops at some
intermediate stations. We assume that these intermediate
stations have no overtaking possibility, and are therefore
omitted in the analysis. The corresponding timetable is
given in Table 1.

The minimum dwell time of all trains is fixed at sj(k) = 1
[min] ∀j. The minimum headway time of all trains is fixed



Table 1. Timetable (d=departure, a=arrival).

Line 1: Local train Line 2: Intercity

Train number 101 102 103 104 201 202 203 204

Station A d 00 15 30 45 09 24 39 54

Station B a 15 30 45 00 18 33 48 03

d 23 38 53 08 20 35 50 05

Station C a 35 50 05 20 27 42 57 12

at hij(k) = 3 [min] ∀i, j. The minimum running time is
always one minute less than the scheduled running time.

Three delay scenarios are simulated.

In the first scenario intercity train 201 with scheduled
departure time 8:09 at station A has a delay less than
6 minutes. In this scenario changing the departure order
with the proposed approach results in no delay reduction.

In the second scenario intercity train 201 at station A
has a delay of 12 minutes. By not changing the order
of the trains, the sum of delays becomes 51 [min]. Using
the proposed approach intercity train 201 is rescheduled
behind local train 102 on track A-B and behind local
train 101’ on track B-C. The total delay now reduces to
30 [min] resulting in a delay reduction of 21 [min]. The
corresponding time-distance diagram is given in Figure 3.

101 201 102 201 202 202 103 203
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Fig. 3. Time-distance diagram for scenario 2. The bold
lines represent rescheduled trains, whereas the dashed
lines represent the original train paths.

In the third scenario intercity train 201 with scheduled
departure time 8:09 at station A has a delay of 22 minutes.
If the order of the trains is not changed, the sum of delays
becomes 159 [min]. Using the proposed approach intercity
train 201 is rescheduled behind train 102 and train 202
on track A-B and behind train 101’, train 202’, and train
102’ on track B-C. The total delay reduces to 51 [min]
and thus a delay reduction of 108 [min] is achieved. The
corresponding time-distance diagram is given in Figure 4.
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Fig. 4. Time-distance diagram for scenario 3. The bold
lines represent rescheduled trains, whereas the dashed
lines represent the original train paths.

7. CONCLUSIONS AND FUTURE WORK

We have presented an approach to optimally resched-
ule trains on a railway network based on a permuta-
tion method. We have modelled the system based on
the switching max-plus framework and showed how the
control problem can be recast as a mixed-integer linear
programming problem. Compared to previous results we
have extended the control actions to change the depar-
ture and arrival order of non-subsequent trains. For a
simple railway network we have shown that by optimally
rescheduling trains using the proposed approach delays can
be substantially reduced.

Further research will concentrate on reducing the com-
plexity of the mixed-integer linear programming problem
by considering only a reduced number of relevant decision
variables based for example on the delay propagation al-
gorithm proposed in (Goverde, 2010).
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