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A dual decomposition-based optimization
method with guaranteed primal feasibility
for hierarchical MPC problems

Minh Dang Doan* Tamas Keviczky * Bart De Schutter *

* Delft University of Technology, Delft, The Netherlands
(e-mail: {m.d.doan, t.keviczky, b.deschutter} @tudelft.nl)

Abstract: We present a gradient-based dual decomposition method that is suitable for
hierarchical MPC of large-scale systems. The algorithm generates a primal feasible solution
within a finite number of iterations and solves the problem by applying a hierarchical conjugate
gradient method in each dual iterative ascent step. The proposed scheme uses constraint
tightening and a suboptimality bound to ensure stability and feasibility in a hierarchical MPC

problem.

Keywords: Hierarchical optimization, Dual decomposition, Model Predictive Control,

Large-scale systems

1. INTRODUCTION

Control of large-scale industrial processes and infrastruc-
ture systems requires the coordination of interacting sub-
systems while striving for optimal operation that enforces
critical operational constraints (Rawlings and Stewart,
2008). Due to its ability to handle important process
constraints explicitly, Model Predictive Control (MPC)
has become the method of choice when designing control
systems for such applications (Maciejowski, 2002; Cama-
cho and Bordons, 1999; Rawlings and Mayne, 2009). MPC
relies on solving finite-time optimal control problems re-
peatedly online, which may become prohibitive for large-
scale systems due to the problem size or communication
constraints. Recent efforts have been focusing on how to
decompose the underlying optimization problem in order
to arrive at a distributed or hierarchical control system
that can be implemented under the prescribed compu-
tational and communication limitations (Scattolini, 2009;
Venkat et al., 2008). One common way to decompose an
MPC problem with coupled dynamics or constraints is
to use dual decomposition methods (Wakasa et al., 2008;
Necoara and Suykens, 2008; Doan et al., 2009), which typ-
ically lead to iterative methods (in either a distributed or
hierarchical framework) that converge to feasible solutions
only asymptotically. Implementing such approaches within
each MPC update period can be problematic for some
applications.

In this paper we propose a hierarchical optimization ap-
proach for solving large-scale MPC problems with coupling
in dynamics and constraints, which guarantees primal fea-
sible solutions even after only a finite number of iterations.
This is achieved by employing a combination of a primal
averaging scheme, a hierarchical implementation of the
conjugate gradient method, and constraint tightening. We
indicate only the most important elements and consider-
ations required for a standard MPC stability proof, and
instead focus on the details of the proposed hierarchical

optimization approach. The paper is thus organized as
follows. In Section 2, we describe the MPC optimization
problem and its tightened version, which will be used to
guarantee feasibility of the original problem even with a
suboptimal primal average solution. Section 3 describes
a gradient algorithm to solve the dual version of the
tightened optimization problem, and a hierarchical imple-
mentation of the conjugate gradient method that aids in
the solution. In Section 4, we show that the primal average
solution generated by the gradient algorithm is a feasible
solution of the original optimization problem, and that the
cost function will be decreasing through the MPC updates.
This allows it to be used as a Lyapunov function for MPC
stability. A numerical example is presented in Section 5 to
demonstrate the new algorithm. Section 6 concludes the
paper and outlines future research.

2. PROBLEM DESCRIPTION
2.1 MPC problem

In this section, we provide a brief summary of an MPC
problem for large-scale systems. The intention is to intro-
duce necessary assumptions and notation, and provide a
brief motivation for the need of a hierarchical method that
guarantees a feasible, stabilizing MPC solution.

We consider a system with the following discrete-time
linear time-invariant state space model:

Tyl = Az, + Buy, (1)

An MPC problem (Rawlings and Mayne, 2009) is formu-
lated by repeatedly optimizing a cost function that consists
of a stage cost £(z,ur) = 2F Qzy + ul Rug, k =t,... .t +
N —1 and a terminal cost xtT+NPzt+N, in which @, R, and
P are positive definite matrices. The constraints include
linear dynamical constraints, operational constraints, and
a terminal constraint which are represented by linear in-
equalities. Eliminating the state variables, the MPC op-



timization problem can be written in the following form
(Venkat et al., 2007):

fi=min fu,z) @)

st. g(u,xy) <0 (3)
where u = [u], ... ,utT+N_1]T € R™, z; is the measured
state at time step t, f and g = [g1,...,9m|’ are convex

functions. We denote the optimal cost function value of
(2)-(3) by f;-

Remark 2.1. For large-scale systems, problem (2)—(3) is
very high-dimensional, and it typically requires excessive
communication and computations in order to be solved
by a centralized controller. Thus, we intend to solve this
problem with multiple local controllers that are organized
in a hierarchical architecture to reduce the communication
and computational tasks of each controller. The solution
obtained from the hierarchical controllers may not be
the optimal one, however it still has to be feasible and
guarantee closed-loop MPC stability.

We denote the feasible solution of problem (2)—(3) at time
step t as u,, that is chosen to be implemented but not
necessarily optimal. Once it is determined, the first block
u; of the input vector u; will be applied to the system.

Assumption 2.2. At each time step ¢, the following holds

ft* < f(ut—l,It—l) A (4)
where a suitable A; > 0 can be computed before the
calculation of uy.

Remark 2.3. In standard MPC literature, the preceding
assumption is usually achieved by formulating the MPC
problem with properly a chosen terminal cost, terminal
constraint set and terminal controller. For example, choos-
ing the terminal cost and the terminal controller by solving
the Discrete-time Algebraic Riccati Equation will lead to
Ay = 2f Qw1 + ul {Ru;—1 (Mayne et al., 2000); or
choosing the terminal controller as a decentralized stabi-
lizing controller will allow computing A; in a hierarchical
way based on x;_1,us—1, and the predicted state x;—14n
that is computed at time step ¢ — 1. In these cases, A; is
the reduction of the cost from f(u;—1,x¢—1) to f(Qs,x¢)
in time step t, using a feasible, stabilizing input sequence
u; constructed from u;_1.

Assumption 2.4. The Slater condition holds for problem
(2)—(3) in each time step, i.e., there exists a Slater vector
1, that satisfies the strict inequality constraints

gi(a,z) <0,j=1,...,m (5)

The feasible solution u; will not be applied to the system,
it will only be used to define several parameters that help
solving the problem (2)—(3) in a hierarchical fashion.

Remark 2.5. In the literature of distributed and hierarchi-
cal optimization, problem (2)—(3) is often solved with dual
decomposition methods in order to deal with the coupled
constraints. However, such methods often result in itera-
tions that converge to the optimal solution only asymp-
totically. This may also create difficulties in obtaining a
corresponding primal feasible solution before convergence.

In the next section, we will present an algorithm that
generates a primal feasible solution for (2)—(3) within a

finite number of iteration steps. Moreover, it also provides
a bound on suboptimality that could be used to show Lya-
punov stability of MPC with decreasing cost function®.
The core idea of our proposed approach is to use constraint
tightening and then apply a projected gradient method for
the dual problem. The algorithm is based on the results of
Nedic and Ozdaglar (2009), which are used to calculate a
primal feasible solution u; for (2)—(3) at each time step ¢,
and ensure a cost reduction f(us,z¢) < f(us—1,2:-1) by
making use of (4). A hierarchical implementation of the
proposed approach is enabled by a suitable adaptation of
the conjugate gradient method.

2.2 The tightened problem

One crucial aspect of our proposed method is that instead
of solving the problem (2)—(3) directly, we will consider a
tightened problem with the following constraint

g (u,2;) £ glu,z¢) + 16, <0 (6)
in which 0 < ¢ < minj—y  m{—g;(Q:, 2}, ¢' (0, 2¢) =
[97s---,95,]F, and 1,, is the column vector with all entries
equal to 1.

Using the modified constraint (6), we formulate the tight-
ened problem

£ —min fuz) )
st. ¢'(u,x:) <0 (8)

Note that due to the dynamical and constraint couplings
in the MPC formulation, problem (7)—(8) is a large-scale
quadratic optimization problem

flu,zy) = %uTHu + b7 (z)u 9)

g (u,z¢) = Cu—d(zy) + Lne (10)
where H is a positive definite matrix, b and d are constant
vectors depending on the initial state value, and both H
and C have sparse structure resulting from the intercon-
nection of subsystems.

It is straightforward to see that ¢)(u;,z;) < 0,j =
1,...,m, hence @ is also a Slater vector for problem (7)-
(8). We denote \¢ = minj—1, m{—g;(t,z:)} for later
reference.

Assumption 2.6. The difference between the tightened
and original optimal cost are bounded above

i< (11)
and ¢; can be computed and characterized such that
(bt < A¢ (12)

Remark 2.7. The tightening cost ¢; can be approximated
when there is a bound for the gradient V,f in the
constraint set. In such case, based on the gradient bound
and given A;, we can choose the constraint tightening
variable € in (6) small enough such that (12) holds.

3. A HIERARCHICAL PRIMAL FEASIBLE DUAL
GRADIENT ASCENT APPROACH

In this section, we focus on the solution of the optimization
problem (7)—(8), which needs to be calculated in each

1 A complete and rigorous description of a standard MPC stability
proof falls outside the scope of this paper, readers may consult
(Mayne et al., 2000) for details.



MPC update step. For simplicity of exposition, the de-
pendence of functions on z; will be omitted.

3.1 The dual problem

We consider solving the dual problem of (7)—(8), in order
to deal with the coupled constraints ¢’(u) < 0 in a
hierarchical way.

The Lagrangian of problem (7)—(8) is defined as

L(u,p) = f(w) + " (u) (13)
in which p € R’ is called the dual variable.
The dual function of (7)-(8),
¢ (1) = min £(u, ) (14)

is a concave function. Note that if f and ¢’ are continuous
functions, and L£(u, ) is minimized over a unique point
u(p), then according to (Bertsekas, 1999, Proposition
6.1.1), ¢’ is differentiable everywhere and

Vd'(p) =g (u(p), VpeRY

Given the assumption that Slater condition holds for (7)-
(8), duality theory (Bertsekas, 1999, Chapter 5) shows that

q = (16)

where ¢," = max,cry ¢ (p) and f{* is the minimum of

(7)-(8).

Thus, it is possible to compute an optimal solution by
solving the dual problem, which is often easier to do
than the primal one. In the following section, we will
present a projected gradient method for maximizing the
dual function.

(15)

3.2 Projected gradient method
The projected gradient iteration for solving (7)—(8) is given
by
u® = argmin £(u, u¥)
u

) k
,u(k-&-l) _ Pllw{u(k) +atg’( )}

where k stands for the iteration index, the operator PRZL

is the projection onto the nonnegative orthant, «a; is the
constant step size (used for time step t), u(*) is the dual

iterate at iteration k (for the first iteration, u(®) = 0-1,,),

(17)

(18)

and g™ = g’ (u®, ;) is the gradient of the dual function
q'(p) at iteration k.

Assumption 3.1. The gradient sequence {g’*)} is bounded,
i.e., there exists a scalar L; such that

lg" ™2 < Lt ¥k > 0 (19)
Note that when Slater condition holds, there is a bound for
lz£|l2 on the dual optimal set (Nedic and Ozdaglar, 2009,
Lemma 1). Moreover, £(u, y1) is a convex quadratic func-
tion of u, hence its minimizer u(y) is affinely dependent on
i, so is g'(u(u)). Then, using inequality of matrix norm,
we can derive such bound for ||¢'(u(p))||2-

The step size ay for the dual update (18) is computed by:
2(A; — ¢1)

N — ———5

o (20)

where A; and ¢, are provided by (4) and (11), and L; the
norm bound for ¢/(®). This step size is chosen to facilitate
showing the decreasing property of f(ug,z;) in Section 4.

The projected gradient iteration (17)—(18) is performed for
k=1,...,k, with k; € Z, defined a priori as

_ 1 /3 L}
ke > —( —f(a) + A
2

(21)

The projected gradient method presented above generates
a feasible solution for problem (2)—(3) by averaging the
primal iterates:

2 1
q(ke) — 0}
a == u 22
W ;:0 (22)
This property will be shown in Section 4.

Remark 3.2. In order to implement the algorithm in a
hierarchical fashion, we need hierarchical or distributed
methods to solve problem (17) and perform (18). Even
though (17) is indeed an unconstrained quadratic opti-
mization problem, we will not use its analytical solution
due to the computational burden when inverting the Hes-
sian matrix. Instead, we will employ a conjugate gradient
method (Bertsekas and Tsitsiklis, 1989, Chapter 2) and
use a hierarchical implementation to find the solution of
(17). The dual update (18) will also be done locally by
letting each constraint be updated by a local controller.

In the next subsection, we describe a decomposition of the
large-scale system, and present the hierarchical conjugate
gradient method using the decomposition structure.

3.8 Subsystem decomposition

Recall that the functions f and ¢’ have particular structure
as described in (9)-(10). It is straightforward to verify
(Venkat et al., 2007) that if matrices A and B are sparse
(meaning that the large-scale system consists of subsys-
tems with neighboring interactions), then H and C' will
also be sparse, and b and d will have a structured depen-
dence on z;. Now, consider a subsystem decomposition:

e Each subsystem ¢ = 1,...,M has an associated
decision variable u’ with the same dimension as u,
but containing only the variables corresponding to
subsystem i in its nonzero entries?. We define u® as

(23)

where J° € R™*™ is a diagonal matrix with zeros
and ones on its diagonal. Matrices J° (and thus the
subsystem decomposition) are chosen such that there
is no overlap between the subsystems’ variables.

e For each subsystem 4, there is a neighborhood N
that contains i itself and any other subsystem j that is
coupled with 7 either via the objective function f (i.e.,
there is at least one term involving both variables of
iand j € N in f), or via the constraint function
g’ (i.e., there is at least one constraint that involves
some variables of i and j € N'?).

u' =J'u

In order to distribute the dual update (18), we will let
each subsystem be in charge of updating a subset of dual

2 Typically u’ contains the control inputs of subsystem i over the
prediction horizon of the MPC problem.



variables, denoted by D*. There are different methods for
partitioning of dual variables, among them one simple
partitioning algorithm is the following: if the maximum
absolute value of entries in a row r of C' corresponds to a
variable of subsystem i, then » € D?. Note that each dual
variable is updated by one and only one subsystem.

Since ¢'(u) = Cu — d, we see that in order to perform
update (18) for dual variables within D?, subsystem 4 will
only need to communicate with subsystems { € N during
iteration k to get the necessary entries of ul®).

8.4 Hierarchical conjugate gradient method

The algorithm we propose to use for solving (17) is an
adaptation of the conjugate gradient method as described
in (Bertsekas and Tsitsiklis, 1989, Chapter 2). Hereby we
summarize the main steps and underlying ideas of this
iterative method:

e The algorithm starts at some u(0) and select s(0) =
VW L(u(0), 1 P) = —(Hu(0) + b(zy) + CT ¥,
e The iteration has the form:
u(p+1) =up) +1(p)sp), p=0,1,...  (24)
with p the iteration index, s(p) the direction of update
at iteration p, and (p) an optimal scalar step size.
e The algorithm stops if V,L(u(p), u*) = 0. Other-
wise, update s(p) by
s(p) = =VaL(u(p),u™) + B(p)s(p—1)  (25)
where §(p) is generated by

VIL(u(p), n®)VuL(u(p), u*)

B(p) = VIL(u(p—1),u™)VuL(u(p — 1), uk)
(26)
e We update v(p) by
s(p)T u (k)
o) = — (p)* VuL(u(p), u'™) (27)

s(p)T Hs(p)

e One feature of this iteration method is the conjugate
property of s(p), such that

s(p)" Hs(r) = 0,r #p (28)

e The algorithm terminates after at most ny, steps?,
where n,, is the size of u.

For application in hierarchical MPC, it is required that
the communications and computations of (24), (25), (26),
(27), (18) and (22) can be done in a hierarchical setting.
We propose to use a hierarchical optimization method,
in which a coordinator communicates with all local con-
trollers, and each local controller can also communicate
with others in its neighborhood. In summary, we propose
a nested iterative algorithm in which the outer loop is the
projected gradient method for the dual problem (17)—(18),
and the inner loop is the hierarchical conjugate gradient
method for solving (17).

Algorithm 1. Hierarchical Primal Feasible Dual Gra-
dient (H-PF-DG) method

(1) Input: @y, d;, Li. The coordinator computes €;, A, v,
and k;, then sends ¢; and k; to all local controllers.

3 The number of iterations can be significantly reduced with proper
preconditioning.

(2) Set k = 0. Choose p(® =0 - i P u® =0-1,,, then
each local controller has u®’ =0-1,,.
(3) Solve (17) at step k by the following iterative process:
(a) Set p = 0. Initialize each local controller i €
{1,..., M} with u(0)* = u®"’,
(b) Each local controller i € {1,...,M} communi-
cates with j € N to get u(p)’, then computes

VL(u(p))’ =3 (H Z uw (p) +b+ C’Tu(k))
JEN
(c¢) Each local controller ¢ € {1,...,M} computes
VLT (u(p))'VL(u(p))?, and then sends the result
to the coordinator.
(d) The coordinator makes the sum:

VL (u(p)VL(u(p)) = Z VL (u(p)) VL(u(p))’

Note that steps 3(b), 3(c), and 3(d) are aimed at
updating VLT (u(p))VL(u(p)), which appears in
(26), by computing its subsystem components.
(e) The coordinator checks whether VL(u(p)) = 0. If
so, then it announces “stop” and each controller

takes u®’ = u(p)i. Go tostep (4). If VL(u(p)) #
0, the coordinator computes B(p) by (26), and
sends S(p) to all local controllers.

(f) Each local controller i € {1,...,M} computes
s(p)' = =VL(u(p))’ + Bp)s(p — 1)" if p > 0,
or s(p)' = —VL(u(p)) if p = 0, and then
communicates with j € A% to get s(p)’. The
purpose of this step is to use local implementation
for computing (25).

(g) Each local controller i € {1,..., M} computes
[s(p)']"VL(u(p))" and [s(p)"]" H 3 e pr 5(p), and
then sends these results to the coordinator.

(h) The coordinator makes the sums:

M
VL) = 3 ls0) T V()
y =1 | |
) s =Y {[szH 3 sw}

=1 JEN
and computes v(p) according to (27), then sends
~(p) to all local controllers.
(i) Each local controller ¢ € {1,...,M} updates
u(p+1)" = u(p)’ +7(p)s(p)".
(j) Set p=p+1, go to step 3(b).
(4) Each local controller ¢ € {1,..., M} communicates
with j € N to get u®’.
(5) Each local controller ¢ € {1,..., M} updates the dual
variables in the set D* by:

4 00) = Pa, {u0)+

at<i—u: (1, v)u® (v) — d(l)> },w €D

where all C(l,v) that are nonzero correspond to
variables v of the subsystems j € A?, and therefore

the knowledge of u(k)j,j € N is enough for this
computation.

(6) Set k =k +1.If k < ky, go to step (3).



(7) Each local controller i

Az_ 1 Zkt

a) = Zf\il ' will be a feasible solution of (2)—(3).

e {1,.
. The correspondmg global vector

, M} computes

Remark 3.8. Algorithm 1 needs a coordinator to compute
and deliver common variables to the local controllers.
However, most of the computations are carried out by local
controllers. Each local controller needs to exchange infor-
mation with its neighbors and the coordinator. Regarding
communications, major communications between subsys-
tems are in the order of 2k; X ny x Zi\il |V messages,
while the communications between the coordinator and all
local controllers are in the order of 4k; X ny X M messages.

In the next section, we will show that alF) generated by
Algorithm 1 is a feasible solution of (2)-(3), and ensures
cost reduction for the MPC problem.

4. PROPERTIES OF THE H-PF-DG ALGORITHM

Denoting the primal average sequence by U a) =1 Z = u®

where u™, ..., u®) are generated by (17), we have the
following result (Nedic and Ozdaglar, 2009) for k > 1:

[g,(ﬁw))r < k;(;’t[f( D-a] O;tig )

(29)

(0) ||2 L2

A(k)) < 1 H:“ 2 | Otly
Fa®) <+ Ska; 2
where the notation ¢’* indicates the constraint violation,
ie., g7 =max{¢,0-1,,}. Using the constraint violation
bound (29) and the cost upper bound (30) for the tight-

ened problem (7)—(8), we will show that 0 is a feasible
solution of (2)—(3), and f(u, z¢) < f(ug—1,x1—1).

(30)

4.1 Primal feasible solution

Proposition 4.1. Let Assumption 2.4 hold and Algo-

rithm 1 be executed. The primal average ™) is a feasible
solution of (2)—(3).

Proof: Applying the result in (29) leads to

2 1 /3 o L?
r~(ke)\7+ 2 -\ %
|G, < g (G0 -y 5 k)
Moreover, ¢, = f{* > 0 because f(u) > 0,Vu due to the

use of a quadratic stage cost in the MPC setting. We have

H [g’(&(’f“))]*H2 < ﬁ(%f(ﬁt) + a;ff

+ otht) (31)

Combining (31) and (21), and noticing that k; and ¢, are
both positive lead to

{g/(ﬁ(kt))}+ < ¢ (32)
2

:>g<(t))§€t; j:17"'7m (33)

=g (ﬁ(k‘)) <0, j=1,....m (34)

in which the last inequality is due to (6). This means that

4*) is a feasible solution of problem (2)—(3). O

4.2 Decreasing cost function

Let us recall that the optimization problem formulation is
motivated by an MPC problem for which Assumption 2.2
holds. The following proposition shows that the cost func-
tion of the MPC problem is a decreasing function.
Proposition 4.2. Let u;—; and x;—; be given and satisfy
(4). Considering u; = ake) generated by Algorithm 1, the
following inequality holds

f(ut, CEt) < f(utflyxtfl)

Proof: Using (30), (20), and noting that x(®) = 0 lead to

(35)

_ N L2
flana) 2 f(a) < g7+ 2 (36)
2
Due to (20), we then have
flag,z) < 7 = o0 + A (37)

Combining (37), (11), and (4) results in the cost decrease
property: f(ug, ¢) < f(up—1,24-1). o

In summary, the algorithm H-PF-DG is able to generate a
feasible solution for the MPC optimization problem within
each time step t, which is used to show that the cost
function is decreasing if Assumption 2.2 holds. In order
to employ this algorithm for hierarchical MPC, one needs
to make sure that a feasible prediction u; of the input
sequence, and a cost reduction §; are available before each
time step t.

In the next section, we illustrate Algorithm 1 and its
properties in a numerical optimization example.

5. NUMERICAL EXAMPLE

In this section, Algorithm 1 is applied to an optimization
problem of the form

1
min QuTHu +b"a (38)
st. Cu—d<0 (39)
where
4200 0
2200 1 T| ~T | ~T
H=1p020 b= 02[01‘02‘03‘04] ;
0002 1
d=1[1,1,2,2,4,—-1,-3,4,0, -2, —1,4]"
with
1-100 -1 -100
(& 1 000, Cy= 0 100]
-1 000 0-100
0-1-10 00-1 1
@:0010,@:0001]
0 0-10 00 O

The coupling structure in H and C leads to the following
subsystem decomposition:

N ={1,2}, D' = {1,2,3},
N?=1{2,1,3}, D? = {4,5,6},
N3 ={3,2,4}, D3 ={7,8,9},
Nt ={4,3}, = {10,11,12}



where N is the subsystem neighborhood and D? is the
subset of dual variables associated with each subsystem 1.

We used the following parameters to initialize the H-PF-
DG algorithm:

a=100,22-2", A=5 ¢=2 L=112

where A and ¢ were chosen based on conservative approx-
imations.

We remark that the formula of the step size given in (20) is
a conservative sufficient condition to ensure Propositions
4.1 and 4.2. In our numerical example, we simulated
Algorithm 1 with a larger step size (¢ = 0.16) and
observed that primal feasibility and cost decrease were
achieved with only a fraction of the number of iterations
that would suffice based on our theoretical results. The
simulation takes 7.36s with MATLAB R2008b for Linux,
running on an Intel(R) Core(TM)2 Duo CPU E6550
at 2.33 GHz and 2GB RAM. The evolution of the cost
function associated with the primal average sequence k
is plotted in Figure 1. In the first few iterations of the
(k)
is lower than the optimal value. We observed that a®
satisfies the constraints for all iterations k& > 26. Hence,
a solution that fulfills all our requirements (i.e., primal
feasible and leads to MPC cost decrement) is obtained only
after 26 iterations, which is much smaller than k£ = 13155
as suggested by the conservative lower bound in (21).

algorithm 0"’ is infeasible, which explains why the cost

14 —primal cost with averaging ||
- - -upper bound on cost
---optimal cost

12r /|

10 i

Average primal solution
becomes feasible (k>26)

-2 10 20 30 40 5 60 70 80 90 100

k

Fig. 1. Evolution of the cost function value with primal
averaging.

6. CONCLUSIONS AND FUTURE WORK

We have presented a dual gradient-based hierarchical
method for solving a large quadratic optimization prob-
lem. The iterative algorithm can be terminated after a
finite number of iterations and provides a feasible primal
solution. In connection with hierarchical MPC, this algo-
rithm also helps to show the decreasing property of the cost
function, which can then be used, with further assump-
tions, as a Lyapunov function for proving MPC stability.
For future research, we intend to apply the method in hier-
archical MPC applications, analyze the convergence speed
of the algorithm and develop less conservative bounds on

the number of iterations. We plan to extend the framework
to a completely distributed implementation using dual
decomposition methods and approximate subgradients.
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