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Sequential stability analysis and observer

design for distributed TS fuzzy systems

Zs. Lendeka,∗, R. Babuškaa, B. De Schuttera

aDelft Center for Systems and Control, Delft University of Technology

Mekelweg 2, 2628 CD Delft, The Netherlands

Abstract

Many complex physical systems are the interconnection of lower-dimensional subsys-

tems. For such systems, distributed stability analysis and observer design presents

several advantages with respect to centralized approaches, such as modularity, easier

analysis and design, and reduced computational complexity. Applications include dis-

tributed process control, traffic and communication networks, and economic systems.

In this paper, we propose sequential stability analysis and observer design for dis-

tributed systems where the subsystems are represented by Takagi-Sugeno (TS) fuzzy

models. The analysis and design are done sequentially for the subsystems, allowing

for the online addition of new subsystems. The conditions are formulated as LMIs and

are therefore easy to solve. The approach is illustrated on simulation examples.

Keywords: TS fuzzy systems, distributed system, fuzzy observers, Lyapunov

stability, distributed observers.

1. Introduction

Many physical systems, such as power systems, communication networks, eco-

nomic systems, traffic networks, productions systems, and water logistics are com-

posed of interconnections of lower-dimensional subsystems. Recently, decentralized

analysis and control design for such systems has received much attention [1, 2, 3, 4, 5,

6]. Although in many cases the performance of the centralized design is superior [7]

to that of decentralized design, there are many reasons to use a decentralized approach.

For control purposes, the decentralized design presents several advantages: flexibil-

ity, fault tolerance, and simplified design and tuning. In addition, in many cases, the

structure of the overall system is not fixed, i.e., subsystems may be added or removed

online, and therefore a centralized analysis and/or design becomes computationally

intractable.

A large class of nonlinear systems can be represented by Takagi-Sugeno (TS) fuzzy

models [8], which in theory can approximate a general nonlinear system to an arbitrary

degree of accuracy [9]. The TS fuzzy model consists of a fuzzy rule base. The rule

antecedents partition a given subspace of the model variables into fuzzy regions, while

the consequent of each rule is usually a linear or affine model, valid locally in the

corresponding region.
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For a centralized fuzzy model, well-established methods and algorithms exist to

analyze the stability or to design fuzzy observers. Several types of observers have

been developed for continuous-time TS fuzzy systems, among which: fuzzy Thau-

Luenberger observers [10, 11], reduced-order observers [12, 13], and sliding-mode

observers [14]. Most of the stability and design conditions rely on the feasibility of an

associated system of linear matrix inequalities (LMIs).

Decentralized control and estimation has received much attention [15, 16, 17, 3,

18, 5, 4, 19, 20, 21, 22, 23, 24, 25] in the context of large-scale processes and dis-

tributed systems. Recently, also stability analysis and decentralized control design for

distributed TS systems have been studied [26, 27, 28, 29, 18, 30, 31, 32, 5, 33]. How-

ever, results for state estimation in distributed TS fuzzy systems are scarce. Although

approaches for distributed stabilization and control [26, 27, 32] employ observers in

order to estimate the states that are not directly available, these approaches [26, 32, 5]

assume that the measurements of each subsystem refer only to the states of the consid-

ered subsystem. Moreover, if only the monitoring of a process that is not asymptoti-

cally stable is required, an observer is necessary, without a control law. The observer

design in itself represents several challenges: the scheduling vector may depend on the

states to be estimated; for distributed systems that are not stabilized, the interconnec-

tion terms may never converge to zero and estimated states have to be communicated;

and by introducing a new subsystem into the system, the measurement matrices may

change.

In this paper we consider the distributed stability analysis and observer design for

a system composed of interconnected subsystems. Each subsystem is represented by a

TS fuzzy model. The coupling between the subsystems is realized through their states,

i.e., the states of a subsystem may influence the dynamics of another subsystem.

While in centralized stability analysis of TS fuzzy systems several types of Lya-

punov functions have been employed, stability analysis of distributed TS systems mainly

relies on the existence of a common quadratic Lyapunov function for each subsystem.

Most results make use of the assumption that the number of subsystems and some

bounds on the interconnection terms are known a priori, and the analysis of the subsys-

tems is performed in parallel. For instance, an early result that relies on the existence

of an M-matrix1 or positive definite matrices has been formulated in [16, 34]. In these

approaches, LMI conditions are solved in parallel to establish the stability of the in-

dividual subsystems, and afterward the stability of the whole system is verified. For

hybrid linear-fuzzy systems, a method to establish the stability of the distributed system

has been proposed in [31].

An approach for distributed TS systems with affine consequents, based on piece-

wise Lyapunov functions has been developed in [5]. This approach is an extension

of the result in [35] to distributed TS systems, but only linear interconnection terms

among the subsystems are considered. Moreover, the analysis itself, although it con-

cerns distributed systems, is not distributed, as it has to be performed at the same time

in parallel for all the subsystems.

One particular type of TS systems that have been extensively investigated both in

stability analysis and in (robust) control are uncertain TS fuzzy systems. For stability

analysis of uncertain distributed TS systems, a result has been formulated in [2]. How-

ever, using this approach, in order to establish the stability of a distributed system, the

1A square matrix M is an M-matrix if the off-diagonal elements are all negative and all the eigenvalues

of M have non-negative real part.
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conditions have to be verified for all the subsystems at the same time, in parallel.

In all the references above it is assumed that the structure of the system is fixed,

i.e., subsystems can no longer be added to it. In these results, the stability of the whole

system is established by verifying the subsystems in parallel. In this paper, we propose

a method for the sequential stability analysis of distributed TS systems, that can handle

the analysis of distributed TS models to which subsystems are added on-line.

We also consider the observer design for such TS systems. The results in the liter-

ature concerning stability analysis of distributed TS systems can be directly extended

for observer design under the assumptions that 1) the scheduling vector depends only

on measured variables and 2) the estimated states are communicated between the sub-

systems that influence each other. For observer design, the general approach is that first

one constructs a set of observers for the independent subsystems. Afterward, one either

incorporates an appropriate compensation to account for the influence of other subsys-

tems or determines conditions under which the collection of the individual observers is

a valid observer for the distributed system. In general, it is assumed that the measured

or estimated variables are communicated between the subsystems that directly influ-

ence each other. However, the extension of the results regarding stability analysis of

distributed TS systems to observer design has not been reported in the literature.

Parallel observer-based control design [36, 37, 38, 39, 40, 33] has been consid-

ered in several settings, such as tracking control [33], adaptive control [37, 39, 40],

robust control [36, 37, 41], control in the presence of time delay [38, 41, 42], and their

combinations. However, in all these results, the observer and the controller have to be

designed simultaneously. Without a stabilizing state-feedback controller, the conver-

gence to zero of the estimation error cannot be guaranteed.

The contribution of this paper is twofold: first, we consider stability analysis and

second, observer design for distributed nonlinear systems represented by TS fuzzy

models. For stability analysis, our basic assumption is that a stable subsystem exists.

To this system, new subsystems are added online, one-by-one, so that the distributed

system grows in time. Each subsystem is represented by a TS fuzzy model and each

individual subsystem (i.e., without the interconnection terms) is stable. This assump-

tion is commonly adopted in the literature. The coupling between the subsystems is

realized through their states. These assumptions are valid for several distributed sys-

tems, e.g., traffic networks, electrical networks, water networks. For such systems, a

centralized re-analysis or imposing certain constraints from the very first moment on

the number of subsystems to be added is impracticable. The new subsystem and the ac-

tual influence of the interconnection terms due to the addition of a new subsystem only

becomes known when the subsystem is actually added. Therefore, in our approach, the

stability analysis is performed sequentially, as the subsystems are added, and we derive

conditions that should be satisfied by the newly added subsystem or the interconnection

terms in order for the whole system to be stable.

Second, the approach is then extended to observer design. We assume that a fuzzy

observer is already designed for an existing subsystem or collection of subsystems.

When a new subsystem is added, together with the interconnection terms, which may

affect the states and/or measurements, a new observer is designed for this subsystem

only, such that this new observer, combined with the existing ones, guarantees the

convergence of the estimation error for the whole system to zero.

The structure of the paper is as follows. Section 2 reviews some results for cascaded

fuzzy systems, that are used as starting point for the results presented in this paper.

Section 3 proposes the sequential stability conditions for distributed TS fuzzy systems.

The proposed observer design for is presented in Section 4. Examples are given in
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Section 5. Finally, Section 6 concludes the paper.

2. Preliminaries

We consider a distributed system, composed of a number of subsystems, and each

subsystem being represented by a TS fuzzy model. The subsystems are coupled through

their states and/or measurements, i.e., the states of one subsystem may influence the

dynamics and/or measurements of other subsystems.

For the ease of the notation and without loss of generality, only two subsystems are

considered here. Note however, that the procedure can be applied sequentially, if more

subsystems are added.

In this paper, we address in Section 3 the stability analysis of autonomous fuzzy

system expressed as:

ẋ =
m∑

i=1

wi(z)Aix (1)

where Ai, i = 1, 2, . . . , m represent the local linear models, wi(z) is the correspond-

ing normalized membership function, and z a vector of scheduling variables, that may

depend on the inputs, outputs, states of the system, or other (measured) exogenous

variables. We also consider in Section 4 the design of observers of the form

˙̂x =
m∑

i=1

wi(ẑ)(Aix̂+Biu+ Li(y − ŷ))

ŷ =

m∑

i=1

wi(ẑ)Cix̂

(2)

for fuzzy systems

ẋ =

m∑

i=1

wi(z)(Aix+Biu)

y =
m∑

i=1

wi(z)Cix

(3)

Stability and design conditions for TS fuzzy systems generally depend on the fea-

sibility of an associated LMI problem [11, 14, 12, 43]. These conditions are usually

conservative, but the conservativeness may be reduced for cascaded systems. Our re-

sults start from existing stability conditions for cascaded TS systems, and therefore

some of the relevant conditions for this class of systems are reviewed below. Through-

out the paper it is assumed that the membership functions are normalized, I denotes

the identity matrix of the appropriate dimension, H(A) denotes the Hermitian of the

matrix A, i.e., H(A) = A + AT , ‖.‖ denotes the Euclidean norm for vectors and the

induced norm for matrices.

Cascaded TS systems represent a special case of distributed TS systems. For cas-

caded systems, conditions ensuring their stability and results for observer design have

been reported in [44]. These results represent a starting point for the research presented

in this paper and they are therefore summarized in the remainder of this section.
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2.1. Stability of Cascaded TS Systems

System (1) is cascaded, if the system matrices of the model (1) for each rule i =
1, 2, . . . , m can be written as:

Ai =

(
A1i 0
A21i A2i

)
(4)

For such systems, the following stability condition [45] has been formulated:

Theorem 1. System (1), with the system matrices of the form (4) is globally exponen-

tially stable if there exist P1 = PT
1 > 0, P2 = PT

2 > 0, Q1 = QT
1 > 0, Q2 = QT

2 > 0
so that for all i = 1, 2, . . . , m, the following LMIs hold:

H(P1A1i) < −2Q1

H(P2A2i) < −2Q2

(5)

Another condition that is used in this paper is one referring to systems subjected to

vanishing disturbances. Consider the following perturbed fuzzy system:

ẋ =

m∑

i=1

wi(z)Aix+ f(t,x) (6)

and the common assumption that f is Lipschitz in x, i.e., there exists µ > 0 so that

‖f(t,x)‖ ≤ µ‖x‖, for all t and x. With these assumptions, a sufficient stability

condition can be formalized by the following theorem [46].

Theorem 2. System (6) is exponentially stable if there exist matrices P = PT > 0,

Q = QT > 0, so that the following LMIs hold:

(
Q− µ2 P

P I

)
> 0

H(PAi) < −Q i = 1, 2, . . . , m

(7)

�

2.2. Observer Design for Cascaded Fuzzy Systems

If the system (3) is cascaded, i.e., the system matrices Ai and Ci, i = 1, 2, . . . , m
are in cascaded form, observers can be designed individually for each subsystem and

each rule, with the overall observer gain having the form Li =

(
L1i 0
0 L2i

)
, where i

denotes the rule number. Then, the dynamics of the error e = x = x̂ can be formulated

as

ė =

m∑

i=1

m∑

j=1

wi(ẑ)wj(ẑ)(Ai − LiCj)e+∆ (8)

with ∆ =
∑m

i=1
(wi(z)−wi(ẑ))(Aix+Biu) and Ai −LiCj also having a cascaded

form. If the scheduling vector z does not depend on the states to be estimated, then

∆ = 0 and Theorem 1 can be applied directly. Otherwise, using Theorem 2, the

following result has been formulated [44]:

5



Theorem 3. The cascaded error system (8) is asymptotically stable, if there exist P1 =
PT
1 > 0, P2 = PT

2 > 0, Q = QT > 0, µ > 0 and two continuous functions

θ1, θ2 : R+ → R+ such that:

H(P1(A1i − L1iC1j)) < −Q ∀i, j : ∃z : wi(ẑ)wj(ẑ) 6= 0

‖(wi(z)− wi(ẑ))(A1ix1 +B1iu)‖ ≤ µ‖e1‖ ∀z, ẑ
(
Q− µ2 P

P I

)
> 0

H(P2(A2i − L2iC1j)) < 0 ∀i, j : ∃z : wi(ẑ)wj(ẑ) 6= 0

‖(wi(z)− wi(ẑ))(A21ix1 +A2ix2 +B2iu)‖ ≤ θ1(‖e1‖) + θ2(‖e1‖)‖e2‖

Although the above conditions are not LMIs, they can easily be formulated as

LMIs, using the change of variables Mi = P−1Li, i = 1, 2, . . . , m.

Note that Theorems 1 and 3 are valid only for cascaded systems. In what follows,

we use these theorems as a starting point for distributed systems, i.e., systems in which

the influence between the subsystems is in both directions.

3. Sequential Stability Analysis of Coupled Fuzzy Systems

In this section, we propose conditions to establish the stability of a TS system as

subsystems are added sequentially to it. We also formulate these conditions as an LMI

problem, which is easy to solve.

Consider a distributed system, with each subsystem being represented by a TS

fuzzy model, where the influence of the subsystems is in both directions, i.e., a subsys-

tem influences other subsystems and vice-versa, it is influenced by other subsystems.

The subsystems are coupled through their states. The structure of the system is not

fixed, i.e., new subsystems can be added online. In such a case, a centralized re-analysis

of the stability of the whole system each time a new subsystem is added or removed, in

general involves large computational costs and may easily become intractable. There-

fore, we consider sequential analysis, based on the (already established) stability of

the existing system, on the newly added subsystem, and on the interconnection terms

introduced by the new subsystem. For the ease of notation and without loss of gener-

ality, only two subsystems are considered in this paper. However, the procedure can be

applied sequentially for more subsystems.

In order to illustrate the main idea of our approach, consider the following example.

Example 1. Consider a TS system consisting of 2 subsystems

ẋ =
2∑

i=1

wi(z)Aix

with the local matrices given as Ai =

(
A1i A12i

A21i A2i

)
, for rule i. With no assumption

on the membership functions (except that they are normalized), one can use a common

Lyapunov matrix

(
P1 0
0 P2

)
, leading to the well-known conditions for stability

(
P1A1i +AT

1iP1 P1A12i +AT
21iP2

P2A21i +AT
12iP1 P2A2i +AT

2iP2

)
< 0 (9)
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In short, let us denote the above inequality by

(
R1i M1i

MT
1i R2i

)
< 0. If at least bounds on

the interconnection terms A12i, A21i are known, and we know that no further subsys-

tems will be added to this system, then the approaches from the references [28, 29, 33]

are suitable. Note that the common consequence of these approaches is that each sub-

system is robustly stable so that the “perturbation” of the other subsystems does not

influence its stability.

Assume now that the subsystems are added online, but it is not known how many

subsystems will be added or how strong the introduced interconnection terms will be.

Suppose that at a certain moment only the subsystem with matrices A2i exists, and we

know that it is stable, i.e., there exists P2 such that R2i < R2 < 0, with R2 a symmetric

matrix. The subsystem with matrices A1i and interconnection terms A12i and A21i is

added online, with no prior knowledge on these terms.

The basis of our approach is to use the Schur complement, and rewrite (9) as

R2 < 0

R1i −MT
1iR

−1
2 M1i < 0

and solve it in two steps, thereby establishing sequentially the stability of the system. �

Consider now a more general TS system. Assume that there exists a subsystem

described as

ẋ2 =

m′

2∑

i=1

w′
2i(z

′
2)(A

′
2ix2) (10)

At a certain moment in time, another subsystem is connected to this system, with the

dynamics given by

ẋ1 =

m1∑

i=1

w1i(z1)(A1ix1 +A12ix2) (11)

Due to the connection from this new subsystem to the existing one, the dynamics of

the model of the existing subsystem change to

ẋ2 =

m2∑

i=1

w2i(z2)(A2ix2 +A21ix1) (12)

i.e., in general both the membership functions and the local matrices change. In this

paper, we only consider the case when the membership functions change, assuming

that the local matrices remain the same, i.e., {A′
2i|i = 1, 2, . . . , m′

2} ≡ {A2i|i =
1, 2, . . . , m2}. Such an assumption holds for distributed systems in which the ad-

dition of a new subsystem does not influence the individual dynamics of the existing

subsystems, but instead can be considered as a new input acting on the system. Dis-

tributed systems for which this assumption holds are e.g., material flow systems, traffic

networks, water logistics, production systems, etc.

The assumption can be formulated as follows:

Assumption 1: The local state matrices of the existing subsystem do not change

by the addition of the new subsystem.

Note that the interconnection terms are not known before the new subsystem is

added, nor are the local matrices of the new subsystem. The restrictiveness of this as-

sumption largely depends on how the fuzzy model is obtained from a nonlinear model.
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For instance, consider the original system (10). If, after adding the new subsystem, its

dynamics change to

ẋ2 =

m′∑

i=1

w′
i(z

′)(A2ix2) +A(x1,x2)x1

with A a smooth nonlinear matrix function that may depend on both x1 and x2, then

using the sector nonlinearity approach, the local models of the original subsystem

will remain the same (in fact they are repeated in several rules), although the mem-

bership functions will change. The interconnection term being A(x1,x2)x1, using

the sector nonlinearity approach, it can be exactly represented as A(x1,x2)x1 =∑r

i=1
hi(zn)(A21ix1), with zn depending on x1 and x2, and hi being normalized

membership functions. Exploiting the fact that the membership functions w′
i are also

normalized, one has:

ẋ2 =

m′∑

i=1

w′
i(z

′)(A2ix2) +A(x1,x2)x1

=

m′∑

i=1

w′
i(z

′)(A2ix2) +

r∑

i=1

hi(zn)(A21ix1)

=

m′∑

i=1

w′
i(z

′)

r∑

j=1

hj(zn)(A2ix2 +A21jx1)

=

m′∑

i=1

r∑

j=1

w′
i(z

′)hj(zn)(A2ix2 +A21jx1)

=

m∑

i=1

wi(z)(A2ix2 +A21ix1)

When the new subsystem is added, and Assumption 1 is satisfied, the whole system,

i.e., the subsystem added (with states x1), the existing subsystem (with states x2) and

the interconnection terms are expressed together as:

ẋ1 =
m∑

i=1

wi(z)(A1ix1 +A12ix2)

ẋ2 =

m∑

i=1

wi(z)(A2ix2 +A21ix1)

(13)

The structure of system (13) is presented in Figure 1.

For such a system, we have formulated the following stability conditions [47]:

Theorem 4. The system (13) is asymptotically stable, if there exist P1 = PT
1 > 0,

P2 = PT
2 > 0, Q1 = QT

1 > 0, Q2 = QT
2 > 0, so that

H(P1A1i) < −2Q1 i = 1, 2, . . . , m

H(P2A2i) < −2Q2 i = 1, 2, . . . , m

λmin(Q1) ≥ max
i

‖P1A12i‖

λmin(H(P1A1i +Q1)

maxi ‖P1A12i‖
>

maxi ‖AT
21iP2‖2

λmin(Q2)λmin(H(P2A2i +Q2)

8
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Figure 1: Two subsystems coupled through their states.

where λmin(.) is the eigenvalue with the smallest absolute magnitude.

For the completeness of the paper and since results in the following sections make

use of steps of the proof of this theorem, we also repeat here the proof.

Proof: Consider first the following part of the system (13):

ẋ1 =
m∑

i=1

wi(z)(A1ix1)

ẋ2 =

m∑

i=1

wi(z)(A2ix2 +A21ix1)

(14)

This is a cascaded system. According to Theorem 1, this system is exponentially

stable, if there exist P1 = PT
1 > 0, P2 = PT

2 > 0, Q1 = QT
1 > 0, Q2 = QT

2 > 0 so

that
H(P1A1i) < −2Q1 i = 1, 2, . . . , m

H(P2A2i) < −2Q2 i = 1, 2, . . . , m
(15)

In order to make the step from the stable cascaded system to the analysis of the dis-

tributed system, a Lyapunov function is needed. One way of constructing the Lyapunov

function using P1 and P2 is by considering the function Vc = xTdiag(αP1, P2)x.

The advantage of this choice is that it allows one to determine α ∈ R+ so that

V̇c < −2xTQx, with Q = diag(αQ1, Q2):

V̇c =

m∑

i=1

wi(z)x
T

(
αH(P1A1i) AT

21iP2

P2A21i H(P2A2i)

)
x

Then, V̇c < −2xTQx, if

(
αH(P1A1i) A21

T
i P2

P2A21i H(P2A2i)

)
< −2

(
αQ1 0
0 Q2

)

or (
αH(P1A1i +Q1) A21

T
i P2

P2A21i H(P2A2i +Q2)

)
< 0

Using the Schur complement, we have

αH(P1A1i +Q1)− (AT
21iP2)(H(P2A2i +Q2))

−1P2A21i < 0

9



which is true if α is chosen such that

α >
1

λmin(H(P1A1i +Q1))
· maxi ‖AT

21iP2‖2
λmin(H(P2A2i +Q2))

(16)

where λmin(.) denotes the eigenvalue with the smallest absolute magnitude. Now, con-

sider the full system (13). By using the above constructed Vc as a candidate Lyapunov

function for (13), we obtain:

V̇c =

m∑

i=1

wi(z)x
T

[(
αH(P1A1i) AT

21iP2

P2A21i H(P2A2i)

)
+

(
0 αP1A12i

αAT
12iP1 0

)]
x

< −2xT

(
αQ1 0
0 Q2

)
x+ 2xTαmax

i
‖P1A12i‖Ix

< −2xT

(
α(Q1 −maxi ‖P1A12i‖I) 0

0 Q2 − αmaxi ‖P1A12i‖I

)
x

which leads to the conditions

λmin(Q1) > maxi ‖P1A12i‖ (17)

λmin(Q2) > αmaxi ‖P1A12i‖ (18)

Combining (16) and (18), we get that such an α exists, and Vc is a Lyapunov function

for the whole system if

λmin(Q2)

maxi ‖P1A12i‖
>

maxi ‖AT
21iP2‖2

λmin(H(P1A1i +Q1))λmin(H(P2A2i +Q2))

or
λmin(H(P1A1i +Q1))

maxi ‖P1A12i‖
>

maxi ‖AT
21iP2‖2

λmin(Q2)λmin(H(P2A2i +Q2))
�

Remark: If A12i = 0, for all i = 1, 2, . . . , m or A21i = 0, for all i = 1, 2, . . . , m,

then based on Theorem 1, the system (13) is stable if the individual subsystems are

stable, and the last two conditions are not required.

Note that the conditions of Theorem 4 are not LMIs. In order to solve them we

consider a two-step procedure presented in the following algorithm, which allows the

conditions to be formulated as LMIs:

Algorithm 1:

1. The existing system,

ẋ2 =
m∑

i=1

wi(z)A2ix

is already proven to be stable using a quadratic Lyapunov function and therefore

P2 and Q2 such that H(P2A2i) < −2Q2 have been computed. Thanks to this,

when adding the new subsystem, with the interconnection terms, the value of

γ =
maxi ‖AT

21iP2‖2
λmin(Q2)λmin(H(P2A2i +Q2))

can be computed.

10



2. Now, for the added subsystem and the corresponding interconnection terms we

have the conditions:

H(P1A1i) < −2Q1 i = 1, 2, . . . , m

λmin(Q1) ≥ max
i

‖P1A12i‖

λmin(H(P1A1i +Q1)) > γmax
i

‖P1A12i‖

which are satisfied if the LMIs

H(P1A1i +Q1) < −2t1I i = 1, 2, . . . , m

Q1 > t2I(
t2I maxi ‖A12i‖P1

maxi ‖A12i‖P1 t2I

)
> 0

(
t1I γmaxi ‖A12i‖P1

γmaxi ‖A12i‖P1 t1I

)
> 0

(19)

are feasible.

Moreover, if one takes into consideration that new subsystems will be added to

the whole system (13), the analysis of the new subsystems can be facilitated by

minimizing the expression:

‖P1‖2
λmin(Q1)λmin(H(P1A1i +Q1))

which will in turn minimize the bound γ computed for the system (13).

This can be achieved by solving the LMI-based convex problem: find P1 =
PT
1 > 0, Q1 = QT

1 > 0, and maximize t1, t2, t3 subject to (19) and

P1 < t3I

A shortcoming of the approach at this point is that although the stability analysis

of the second subsystem has been performed, and Vc =

(
αP1 0
0 P2

)
is used as a

Lyapunov function, all that is known is that V̇c < 0. With a similar reasoning, when

the next subsystem is added, it is required that V̇c ≤ −2xTQx, for some Q = QT > 0.

To obtain such a Q, consider the derivative of V̇c. We have:

V̇c < −2xT

(
α(Q1 −maxi ‖P1A12i‖I) 0

0 Q2 − αmaxi ‖P1A12i‖I

)
x

By imposing that

(
α(Q1 −maxi ‖P1A12i‖I) 0

0 Q2 − αmaxi ‖P1A12i‖I

)
> β

(
αQ1 0
0 Q2

)

for some arbitrary β ∈ (0, 1), the following conditions are obtained:

Q1 −max
i

‖P1A12i‖I > βQ1

Q2 − αmax
i

‖P1A12i‖I > βQ2

11



i.e.,
(1− β)Q1 > max

i
‖P1A12i‖I

(1− β)Q2 > αmax
i

‖P1A12i‖I
(20)

Combining (20) and the conditions of Theorem 4, we obtain that:

Corollary 1. V = xT

(
αP1 0
0 P2

)
x is a Lyapunov function for (13) and V̇ < −2xTβ

(
αQ1 0
0 Q2

)
x

for an arbitrary β ∈ (0, 1) if:

H(P1A1i) < −2Q1 i = 1, 2, . . . , m

H(P2A2i) < −2Q2 i = 1, 2, . . . , m

(1− β)λmin(Q1) ≥ max
i

‖P1A12i‖

λmin(H(P1A1i +Q1)

maxi ‖P1A12i‖
>

maxi ‖AT
21iP2‖2

(1− β)λmin(Q2)λmin(H(P2A2i +Q2)

(21)

�

Recall, that we assumed that the interconnection terms or bounds on them are not

known before adding a new subsystem. However, if ck = maxij ‖Akij‖, i.e., a bound

on the interconnection terms is known beforehand, the analysis of the subsystems can

be decoupled and the following result can be stated:

Theorem 5. Given c1 = maxi ‖A12i‖ and c2 = maxi ‖A21i‖, the distributed system

(13) is exponentially stable, if there exist P1 = PT
1 > 0, P2 = PT

2 > 0, Q1 = QT
1 > 0,

Q2 = QT
2 > 0, so that

H(P1A1i) < −2Q1 i = 1, 2, . . . , m

H(P2A2i) < −2Q2 i = 1, 2, . . . , m

λmin(H(P1A1i +Q1)) > λmin(Q1)

λmin(H(P2A2i +Q2)) > λmin(Q2)

λmin(Q1) ≥ c1‖P1‖
λmin(Q2) ≥ c2‖P2‖

where λmin(.) is the eigenvalue with the smallest absolute magnitude.

Proof: Consider the last condition of Theorem 4:

λmin(H(P1A1i +Q1))

maxi ‖P1A12i‖
>

maxi ‖AT
21iP2‖2

λmin(Q2)λmin(H(P2A2i +Q2))
i.e.,

λmin(H(P1A1i +Q1))λmin(Q2)λmin(H(P2A2i +Q2)) > max
i

‖P1A12i‖max
i

‖AT
21iP2‖2

The third condition of Theorem 4 already states that

λmin(Q1) ≥ max
i

‖P1A12i‖ (22)

If Q2 is similarly restricted, i.e., the condition

λmin(Q2) ≥ max
i

‖P2A21i‖ (23)

12



is imposed, then the last condition of Theorem 4 becomes

λmin(H(P1A1i +Q1))λmin(Q2)λmin(H(P2A2i +Q2)) > λmin(Q1)λ
2
min(Q2)

λmin(H(P1A1i +Q1))λmin(H(P2A2i +Q2)) > λmin(Q1)λmin(Q2)

which is satisfied if
λmin(H(P1A1i +Q1)) > λmin(Q1)

λmin(H(P2A2i +Q2)) > λmin(Q2)

However, since only the bounds on the interconnection terms c1 and c2 are known,

instead of (22) and (23) we have to use

λmin(Q1) ≥ c1‖P1‖
λmin(Q2) ≥ c2‖P2‖

(24)

Together with the restrictions on Q1 and Q2, and (24), we obtain the conditions

expressed in Theorem 5. �

Note that the conditions of Theorem 5 are similar to those reported in [28] and [29].

The decoupled analysis has the advantages that 1) the analysis of the subsystems can be

performed in parallel and 2) each subsystem has to dominate one interconnection term,

which approach is less conservative when the strength of the interconnection terms is

approximately the same and both are weak. However, this result can only be obtained

if bounds on the interconnection terms that are introduced to the system by the addition

of a new subsystem are known beforehand. This condition is not needed for Theorem 4,

as, thanks to the sequential analysis, the interconnection terms only need to be known

when the subsystem that introduces them is analyzed.

Theorem 5, similarly to current results for stability analysis and stabilization of

fuzzy large scale systems [26, 28, 29, 43, 33] is comparable to perturbation methods

with weak coupling (see [15] and the references therein). In fact, the assumption that

the coupling is “weak enough”, compared to the dynamics of the individual subsystems

is necessary for the controller (or the analysis) to be decoupled.

In contrast, Theorem 4 and the resulting Algorithm 1, is comparable to methods

developed for strong coupling, i.e., only one of the subsystems has to converge quickly

enough so that stability is preserved. This approach can also be thought of as an asym-

metrical weak coupling, i.e., only one of the influences has to be weak enough for

stability to be preserved.

4. Sequential Observer Design

This section extends the sequential approach to observer design for TS fuzzy sys-

tems.

4.1. Preliminaries

Again, consider a distributed system where each subsystem is represented by a TS

fuzzy model. New subsystems will be added online, one-by-one, and our goal is to

design an asymptotically stable observer for the whole system. Since the subsystems

are added one-by-one, we consider sequential design, where an observer is designed

whenever a new subsystem is added, in such a way that the overall observer is stable,

but without modifying the already existing observers,

13



In this paper we assume that the estimated states of the subsystems are available to

all other subsystems that are interconnected with it. However, we do not assume that

the subsystems are stabilized.

For the ease of notation and without loss of generality, only two subsystems are

considered. The observer structure is depicted in Figure 2.

O2

u

y

O1

x

x
^

^

y
1

2

2

1

Figure 2: Distributed observer for two subsystems.

The fuzzy system considered consists of two subsystems:

ẋ1 =
m∑

i=1

wi(z)(A1ix1 +B1iu+A12ix2)

y1 =

m∑

i=1

wi(z)(C11ix1 + C12ix2)

ẋ2 =

m∑

i=1

wi(z)(A2ix2 +B2iu+A21ix1)

y2 =
m∑

i=1

wi(z)(C22ix2 + C21ix1)

(25)

and the observer is of the form:

˙̂x1 =

m∑

i=1

wi(ẑ)(A1ix̂1 +B1iu+A12ix̂2 + L1i(y1 − ŷ1))

ŷ1 =
m∑

i=1

wi(ẑ)(C11ix̂1 + C12ix̂2)

˙̂x2 =

m∑

i=1

wi(ẑ)(A2ix̂2 +B2iu+A21ix̂1 + L2i(y2 − ŷ2))

ŷ2 =

m∑

i=1

wi(ẑ)(C22ix̂2 + C21ix̂1)

(26)

The goal is to design the observer gains L1i, i = 1, 2, . . . , m for each rule of the

subsystem with states x1 so that (26) is a stable observer, given that the gains L2i,

14



i = 1, 2, . . . , m have already been designed such that the observer

˙̂x2 =

m∑

i=1

wi(ẑ)(A2ix̂2 +B2iu+ L2i(y2 − ŷ2))

ŷ2 =
m∑

i=1

wi(ẑ)C22ix̂2

is stable for the subsystem without the interconnection terms:

ẋ2 =

m∑

i=1

wi(z)(A2ix2 +B2iu)

y2 =

m∑

i=1

wi(z)C22ix2

The system structure considered exhibits coupling in both states and measurements.

Such a system is presented in Figure 3. Two cases are distinguished, according to

whether or not the scheduling vector depends on some of the states to be estimated.

C1
S1

S2

C2

x

u

x

x

x

y

y

1

2

1

2

1

2

Figure 3: Two subsystems coupled through their states and measurements.

4.2. State-independent scheduling vector

In this section, we consider the case when the scheduling vector does not depend

on states to be estimated. For this case, we first propose non-LMI conditions for the

stability of the dynamics of the global estimation error, from which we derive LMI

conditions. We finally show that if a bound on the interconnection terms is known

beforehand, a decoupled observer design can be performed, similar to those in the

literature.
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4.2.1. Distributed observer design

If the scheduling vector does not depend on the states to be estimated, the error

systems can be expressed as:

ė1 =

m∑

i=1

m∑

j=1

wi(z)wj(z)[A1ie1 +A12ie2 − L1iC1je]

ey1 =

m∑

i=1

wi(z)C1ie

ė2 =

m∑

i=1

m∑

j=1

wi(z)wj(z)[A2ie2 +A21ie1 − L2iC2je]

ey2 =

m∑

i=1

wi(z)C2ie

(27)

where C1i = [C11i C12i] and C2i = [C21i C22i], or

ė =

m∑

i=1

m∑

j=1

wi(z)wj(z)

(
A1i − L1iC11j A12i − L1iC12j

A21i − L2iC21j A2i − L2iC22j

)
e (28)

Note that since L1i, i = 1, 2, . . . , m have to be designed, a simple special case

is when there exist P1 = PT
1 > 0 and L1i, so that H(P1(A1i − L1iC11j)) < 0 and

A12i − L1iC12j = 0 ∀i, j : ∃z : wi(z)wj(z) 6= 0. In this case the error system

(28) is cascaded, and further restrictions are not necessary, and the stability conditions

can be summarized as:

Corollary 2. The error system (28) is asymptotically stable if there exist P1 = PT
1 >

0, P2 = PT
2 > 0, L1i, L2i, i = 1, 2, . . . , m so that ∀i, j : ∃z : wi(z)wj(z) 6= 0

H(P1(A1i − L1iC11j)) < 0

H(P2(A2i − L2iC22j)) < 0

A12i − L1iC12j = 0

Proof: This follows directly from Theorem 3, applied for the case when ẑ = z.

Note that the third condition of Corollary 2 is more likely to be satisfied if the

measurement matrix is common for the rules of a subsystem and the coupling is present

only in measurements. However, in general this is not the case and it is not possible to

find such L1i. Therefore, the results from Section 3 can be appropriately modified:

Corollary 3. The error system (28) is exponentially stable, if there exist L1i, L2i,

i = 1, 2, . . . , m, P1 = PT
1 > 0, P2 = PT

2 > 0, Q1 = QT
1 > 0, Q2 = QT

2 > 0, so

that
H(P1G1ij) < −2Q1 ∀i, j : ∃z : wi(z)wj(z) 6= 0

H(P2G2ij) < −2Q2 ∀i, j : ∃z : wi(z)wj(z) 6= 0

λmin(Q1) ≥ max
ij

‖P1G12ij‖

λmin(H(P1G1ij +Q1))

maxij ‖P1G12ij‖
>

maxij ‖P2G21ij‖2
λmin(Q2)λmin(H(P2G2ij +Q2))
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where G1ij = A1i − L1iC11j , G2ij = A2i − L2iC22j , G12ij = A12i − L1iC12j , and

G21ij = A21i − L2iC21j .
Proof: This follows directly from Theorem 4 applied to the error dynamics (28).

Remark: In order to facilitate the design of observer for the next subsystem, the

conditions of Corollary 1 can be appropriately modified.

4.2.2. LMI conditions

Note that Corollary 3 leads to a sequential implementation, similar to Algorithm 1.

Once a stable observer is designed for the subsystem

ẋ2 =

m∑

i=1

wi(z)(A2ix2 +B2iu)

y2 =

m∑

i=1

wi(z)C22ix2

the matrices P2, Q2, and the gains L2i, i = 1, 2, . . . , m are known, and therefore, G2ij

can be computed. After adding the interconnection terms, G21ij , i = 1, 2, . . . , m,

j = 1, 2, . . . , m also the ratio

γ =
maxij ‖P2G21ij‖2

λmin(Q2)λmin(H(P2G2ij +Q2))

can be computed. The conditions of Corollary 3 are then reduced to: find L2i, i =
1, 2, . . . , m, P1 = PT

1 > 0, Q1 = QT
1 > 0, so that for i = 1, 2, . . . , m, j =

1, 2, . . . , m
H(P1G1ij) < −2Q1

λmin(Q1) ≥ max
ij

‖P1G12ij‖

λmin(H(P1G1ij +Q1)) > γmax
ij

‖P1G12ij‖

which is satisfied if

H(P1G1ij +Q1) < 0

Q1 ≥ max
ij

‖P1G12ij‖I

H(P1G1ij +Q1) < −γmax
ij

‖P1G12ij‖I

The above conditions are satisfied if the following LMI is feasible, with the change of

variables Mi = P1L1i: find L2i, i = 1, 2, . . . , m, P1 = PT
1 > 0, Q1 = QT

1 > 0,

t1 > 0, t2 > 0, Mi, i = 1, 2, . . . , m, so that for i = 1, 2, . . . , m, j = 1, 2, . . . , m

H(P1A1i −MiC1i +Q1) < −t1I

Q1 > t2I(
t2I P1A12i −MiC21j

(P1A12i −MiC21j)
T t2I

)
> 0

(
t1I P1γA12i −MiγC21j

(P1γA12i −MiγC21j)
T t1I

)
> 0

The observer design for the newly added subsystem can be summarized as:

Algorithm 2:
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1. For the existing observer of the subsystem

ẋ2 =

m∑

i=1

wi(z)(A2ix2 +B2iu)

y2 =
m∑

i=1

wi(z)C22ix2

compute

γ̄ =
‖P2‖2

λmin(Q2)λmin(H(P2G2ij +Q2))

2. When the new subsystem and corresponding interconnection terms are added,

compute γ = γ̄maxij ‖G21ij‖2. To design the observer for this subsystem,

solve the LMI problem: find L2i, i = 1, 2, . . . , m, P1 = PT
1 > 0, Q1 =

QT
1 > 0, t1 > 0, t2 > 0, Mi, i = 1, 2, . . . , m, so that for i = 1, 2, . . . , m,

j = 1, 2, . . . , m

H(P1A1i −MiC1i +Q1) < −t1I

Q1 > t2I(
t2I P1A12i −MiC21j

(P1A12i −MiC21j)
T t2I

)
> 0

(
t1I P1γA12i −MiγC21j

(P1γA12i −MiγC21j)
T t1I

)
> 0

4.2.3. Decoupled observer design

Note that above algorithm is useful if no bound on the interconnection terms is

known before the subsystem is added. If a bound on A12i, A21i, C21i, C12i, i =
1, 2, . . . , m is known beforehand, observers can be designed independently for the

subsystems, by analyzing the last condition of Corollary 3. Although the following

manipulations introduce further conservativeness, the design is decoupled, and LMI

conditions are obtained. The result can be stated as follows:

Corollary 4. The error system (28) is exponentially stable, if there exist Lki, i =
1, 2, . . . , m, j = 1, 2, . . . , m, Pk = PT

k > 0, Qk = QT
k > 0 so that ∀i, j : ∃z :

wi(z)wj(z) 6= 0

H(PkGkij) < −2Qk

λmin(Qk) ≥ max
i

‖PkTkij‖

λmin(H(PkGkij +Qk)) > max
ij

‖PkTkij‖
(29)

where Gkij = Aki − LkiCkj , Tkij = Akpi − LkiCkpj is the interconnection term that

influences the subsystem k and Lki, i = 1, 2, . . . , m are the observer gains of the kth

subsystem.

Proof: In order to obtain similar conditions for all the subsystems, let us impose

λmin(Q2) ≥ max
ij

‖P2G21ij‖
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Then, the last condition of Corollary 3 becomes

maxij ‖P2G21ij‖2
λmin(Q2)λmin(H(P2G2ij +Q2))

≤ maxij ‖P2G21ij‖
λmin(H(P2G2ij +Q2))

an expression that is similar to that of the reciprocal of the first part of the fourth

condition of the corollary, i.e.,

λmin(H(P1G1ij +Q1))

maxij ‖P1G12ij‖

By imposing for both subsystems

λmin(H(PkGkij +Qk))

maxij ‖PkTkij‖
> 1

where Tkij is the interconnection term influencing the subsystem k, Tkij = Akpi −
LkiCkpj , k = 1, 2, the conditions are decoupled. Summarizing, we have the condi-

tions:
H(PkGkij) < −2Qk

λmin(Qk) ≥ max
i

‖PkTkij‖

λmin(H(PkGkij +Qk)) > max
ij

‖PkTkij‖

�

Note that the conditions of Corollary 4 are not LMIs. However, an LMI problem

may be formulated, which, when satisfied, also satisfies the conditions of Corollary 4,

as follows:

Theorem 6. The error system (28) is exponentially stable, if there exist Mki, i =
1, 2, . . . , m, Pk = PT

k > 0, Qk = QT
k , t1 > 0, t2 > 0 , tkM > 0, tkm > 0, so that

∀i, j : ∃z : wi(z)wj(z) 6= 0

tkmI ≤ Qk ≤ tkMI

H(PkGkij +Qk) < −tkMI

tkmI ≥ QkA +QkC

QkA ≥ t1I

QkC ≥ t2I(
t1I µAkPk

µAkPk t1I

)
≥ 0

(
t2I µCkMki

µCkM
T
ki t2I

)
≥ 0

(30)

�

Proof: Let

λmin(H(PkGkij +Qk)) > λmin(Qk)

and tkmI ≤ Qk ≤ tkMI . Then, the conditions (29) are satisfied if

tkmI ≤ Qk ≤ tkMI

H(PkGkij +Qk) < −tkMI

tkmI ≥ max
ij

‖PkTkij‖
(31)
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Recall that the interconnection term Tkij is in fact Tkij = Akpi − LkiCkpj , i.e.,

the interconnection term in the error dynamics. However, only the bounds on the

interconnection terms in the subsystems are known, i.e., µAk = maxpi ‖Akpi‖ and

µCk = maxpi ‖Ckpi‖, where k is the index of the current subsystem, k = 1, 2. There-

fore, let Qk be the sum of two positive definite matrices, Qk = QkA + QkC , which

satisfy

QkA ≥ µAk‖Pk‖I
QkC ≥ µCk max

i
‖PkLki‖I

The conditions above may be expressed as LMIs:

QkA ≥ t1I

QkC ≥ t2I(
t1I µAkPk

µAkPk t1I

)
≥ 0

(
t2I µCkMki

µCkM
T
ki t2I

)
≥ 0

where Mki = PkLki.

Summarizing all the conditions, we obtain those of Theorem 6. These conditions

are not only decoupled, but also expressed as LMIs. �

Note however, that this result can only be used if a bound on the possible intercon-

nection term is known. Also, due to the restrictions imposed while deriving LMIs, the

conditions of Theorem 6 are more conservative than those of Corollary 3.

4.3. State-dependent scheduling vector

Consider now the case when the scheduling vector depends on the states to be

estimated. For the simplicity of the notation, only the case when the measurement

matrices are common for all the rules of a subsystem is presented. Note however, that

if the measurement matrices are different for each rule, the observers can be designed

in a similar fashion.

The error system (similarly to Section 4.2) can be expressed as:

ė1 =
m∑

i=1

wi(ẑ)[A1ie1 +A12ie2 − L1iC1e] +
m∑

i=1

(wi(z)− wi(ẑ))(A1ix1 +B1iu+A12ix2)

ey1 = C1e

ė2 =

m∑

i=1

wi(ẑ)[A2ie2 +A21ie1 − L2iC2e] +

m∑

i=1

(wi(z)− wi(ẑ))(A2ix2 +B2iu+A21ix1)

ey2 = C2e

(32)

or

ė =

m∑

i=1

wi(ẑ)

(
A1i − L1iC11 A12i − L1iC12

A21i − L2iC21 A2i − L2iC22

)
e

+

m∑

i=1

(wi(z)− wi(ẑ))

(
A1ix1 +B1iu+A12ix2

A2ix2 +B2iu+A21ix1

) (33)
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In order to be able to derive LMI conditions, it is assumed that

∆ =
m∑

i=1

(wi(z)− wi(ẑ))

(
A1ix1 +B1iu+A12ix2

A2ix2 +B2iu+A21ix1

)

can be written as ∆ = Fe, with F a bounded uncertainty matrix, ‖F‖ ≤ µ. Consider

now the distributed observer design. For the already existing subsystem the error is

ė2 =

m∑

i=1

wi(ˆ̄z)[A2ie2 − L2iC22e2] +

m∑

i=1

(wi(z̄)− wi(ˆ̄z))(A2ix2 +B2iu)

ey2 = C22e2

(34)

where z̄ depends only on the states of this subsystem. For this subsystem, there already

exists a condition on the model-observer mismatch, i.e., ‖∆̄‖ = ‖∑m
i=1

(wi(z̄) −
wi(ˆ̄z))(A2ix2 +B2iu)‖ ≤ µ2‖e2‖, since, for this subsystem the observer has already

been designed, and the scheduling vector depended on the states to be estimated. When

a new subsystem is introduced, both z and ∆ change. In order to keep the symmetry

and obtain a condition similar to that of centralized observer design, in this paper we

require that ∆ is expressed as

m∑

i=1

(wi(z)− wi(ẑ))

(
A1ix1 +B1iu+A12ix1

A2ix2 +B2iu+A21ix1

)
=

(
F1 F12

F21 F2

)
e (35)

and that the uncertainties corresponding to different parts of the error are bounded:

‖F12‖ ≤ µ12

‖F1‖ ≤ µ1

‖F21‖ ≤ µ21

‖F2‖ ≤ µ2

(36)

Considering a distributed observer design for such a system, the following stability

conditions can be formulated:

Corollary 5. The error system (33), with the properties (35) and (36), is asymptot-

ically stable, if there exist P1 = PT
1 > 0, P2 = PT

2 > 0, Q1 = QT
1 > 0,

Q2 = QT
2 > 0, L1i, L2i, i = 1, 2, . . . , m so that

H(P2(G2i + F2)) < −2Q2 i = 1, 2, . . . , m

H(P1G1i) < −2Q1 i = 1, 2, . . . , m

λmin(H(Q1 + P1F1)) > max
i

‖P1(G12i + F12)‖

λmin(H(P1G1i +Q1))

maxi ‖P1(G12i + F12)‖
>

maxi ‖P2(G21i + F21)‖2
λmin(Q2)λmin(H(P2(G2i + F2) +Q2))

where G1i = A1i − L1iC11, G2i = A2i − L2iC21, G12i = A12i − L1iC12, G21i =
A21i − L2iC21.
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Proof: Consider first the following part of the system (33):

ėc =

m∑

i=1

wi(ẑ)

(
(A1i − L1iC11)e1c

A2ie2c +A21ie1c − L2iC2ec

)

+
m∑

i=1

(wi(z)− wi(ẑ))

(
0

A2ix2 +B2iu+A21ix1

) (37)

This is a cascaded system and it is asymptotically stable, if the conditions of Theorem 3

are satisfied. First, we show that system (37) is exponentially stable, if there exist

P1 = PT
1 > 0, P2 = PT

2 > 0, Q1 = QT
1 > 0, Q2 = QT

2 > 0, µ2 ≥ 0, µ21 ≥ 0, F2,

F21 so that

H(P1G1i) < −2Q1 i = 1, 2, . . . , m
m∑

i=1

(wi(z)− wi(ẑ))(A2ix2 +B2iu+A21ix1) =
(
F21 F2

)
ec

‖F21‖ ≤ µ21

‖F2‖ ≤ µ2

H(P2(G2i + F2)) < −2Q2 i = 1, 2, . . . , m

with G1i = A1i − L1iC11 and G2i = A2i − L2iC21.

The condition H(P2(G2i + F2)) < −2Q2 ensures that the already existing er-

ror system is exponentially stable. Moreover, there exists α ∈ R+ so that Vc =
eTc diag(αP1, P2)ec is a Lyapunov function for (37) and V̇c < −2eTc Qec, with Q =
diag(αQ1, Q2) and G21i = A21i − L2iC21. To prove this, consider the Lyapunov

function

Vc = eTc

(
αP1 0
0 P2

)
ec

The derivative can be computed as:

V̇c =

m∑

i=1

wi(ẑ)e
T
c H

(
αP1G1i 0

P2(G21i + F21) P2(G2i + F2)

)
ec

For V̇c < −2eTc Qec, it is required that

(
αH(P1G1i) (G21i + F21)

TP2

P2(G21i + F21) H(P2(G2i + F2))

)
< −2

(
αQ1 0
0 Q2

)

which amounts to
(
αH(P1G1i +Q1) (G21i + F21)

TP2

P2(G21i + F21) H(P2(G2i + F2) +Q2)

)
< 0

Using the Schur complement, we obtain

αH(P1G1i +Q1)− (G21i + F21)
TP2(H(P2(G2i + F2) +Q2))

−1P2(G21i + F21) < 0

which is satisfied by any α chosen such that

α >
1

λmin(H(P1G1i +Q1))
· maxi ‖P2(G21i + F21)‖2
λmin(H(P2(G2i + F2) +Q2))

(38)
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Now, consider the full error system (33), together with the assumptions

m∑

i=1

(wi(z)− wi(ẑ))(A1ix1 +B1iu+A12ix1) =
(
F1 F12

)
e

‖F12‖ ≤ µ12

‖F1‖ ≤ µ1

(39)

Note that these assumptions, together with

m∑

i=1

(wi(z)− wi(ẑ))(A2ix2 +B2iu+A21ix1) =
(
F21 F2

)
ec

‖F21‖ ≤ µ21

‖F2‖ ≤ µ2

(40)

are effectively equivalent to those that would be used in the centralized design (see

Theorem 2).

By using the above constructed V = Vc as a candidate Lyapunov function for (33),

we obtain:

V̇ =

m∑

i=1

wi(ẑ)e
T

((
αH(P1G1i) GT

21iP2

P2G21i H(P2G2i)

)
+

(
0 αP1G12i

αGT
12iP1 0

))
e

+ eT
(
αH(P1F1) αP1F12

α(P1F12)
T 0

)
e

< −eTH
(
α(Q1 + P1F1) 0

0 Q2

)
e+ 2eT [αmax

i
‖P1(G12i + F12)‖]e

< −eT
(
αH(Q1 + P1F1 − αmaxi ‖P1(G12i + F12)‖) 0

0 H(Q2 − αmaxi ‖P1(G12i + F12)‖)

)
e

which leads to the conditions

λmin(H(Q1 + P1F1)) > maxi ‖P1(G12i + F12)‖ (41)

λmin(Q2) > αmaxi ‖P1(G12i + F12)‖ (42)

Combining (38) and (42), we get that such an α exists and V = Vc is a Lyapunov

function if

λmin(Q2)

maxi ‖P1(G12i + F12)‖
>

maxi ‖P2(G21i + F21)‖2
λmin(H(P1G1i +Q1))λmin(H(P2(G2i + F2) +Q2))

or

λmin(H(P1G1i +Q1))

maxi ‖P1(G12i + F12)‖
>

maxi ‖P2(G21i + F21)‖2
λmin(Q2)λmin(H(P2(G2i + F2) +Q2))

�

Note that for this case (i.e., when the scheduling vector depends on states to be

estimated), a cascaded error system can only be obtained in special cases. As in Section

4.2, the conditions of Corollary 5 can be implemented in a two-step algorithm, similarly

to Algorithm 2. In order to facilitate the design of observer for the next subsystem,

the appropriately modified conditions of Corollary 1 can be used. If a bound on the

interconnection terms is known in advance, a decoupled design is also possible, similar

to that given in Theorem 6.
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5. Examples

In this section we illustrate on two examples how our approach can be applied for

stability analysis and observer design, respectively. The first example presents sequen-

tial stability analysis for a nearly cascaded system, while the second one illustrates

sequential observer design.

5.1. Stability analysis

First we present a numerical example to illustrate sequential stability analysis. This

example involves a nearly cascaded system, i.e., a system where one interconnection

terms is strong, and the other one is weak. Note that for such systems, sequential sta-

bility analysis is in general better suited than the parallel approaches that can be found

in the literature. The explanation is that for a nearly cascaded system, the subsystem

influenced by the strong interconnection is not able to dominate the interconnection

term. However, this is not the case in sequential analysis, where one subsystem has to

handle the product of the interconnection terms.

Consider a distributed system consisting of two subsystems, as follows:

Subsystem 1:

If z is small, then

ẋ1 = A11x1 =

(
−1 1
1 −5

)
x1

If z is large, then

ẋ1 = A12x1 =

(
−3 2
1 −4

)
x1

Subsystem 2:

ẋ2 = A2x2 = −10x2

The interconnection terms are given as f21 = [0.1 0]Tx2 and f12 = [5 0]x1.

This system is “nearly cascaded”, and stable, which is provable with a common

Lyapunov function of the form V = [xT
1 x2]P [xT

1 x2]
T . Note that f12 is a strong

connection between the subsystems, while f21 is a weak connection. Using the stability

analysis of [29], we obtain the conditions:

H(P1A11) < −Q1

H(P1A12) < −Q1

λmin(Q1) ≥ 2 + 25‖P 2
1 ‖

(43)

and
H(P2A2) < −Q2

λmin(Q2) ≥ 2 + 0.01‖P 2
2 ‖

respectively. According to Matlab’s feasp, condition (43) is unfeasible, and therefore

stability cannot be proven with the method of [29].

Using the conditions of Theorem 4, derived in this paper, we have:

H(P1A11) < −2Q1

H(P1A12) < −2Q1

γ = 135.98

H(P2A2) < −2Q2

Q2 ≥ 0.1P2

− 2(P2A2 +Q2) > 0.1γP2
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which is feasible. Hence, in this case, the proposed sequential stability analysis is better

suited than approaches in the literature (see also Remark 3.1 in [29], stating that in case

of distributed stability analysis, the interconnection terms for all subsystems should be

“small enough”).

5.2. Observer design

In this example, we illustrate the sequential observer design for a real-world system.

Consider a distributed system where each individual subsystem is a cascaded tanks

system as shown in Figure 4.

u
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A

h

h

s

s
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1 1

2

2

1

2

1

2

Figure 4: A cascaded tanks system.

This system is described as follows: water is pumped into the upper tank 1 that has

a cross-sectional area A1. The level of the water in this tank is denoted by h1. From

this tank, the water flows out through a pipe with cross-sectional area s1 into the lower

tank 2 that has a cross-sectional area A2. The level of the water in this tank is h2. From

the lower tank, the water flows out through a pipe with cross-sectional area s2 into a

reservoir.

The system has one control input, u, which is the voltage applied to the motor that

pumps water into the upper tank with a flow rate Fin. The measured output is the water

level h2 in the lower tank.

The dynamics of this system are described by

τ1Ḟin = −Fin +Qs · u

ḣ1 =
Fin

A1

− s1
√
2gh1

A1

ḣ2 =
s1
√
2gh1

A2

− s2
√
2gh2

A2

(44)

where Qs is the input-to-flow gain, τ is the motor time constant, and g is the accelera-

tion due to gravity.

In a distributed system, several of these individual cascaded tanks systems are in-

terconnected. For instance, a system with three subsystems is shown in Figure 5. The

interconnection between the subsystems consists in redistributing part of the water that

would flow to the reservoir to the neighboring tanks, indicated on Figure 5 by the links

d12, d21, d23, and d32.
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In case of the system presented in Figure 5, water is pumped into the upper tanks

1, 3, and 5. From these tanks, the water flows to the lower tanks 2, 4, and 6. From

the lower tanks, part of the water flows into a reservoir, and part is redistributed to the

neighboring tanks. Each cascaded tank system has one control input ui, which is the

voltage applied to the motor of the corresponding pump, and one measured output: the

water level in the lower tank. The measured outputs for the whole system are therefore

h2, h4, and h6. The flow rates Fin,i, provided by the pumps, and the water levels in the

upper tanks have to be estimated, and therefore, an observer has to be designed. The
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Figure 5: Coupled cascaded tanks system.

dynamics of the distributed system after all the subsystems have been added is given

by

τ1Ḟin,1 = −Fin,1 +Qs,1 · u1

ḣ1 =
Fin,1

A1

− s1
√
2gh1

A1

+ d21
s4
√
2gh4

A1

ḣ2 =
s1
√
2gh1

A2

− s2
√
2gh2

A2

τ2Ḟin,2 = −Fin,2 +Qs,2 · u2

ḣ3 =
Fin,2

A3

− s3
√
2gh3

A3

+ d12
s2
√
2gh2

A3

+ d32
s6
√
2gh6

A3

ḣ4 =
s3
√
2gh3

A4

− s4
√
2gh4

A4

τ3Ḟin,3 = −Fin,3 +Qs,3 · u3

ḣ5 =
Fin,3

A5

− s5
√
2gh5

A5

+ d23
s4
√
2gh4

A5

ḣ6 =
s5
√
2gh5

A6

− s6
√
2gh6

A6

(45)

where d21
s4

√
2gh4

A1

, d12
s2

√
2gh2

A3

, d32
s6

√
2gh6

A3

, and d23
s4

√
2gh4

A5

represent the intercon-

nection terms between the subsystems, i.e., the amount of water redistributed among
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the tanks.

Our goal is to design observers to estimate the flow rates Fin,i, i = 1, 2, 3, and

the water level in the upper tanks h1, h3, and h5. It is assumed that the subsystems

are added one after another, and, moreover, further subsystems can be added to this

system. Therefore, the design is performed sequentially.

The parameter values that will be used for simulation purposes are presented in

Table 1.

Table 1: Parameter values.

Parameter Symbol Value Units

Acceleration due to gravity g 9.81 m/s
2

Cross-sectional area of tanks A1, A2, A3, A4, A5, A6 10, 11, 11, 9, 12, 10 m2

Outlet area of tanks s1, s2, s3, s4, s5, s6 0.2, 0.1, 0.2, 0.125, 0.25, 0.135 m2

Input to flow gains Qs1, Qs2, Qs3 33.3 m3/s/V
Motor time constants τ1, τ2, τ3 3 s
Distribution ratios d12, d21, d23, d31 0.3, 0.1, 0.1, 0.3 –

Minimum water level hmin 0.2 m

Maximum water level hmax 2 m

It is assumed that the tanks have the same height, hmax = 2m, and the water

level in the tanks cannot drop below hmin = 0.2m. Therefore, all levels are bounded,

hi ∈ [hmin, hmax], i = 1, 2, 3, 4, 5, 6.

In order to use the proposed design, we construct the distributed TS fuzzy model

sequentially, as each subsystem is being added: at t = t0 only the first system exists, to

which at t = t1 the second one is added (with the interconnections), to which at t = t2
the third cascaded system (with interconnections) is added, etc. Therefore, consider

the first cascaded tanks system with tanks 1 and 2, with the dynamics given by (44).

An exact fuzzy representation of the model (44) can be obtained using the sec-

tor nonlinearity approach [48]. Using this approach, we obtain a four-rule TS fuzzy

system, with the local matrices2

A11 =



−0.33 0 0
0.10 −0.19 0
0 0.18 −0.09


 A12 =



−0.33 0 0
0.10 −0.19 0
0 0.18 −0.03




A13 =



−0.33 0 0
0.10 −0.06 0
0 0.05 −0.09


 A14 =




−0.33 0 0
0.10− 0.06 0

0 0.05 −0.03




scheduling variables h1 and h2, weighting functions η01 =
√
0.2√
h1

√
2−

√
h1√

2−
√
0.2

, η11 = 1− η01 ,

η02 =
√
0.2√
h2

√
2−

√
h2√

2−
√
0.2

, η12 = 1− η02 , and membership functions w1 = η01η
0
2 , w2 = η01η

2
2 ,

w3 = η21η
0
2 , and w4 = η21η

2
2 . Note that due to the nature of the interconnections, by

the addition of a new subsystem, these local matrices will not change. In turn, the

nonlinearity in the interconnection term leads to two more weighting functions, and

therefore the membership functions do change. However, Assumption 1 is satisfied.

To design the observer, we follow the steps of Algorithm 2. It has to be noted is that

2All values are rounded to two decimal places.
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the membership functions depend on h1, which is a state that has to be estimated. The

observer-model mismatch for this subsystem is bounded by µ1 = 0.099.

To design the observer, we solve3 the following LMI problem: find P1 = PT
1 > 0,

Q1 = QT
1 > 0, R = RT > 0, Mi, i = 1, 2, 3, 4, so that

H(P1A1i −MiC) < −4Q1 −R
(
R− µ2

1 P1

P1 I

)
> 0

(46)

and we obtain P1 = 0.1I , Q1 = 9.84 · 10−4I , R =




0.06 −0.01 −0.00
−0.01 0.02 0.00
−0.00 0.00 0.27


. The

observer gains are computed as L1i = P−1
1 Mi and we obtain the values

L11 =



−0.01
0.18
2.67


 L12 =



2.68
2.86
2.70


 L13 =



2.68
2.80
2.67


 L14 =



2.68
2.80
2.70




Moreover, we have λmin(Q1) = 9.84 · 10−4, λmin(H(P1A1i−MiC+Q)+R) =
1.98 · 10−3, ‖P1‖ = 0.1, and γ̄1 = 5.1704 · 103 (see Algorithm 2). As illustrated

in Figure 6, this observer correctly estimates the states of the first subsystem. The

trajectory presented in Figure 6 has been obtained for a randomly generated input

vector, u drawn from the uniform distribution U [0, 0.1], the true initial states being

x0 = (0.1 0.5 0.3)T and the estimated initial states being x̂0 = (0 0.2 0.2)T .
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Figure 6: Estimation error for one subsystem.

At the time t = t1 the second subsystem (the cascaded tank system with tanks

3 and 4) is added, together with the interconnection terms to and from the first sub-

system (d12 and d21 on Figure 5). The upper bound on these interconnection terms

are v21 = ‖d21 s4
√
2gh4

A1

‖ ≤ 0.0078 and v12 = ‖d12 s2
√
2gh2

A3

‖ ≤ 0.171. With these

bounds, we have γ1 = 1.50. An exact TS representation of this second subsystem is

obtained using the sector nonlinearity approach, similarly to the TS model of the first

subsystem. Since one of the scheduling variables is h3, which is a state that has to be

estimated, again an observer-model mismatch that is bounded by µ2 = 0.11, appears.

3The LMIs in this section have been solved using the SeDuMi solver within the Yalmip toolbox [49] for

Matlab.
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Since the interconnection terms depend on measured variables, we have that µ12 = 0
and µ21 = 0. Note that although there will be 8 rules, there are only four different

matrices that concern the individual dynamics of the second subsystem (the other four

are due to the nonlinearity in the interconnection term). Moreover, as already stated,

the introduction of the interconnection term does not change the local matrices of the

existing subsystem.

To design the observer for this second subsystem, we solve the problem find P2 =
PT
2 > 0, Q2 = QT

2 > 0, R2 = RT
2 > 0, Mi, i = 1, 2, 3, 4 so that

H(P2A2i −MiC) < −4Q2 −R
(
R− µ2

2 P2

P2 I

)
> 0

(
(1− β)Q2 v12P2

v12P2 (1− β)Q2

)
> 0

(
(1− β)Q2 γ1v12P2

γ1v12P2 (1− β)Q2

)
> 0

(47)

The goal is to be able to solve the inequalities above for the largest β ∈ [0, 1] possible.

This can be done either by using a BMI solver (e.g., Penbmi [50]) or by a line search

on β. For a fixed β, (47) becomes an LMI problem. For this example, we solved it

for β = 0.7, and obtained P2 =




77.50 16.72 −16.84
16.72 46.27 −45.87
−16.84 −45.87 47.59


, Q2 = 5.14I , and

the observer gains computed as L2i = P−1
2 Mi. An error trajectory is illustrated in

Figures 7(a) and 7(a). The second subsystem has been added at t1 = 20s. The true

initial states for the second subsystem were x0 = (2 0.3 1.4)T and the estimated initial

states x̂0 = (0 0.2 0.2)T . The input to the system has been randomly generated from

U [0, 0.1].
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(a) Estimation error for subsystem 1.
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(b) Estimation error for subsystem 2.

Figure 7: Simulation results for the addition of the second subsystem.

In the simulation, instead of the measured values, the estimated values of h2 and h4

have been used in the second and first subsystem, respectively. Consequently, due to

the incorrect estimate of the initial state, the addition of the new subsystem influences

the estimation error of the existing subsystem. This can be seen on Figure 8.

With the two observers designed, we can compute α to determine the Lyapunov

function for the combined error dynamics, and we obtain α = 1.44 · 10−4. Conse-
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Figure 8: Influence of the addition of the new subsystem.

quently, the Lyapunov matrix for the first two subsystems is P12 =

(
αP2 0
0 P1

)
, with

‖P12‖ = max{α‖P2‖, ‖P1‖} = 0.1, and Q12 = β

(
αQ2 0
0 Q1

)
, with λmin(Q12) =

βmin{αλmin(Q2), λmin(Q1)} = 5.19·10−4. Moreover, we also have that H(P12A
12
i −

M12
i C +Q12) +R12 < −2Q12, and we can compute γ̄2 = 1.8534 · 104.

At the time t = t2 the third subsystem (the cascaded tank system with tanks 5 and

6) is added, together with the interconnection terms to and from the second subsystem

(d32 and d23 on Figure 5). The upper bound on these interconnection terms are v32 =

‖d32 s6
√
2gh6

A3

‖ ≤ 0.0231, and v23 = ‖d23 s4
√
2gh4

A5

‖ ≤ 0.0065. With these bounds, we

have γ2 = 0.7891. An exact TS representation of this subsystem is obtained similarly

to the previous ones. The observer-model mismatch is bounded by µ3 = 0.13. To

design the observer, we solved the LMI problem4 find P3 = PT
3 > 0, Q3 = QT

3 > 0,

R = RT > 0, Mi, i = 1, 2, 3, 4, so that

H(P3A3i −MiC) < −4Q3 −R
(
R− µ2

3 P3

P3 I

)
> 0

(
(1− β)Q3 v23P3

v23P3 (1− β)Q3

)
> 0

(
(1− β)Q3 γ2v23P3

γ2v23P3 (1− β)Q3

)
> 0

(48)

for β = 0.3, and obtained P2 =




14.34 2.02 −2.38
2.02 10.29 −9.70
−2.38 −9.70 11.53


, Q2 = 1.15I , and the

observer gains were computed as L3i = P−1
3 Mi. An error trajectory of this subsystem

is illustrated in Figure 9. The subsystem has been added at t1 = 40s. The true initial

states were x0 = (1 0.25 0.6)T and the estimated initial states x̂0 = (0 0.2 0.2)T .

The input to the system has been randomly generated from U [0, 0.1].
With the third observer designed, we have α2 = 0.0022, ‖P13‖ = max{α2‖P3‖, ‖P12‖} =

0.1, and λmin(Q13) = βmin{α2λmin(Q3), λmin(Q12)} = 1.66 · 10−5. Moreover, we

4Similarly to the design for the second subsystem, this can also be formulated as a BMI problem, with

both β and Q3 decision variables.
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Figure 9: Estimation error for the third subsystem.

also have that γ̄3 = 1.81 · 107, and we can start designing an observer for yet another

new subsystem.

6. Discussion and conclusions

Many physical systems, such as power systems, communication and distribution

networks, economic systems, and traffic networks are composed of interconnections of

lower-dimensional subsystems. In this paper, the stability of such distributed systems

was investigated for the case when the subsystems are represented as TS fuzzy systems.

We considered the case when subsystem are added online, one-by-one to an existing

system, and propose conditions for establishing the stability of the whole system when

a new subsystem was added. This setting has also been extended to state estimation,

by developing a method to sequentially design observers for a distributed system.

The motivation for the sequential analysis and design comes from allowing that

subsystems may be added to or removed from a distributed system. Current approaches

in the literature assume that the structure of the system is known, that is, the number of

subsystems is known a priori. Therefore, subsystems can no longer be added. More-

over, it is often required [34, 31, 5] that the analysis of the subsystems is performed in

parallel, at the same time. To be able to address analysis and design for a distributed

system to which subsystems may be added, we have proposed a sequential approach.

Next we discuss some theoretical and practical aspects of the proposed analysis and

design methods.

A shortcoming of the method stems from the fact that we consider fairly general

nonlinear systems (the only assumption we make is Assumption 1), with any type of

interconnection, i.e., we do not exploit a specific structure. Due to this, and due to

the fact that Assumption 1 allows for the change of membership functions, we use a

membership function independent Lyapunov function, more specifically, a common

quadratic Lyapunov function, which renders the result conservative. Another source of

conservativeness is the use of a block-diagonal Lyapunov matrix. Using such a matrix

ensures the stability of each individual subsystem, and consequently allows the addition

or the removal of subsystems (together with the corresponding interconnection terms).

If, for instance, subsystems cannot be removed, then a full Lyapunov matrix can be

used, and it is no longer a necessary condition that each subsystem is stable. This issue

will be addressed in our future research.
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From a practical point of view, the main limitation of the proposed methods is given

by Assumption 1, i.e., by the assumption that by adding a new subsystem, the individ-

ual dynamics of the existing one do not change. For many systems, this assumption

is not satisfied. This assumption will be relaxed in our future research, where we will

investigate the case when due to the addition of a new subsystem, the dynamics of the

individual subsystems change.

A second practical shortcoming is that with each newly added subsystem, the con-

ditions become more and more conservative, in particular, when applying Corollary

1 (or the corresponding design method). We will address this issue in our future re-

search by considering other types of Lyapunov functions, e.g., membership-dependent

Lyapunov functions, such as those used in [51, 52].
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thesis, Örebro University, Sweden (2001).
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