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Model-Based Traffic and Emission Control Using PWA Models – A

Mixed-Logical Dynamic Approach

Noortje Groot, Bart De Schutter, Solomon Kidane Zegeye, and Hans Hellendoorn

Abstract— For the purpose of traffic control a piecewise-
affine (PWA) approximation of the METANET model is pro-
posed and tested in a model-based predictive control (MPC)
framework. This approximation is provided as an alternative
to the rather intensive computations when using the original
nonlinear nonconvex METANET traffic flow model extended
with a model for vehicular emissions and fuel consumption in an
MPC context. As a direct PWA-MPC computation turned out to
be intractable for on-line applications due to the size of the final,
full PWA model that consists of a large number of PWA regions,
the PWA model equations were additionally converted into
a mixed-logical dynamic (MLD) model. The resulting MLD-
MPC problem – written as a mixed-integer linear program
(MILP) – can be solved much more efficiently as it does not
explicitly state all model equations for each particular region.
In a simple case study on a traffic network including a variable
speed limit and an un-metered on-ramp while optimizing the
total time spent (TTS), we compared the performance of the
approximate MLD-MPC approach to that of model predictive
traffic control when using the original nonlinear formulation
of the METANET model.

I. INTRODUCTION

In the control of large-scale traffic networks it is important

to adopt a modeling framework that is both accurate and that

yields a fast solution in order to be able to apply on-line

traffic control. When using the METANET traffic flow model

[1], [2] complemented by the VT-macro emission and fuel

consumption model [3] in combination with model predictive

control (MPC) [4], [5] in order to minimize the total time

spent (TTS) by traffic in the network as well as to reduce

the vehicular emissions, a nonlinear nonconvex optimization

problem results. Such a problem can be solved with global

or multi-start local optimization (see, e.g., [6]–[8]). However,

this approach is subject to computational issues and a global

optimum cannot be guaranteed. Hence, the need arises to

search for alternative solution approaches like the piecewise-

affine (PWA)-MPC method proposed in this paper.

In previous work [9] the METANET model was ap-

proximated in a PWA manner, where the focus was on

investigating the accuracy of the approximations while using

different methods. In the current paper, the focus is on the

actual use of the PWA-approximated model in an MPC

framework. As it turns out, due to the large number of

regions of the full PWA model for the entire traffic network,

a direct implementation of PWA-MPC is computationally

intractable. Therefore, we propose to convert the individual

PWA model equations directly into a mixed-logical dynamic
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(MLD) formulation of the system, after which MPC can be

applied. Consequently, the trade-off between time-efficiency

and accuracy of the MLD-MPC approach as compared to

nonlinear MPC using the original model can be analyzed.

The remainder of this paper is built up as follows. In Sec-

tion II the original nonlinear METANET traffic flow model

is briefly presented, together with the VT-macro equations

needed to incorporate emissions and fuel consumption into

the traffic control framework. In Section III the nonlinear

model equations are approximated in a PWA manner and

subsequently the reformulation as an MLD model and into

an MILP program is described in Section IV. Section V

includes a description of the MPC approach we propose for

traffic control, which is applied in the case study of Section

VI. The paper is concluded in Section VII.

II. THE METANET MODEL

The original METANET model developed by Papageor-

giou and Messmer [1], [2] is as follows. Let the traffic

network be described by a graph with links representing

homogeneous parts of a freeway, separated by nodes rep-

resenting changes like on-ramps and the merging of lanes.

A link is further divided into segments of equal distance.

The evolution of traffic flow qm,i in veh/h, density ρm,i

(veh/km/lane) and space-mean speed vm,i (km/h) for seg-

ment i of link m for time step k is described by:

qm,i(k) = λmρm,i(k)vm,i(k) (1)

ρm,i(k + 1) = ρm,i(k) +
Ts

Lmλm

[qm,i−1(k)− qm,i(k)]

(2)

vm,i(k + 1) = vm,i(k) +
Ts

τ
[V [ρm,i(k)]− vm,i(k)]

+
Tsvm,i(k) [vm,i−1(k)− vm,i(k)]

Lm

−
Tsη [ρm,i+1(k)− ρm,i(k)]

τLm (ρm,i(k) + κ)
, (3)

with λm the number of lanes in link m, Ts the simulation

time step (in s), Lm the length of the segments of link m

(in m) and η (km2/h), κ (veh/km/lane), and τ (h) model

parameters.

The desired speed is represented by

V [ρm,i(k)] = min

[

vfree,m exp

[

−
1

am

(

ρm,i(k)

ρcr,m

)am
]

,

(1 + α)vcontrol,m,i(k)

]

, (4)



where the second term applies only in case of variable-

speed control on segment i of link m, where the speed

limit is denoted by the speed control variable vcontrol,m,i(k)
(km/h) [10]. Further, vfree,m (km/h) denotes the free-flow

speed and α is a non-compliance factor. Further, am is a

model parameter and ρcr,m (veh/km/lane) denotes the critical

density of a link m connected to the given origin.

Mainstream origins and on-ramps are modeled as a queue

where wo (veh) represents the queue length at origin o:

wo(k + 1) = wo(k) + Ts(do(k)− qo(k)). (5)

Here, do (veh/h) denotes the traffic demand and qo (veh/h)

the outflow of origin o:

qo(k) = min

[

do(k)+
wo(k)

Ts
, ro(k)Co,

Co

(

ρjam,m − ρm,1(k)

ρjam,m − ρcr,m

)]

, (6)

for a metered on-ramp with ramp-metering rate ro(k) ∈
[0, 1]. For non-metered on-ramps or mainstream origins the

decision variable ro(k) is set to one. Further, Co (veh/h)

represents the capacity of origin o and ρjam,m (veh/km/lane)

is the maximum density of a link m connected to the given

origin.

For the first segment of an outgoing link of each on-ramp,

the following speed-drop factor is added to speed equation

(3) with δ a model parameter:

−
δTsqo(k)vm,1(k)

Lmλm(ρm,1(k) + κ)
. (7)

The METANET model can be further complemented to

take into account e.g., merges and drops of lanes and the

resulting speed drops, main-stream metering, or it can be

adapted to different models for dynamic speed limits (see

e.g., [2], [8], [10]).

Additionally, in order to take into account emissions and

fuel consumption of the vehicles, we add to the METANET

model the equations of the VT-macro model. For more

detailed information on this model, the reader is referred to

[3]. The VT-macro model estimates traffic emissions and fuel

consumption using either the temporal or spatio-temporal

accelerations of vehicles. For instance, the spatio-temporal

acceleration and number of vehicles subject to it while

moving from one segment to the next segment of a link m

are given by

am,i,i+1(k)=
vm,i+1(k)− vm,i(k − 1)

Ts
(8)

nm,i,i+1(k)=Tsqm,i(k − 1). (9)

Similar expressions apply to e.g., on-ramps, off-ramps, junc-

tions, etc. Slightly different, temporal accelerations and ve-

locities refer to the values of those variables within the same

segment.

The vehicular emissions and fuel consumption become

apparent in the cost function when minimizing the following

expression of total emissions or fuel consumption (TEFC) at

time step k:

Jγ,TEFC(k)=
∑

ℓ∈Lall

nℓ(k) exp
(

v̆⊤ℓ (k)Pγ ăℓ(k)
)

, (10)

with the speed and acceleration vectors v̆⊤(k) =
[1 v(k) v2(k) v3(k)]T and ă⊤(k) =
[1 a(k) a2(k) a3(k)]T, and with Lall the set of indices

of all triples (aℓ, nℓ, vℓ) of spatio-temporal or temporal

accelerations and the corresponding numbers of vehicles

and speeds. Moreover, Pγ denotes the model parameter for

γ ∈ Γ = {CO emission, HC emission, NOx emission, fuel

consumption}. The values of the parameter matrices Pγ can

be found in [11].

III. PWA APPROXIMATION

A PWA function consists of multiple affine functions

defined on convex polyhedra and can be written as follows

(e.g., [12]):

f(x) = aTi x+ bi if x ∈ Ωi, (11)

where x ∈ R
n is the independent variable, ai ∈ R

n and

bi ∈ R are the (constant) parameters for each of the N

convex polyhedra Ωi in the x-space, such that ∪iΩi = R
n

and int(Ωi) ∩ int(Ωj)=∅ for all i, j with i 6= j.

In the remainder of this section the nonlinear METANET

equations will be adapted to this PWA form conform one of

the few possible approximation methods shortly discussed.

Here it should be noted that there is a large difference

in complexity between the approximation of single and

bivariate functions or two versus multidimensional cases,

both of which occur in the METANET setting we consider

in this paper. For more details on the approximation methods

used and the quality of the approximations made, please refer

to [9].

It should also be noted that a reformulation of the nonlin-

ear functions in the METANET model can only be done as

an approximation, meaning that the optimal solution yielded

by solving the MPC problem will inevitably differ from the

original optimum. However, in return we yield a PWA model

description that is faster to solve and which can be used

as a good initial starting point for control when using the

nonlinear model. Here it is important to keep the number

of regions Ωi small as each region will result in additional

binary variables that again increase the (time) complexity of

the problem.

A. Flow equation (1)

Starting with the bivariate flow equation (1), an approxi-

mation approach is by hybrid or PWA identification:

Piecewise-affine identification. For the purpose of our

paper it suffices to apply the piecewise or hybrid

identification approach. We adopt the most accurate

method for bivariate identification, i.e., Multicategory

Robust Linear Programming (MRLP) [13]. This method

will first create local data sets after which a clustering

algorithm creates local affine models by classifying
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Fig. 1. Fundamental diagram of traffic flow
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Fig. 2. Approximation of flow equation (1) by hybrid identification using
the Hybrid Identification Toolbox [15]

the data points. Similar models are again grouped into

clusters, depending on the number of regions required

[14].

In the approximation of (1) it is further important to take

into account the shape of the fundamental diagram shown in

Fig. 1(a) and (b). To be more precise, in order to increase

the accuracy of the approximation while keeping the set of

auxiliary variables small one can put additional weight on

data points where a small error is important. Looking at

the shape of the fundamental diagram, it can be inferred

that a situation of close-to maximum density and speed

simultaneously is not likely to occur in real-life. m Therefore,

the focus should be on a good match in the area around the

functions determined in the fundamental diagram. The final

PWA approximation can be seen in Fig. 2.

B. Speed equations (3)–(4)

Within the speed equations several issues should be dealt

with, i.e.:
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Fig. 3. Fundamental diagram – PWA in 2 equations

• the density variable arising in an exponential factor in

the first term of (4),

• multiplication of speed variables,

• division of density variables by another density,

• subtraction of the term written separately in (7).

1) Density arising in exponential equation (4): Taking

the parameter settings am = 1.867, vfree = 102 km/h, and

ρcrit = 33.5 veh/km/lane [2] the curve of Fig. 1(a) is

obtained and subsequently approximated as shown in Fig. 3.

Approximation of this single-variate function is easier than

the previous case; instead of using the PWA identification

algorithms provided by the HIT-toolbox as explained in the

previous section, a more accurate least-squares optimization

can be run:

Least-squares optimization. For single-variate non-

linear functions, one could first select the number of

regions (intervals in this case) of the PWA function and

next optimize the interval lengths and the parameters

of the affine functions, minimizing the squared differ-

ence between the (weighted) original function and the

approximation.

E.g., the following PWA problem may be solved in a

least-squares manner – here given for a approximation

of a function f defined on an interval [xmin, xmax] by

a continuous PWA function fPWA(x) with 3 intervals:

min
α,β,γ,δ,ǫ,ζ

∫ xmax

xmin

(fPWA(x)− f(x))
2
dx

s.t.

fPWA(x) =























γ +
x− xmin

α− xmin
(δ − γ) for xmin≤x<α

δ +
x− α

β − α
(ǫ− δ) for α≤x<β

ǫ+ x−β
xmax−β

(ζ − ǫ) for β≤x≤xmax.

Least-squares optimization can be solved using e.g., a

Gauss-Newton or Levenberg-Marquardt approach [16].

2) Multiplication of speed variables –

vm,i(k)[vm,i−1(k) − vm,i(k)]: Rather than choosing

for a PWA approximation, here we simply keep the first



velocity variable vm,i−1(k) either constant at a value

determined by historical data (in general) or equal to the

currently measured value for predictions. Alternatively, a

more exact approximation could also be obtained using a

similar method to that of bivariate equation (1).

3) Division by density –
ρm,i+1(k)−ρm,i(k)

ρm,i(k)+κ
: As in the

previous step, the density term in the denominator is kept

constant at a historically-based value or taken according the

last measurements.

4) Subtraction of the term written separately in (7): Final

adaptations are made to this speed-drop term by adopting

the same constant approach of substituting the density in

the denominator, combined with the substitution of q0 · vm,1

as in the PWA approximation of the flow equation (1).

Finally, note that the on-ramp flow equation (6) is already

PWA, which means that together with the originally linear

equations (2), (5), (8), and (9) we now have a system of

only linear and PWA model equations. However, since the

term Jγ,TEFC(k) from (10) causes the optimization objective

to become a nonlinear nonconvex function, another PWA

approximation should be made. First, in order to reduce the

number of additional regions and therefore the computational

complexity, nℓ(k) can be taken constant as explained in

[17]. Next, the exponential function term in (10) can be

approximation by a PWA function, where we refer to the

approximation methods for the bivariate flow equation (1).

Now, in order to obtain a directly implementable optimiza-

tion problem, some further adaptations using auxiliary binary

variables are needed as will be explained next.

IV. FROM PWA TO MLD

A. Using a full PWA model

In order to be able to apply MPC to the PWA model, a

logical next step would be to combine the individual model

equations approximated in the previous section and to rewrite

them into one coherent PWA description of the entire traffic

network, i.e., in the following structure for the PWA system

in state space notation:

x(k + 1) = Aix(k) +Biu(k) + fi

y(k) = Cix(k) +Diu(k) + gi
[

xT(k) uT(k)
]T

∈ Ωi,

where x(k) ∈ R
nx , u(k) ∈ R

nu , and y ∈ R
ny denote

respectively the state, input and output vector, an where Ωi

is a convex polyhedron. For each region Ωi, Ai, Bi, Ci, Di,

and fi, gi represent constant system matrices and vectors of

appropriate sizes.

To obtain the above PWA system description, the individ-

ual PWA model equations should be combined for each link

and segment of the given traffic network, yielding a cross-

product of the PWA regions and therefore an exponential

growth of the model. Due to the large total number of regions

Ωi this results in, the composition of the full PWA traffic

model is already inefficient. Moreover, when using MPC

as explained in the next section, this PWA model has to

be evaluated over several future time steps, which causes

this PWA-MPC approach for the METANET model to be

computationally intractable already for a small network of

only a few segments.

B. A tractable approach using an MLD model

In order to do be able to efficiently solve the MPC problem

based on a PWA system description with a large number of

regions, we do not compose the fully integrated PWA model,

yet we propose to make a conversion of the individual model

equations to the following MLD description (see e.g., [18]):

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) + f

y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) + g

E1x(k) + E2u(k) + E3δ(k) + E4z(k) ≤ h,

where δ(k) ∈ {0, 1}nb denotes the vector of binary variables

and z(k) ∈ R
nz represents the auxiliary variables resulting

from the procedure discussed next. Similarly, the constraints

defined through system matrices E and constant vector h

arise along with the composition of the MLD model.

In the MLD representation one model applies in which the

binary and auxiliary variables that are needed to define the

regions are directly included in the model through additional

constraints. As compared to the full PWA system description,

in this MLD representation one large but tractable model

applies, composed simply by stacking the individual linear

and PWA model equations plus the auxiliary equations that

define the PWA regions for the individual equations, resulting

in a model that grows linearly.

C. Transformation into an MLD model

In order to formulate the MLD model as incorporated

with the MPC method as a directly solvable optimization

problem, the model can be written as an MILP where some

of the decision variables are of an integer and some of a real

domain. The following statements summarize the conversion

(adapted from [18], [19]). Here, binary dummy variables

(denoted by δ ∈ {0, 1}) are introduced that track whether

a certain region applies, which is associated with one of

the affine pieces of the PWA function. The constants m,M

denote the lower respectively the upper bound of a function

f(x) over a bounded set of input variables x. Finally, c

denotes an arbitrary constant and the small constant ǫ denotes

the machine precision (used to turn a strict inequality into a

non-strict inequality that fits the MILP framework):

• f(x) ≤ c ⇔ δ = 1 is equivalent to:

{

f(x) ≤ c+ (M − c)(1− δ)

f(x) ≥ c(1− δ) + ǫ+ (m− ǫ)δ.
(12)

• δ=δ1δ2 is equivalent to:











−δ1 + δ ≤ 0

−δ2 + δ ≤ 0

δ1 + δ2 − δ ≤ 1.

(13)



• z = δf(x) is equivalent to:



















z ≤ Mδ

z ≥ mδ

z ≤ f(x)−m(1− δ)

z ≥ f(x)−M(1− δ).

(14)

To briefly illustrate the transformation of a PWA model

equation into an MLD model equation using the above

statements, we take an expression of the form (4) or (6), i.e.:

f = min(f1, f2) that can be replaced by f = f1δ+f2(1−δ)
where δ = 1 iff f1 ≤ f2 and δ = 0 otherwise, according

the constraints (12) that show how to link a binary variable

to a given region. The latter expression of f should again

be written f = z1 + f2 − z2 with auxiliary variables

zi = fiδ, i = 1, 2, according the constraints (14). Finally,

the second system of inequalities (13) is needed when a

function (corresponding to binary variable δ) applies only

when multiple conditions hold, that again correspond to other

binary variables δ1, δ2.

V. MPC FOR TRAFFIC CONTROL

Using MPC (see, e.g., [4], [5]), based on measurements

of the current state variables at the control step kc, future

states are predicted for a prediction horizon of Np steps.

By optimization of the objective function over this horizon,

the sequence of optimal decision variables is determined.

Implementing only the first input, the procedure is repeated

in a moving horizon fashion.

Amongst the possible optimization goals for traffic models

are the maximization of traffic flow, spreading traffic density,

and minimizing the variation in control variables (see, e.g.,

[10]). We chose as our objective function the following linear

combination of terms:

J(kc) = c1
JMPC
TTS (kc)

TTSnorm
+
∑

γ∈Γ

c2,γ
JMPC
γ,TEFC(kc)

TEFCγ,norm
+c3

JMPC
pen (kc)

pennorm
,

namely the minimization of the total time vehicles spend

in the system (TTS), i.e., the time vehicles wait at an on-

ramp or mainstream origin before joining the freeway plus

the time spent on the freeway itself, the traffic emissions

and fuel consumption, and a penalty term on the variations of

the decision variables, respectively, weighted by nonnegative

constants c1, c2,γ , and c3. The three respective terms are

normalized with the nominal values TTSnorm, TEFCγ,norm,

and pennorm.

To elaborate, the first objective term of the MPC controller

is to reduce the TTS over the prediction horizon Np, i.e.,

JMPC
TTS (kc)= T

∑

k∈K(kc,kc+Np)





∑

(m,i)∈Iall

Lmλmρm,i(k)+
∑

o∈Oall

wo(k)



.

Here, Iall denotes the set of index pairs (m, i) of all links and

segments in the network, and Oall denotes the set of indices

of all origins. Further, K(kc, kc + Np) = {Mkc,Mkc +
1, . . . ,M(kc+Np)−1} where M is such that Tc = MT for

simulation time step T and control time step Tc. Note that

Fig. 4. Set-up of the case study

the TTS cost function term is linear in the state variables

ρm,i(k) and wo(k).
Further, the total vehicular emissions and fuel consump-

tion (TEFC) introduced in (10) are captured in the linear

expression

JMPC
γ,TEFC(kc) =

∑

k∈K(kc,kc+Np−1)

Jγ,TEFC(k).

To reduce the number of decision variables often a control

horizon Nc < Np is introduced and from step k + Nc − 1
on the control signals are taken constant. In practice, one

also often adds a penalty term on deviations of the decision

variables:

JMPC
pen (kc)=

kc+Nc−1
∑

j=1

{

∑

o∈Oall

|ro(kc + j)− ro(kc + j − 1)|+

aspeed
∑

(m,i)∈Call

|vctrl,m,i(kc + j)−vctrl,m,i(kc+ j−1)|

}

,

where aspeed is a weighting coefficient and where Call is

the set of all pairs of indices (m, i) of links and segments

in which a variable speed limit is active. This penalty term

can also be transformed into a linear objective function

by introducing additional real-valued auxiliary variables as

linear constraints.

All in all, we now end up with an MILP formulation, for

which efficient solvers are available (see e.g., [20], [21]).

VI. CASE STUDY, MLD-MPC

Having piecewise-approximated the METANET model

and having written it in the MLD model structure, we apply

MPC – minimizing the TTS (veh·h), thus for c2,γ=0, c3=0 –

to a traffic system consisting of a three-segment long freeway

with two lanes, an on-ramp placed in between the first and

second segment, and dynamic speed control on the first

segment. Fig. 4 depicts this set-up. We take the standard

parameter settings for the METANET model used in [2] and

[10] and simulate over a time horizon of 2.5 hours.

A selection of the results is shown in Table 1, where next

to the TTS and the relative difference between the TTS value

for the approximated and the original nonlinear model, also

the computation time for one run of the optimization step

is supplied, averaged over the number of simulation steps.

As can be seen in the table, the MLD-MPC approach returns

values that are close to the original TTS, yet while needing a

much shorter computation time.1 Here it should be noted that

1These times were obtained running Matlab 7.9.0 (R2009b) on a Linux
PC with a 2 GHz Intel Celeron processor and 2Gb RAM.



TABLE I

COMPARISON OF TTS (VEH·H) AND CPU TIME (S) AND THEIR RELATIVE DIFFERENCES FOR SEVERAL SCENARIO’S

Scenario TTS nonlinear MPC TTS MLD-MPC (% diff.) CPU time nonlinear MPC CPU time MLD-MPC (% diff.)

Np=5,Nc=3min 1318.7 veh·h 1323.6 veh·h (0.37%) 0.907 s 0.173 s (-80.9%)
Np=7,Nc=5min 1318.7 veh·h 1323.6 veh·h (0.37%) 3.143 s 0.299 s (-90.5%)
Np=10,Nc=9min 1318.7 veh·h 1333.5 veh·h (1.12%) 10.88 s 0.638 s (-94.14%)

for reliable nonlinear optimization results, each (nonlinear)

optimization step should be run several times in order to

prevent reaching a local optimum only, meaning that the CPU

times for nonlinear MPC (here run 10 times) can in fact be

seen as lower bounds on the actual computation times.

In case of an extension to a four-segment network with

Np = 7min and Nc = 5min, the mean computation time of

one optimization step over the simulation horizon for the

MLD-MPC approach increases only a little to 0.296 s as

compared to an increase to 3.89 s for nonlinear MPC. The

TTS values are again comparable (1583.9 vs. 1579.9 veh·h).

Therefore, and also from the increasing gains in computation

time for larger prediction and control horizons that can be

seen in Table 1, the MLD-MPC approach is expected to

even perform better w.r.t. computational requirements and

as compared to the original nonlinear MPC method, when it

is applied to larger traffic networks.

VII. CONCLUSIONS

In the current paper, a piecewise-affine (PWA) formulation

of the traffic model METANET has been made in order to

ease the computational complexity of the original nonlinear

nonconvex traffic control problem when adopting model-

based predictive control (MPC). Since a direct PWA-MPC

implementation turned out to be computationally intractable

due to the large number of regions when taking all individual

approximations together into the PWA model of the traffic

network, we have proposed to use a mixed-logical dynamic

(MLD) representation of the approximated model equations,

after which MPC could be applied at a significantly improved

efficiency and without much deterioration of the objective

function value (TTS). Moreover, based on the simulations

run, it is expected that the larger the traffic network of

application, the more clearly the benefits of the MLD-MPC

approach will show as compared to the original nonlinear

formulation.
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