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A New Ant Colony Routing Approach

with a Trade-off Between System and User Optimum

Zhe Cong, Bart De Schutter, and Robert Babuška

Abstract— Dynamic traffic routing (DTR) refers to the pro-
cess of (re)directing traffic at junctions in a traffic network cor-
responding to the evolving traffic conditions as time progresses.
This paper considers the DTR problem for a traffic network
defined as a directed graph, and deals with the mathematical as-
pects of the resulting optimization problem from the viewpoint
of network flow theory. Traffic networks may have thousands
of links and nodes, resulting in a sizable and computationally
complex nonlinear, non-convex DTR optimization problem. To
solve this problem Ant Colony Optimization (ACO) is chosen as
the optimization method in this paper because of its powerful
optimization heuristic for combinatorial optimization problems.
However, the standard ACO algorithm is not capable of solving
the routing optimization problem aimed at the system optimum,
and therefore a new ACO algorithm is developed to achieve the
goal of finding the optimal distribution of traffic flows in the
network.

I. INTRODUCTION

Congestion on traffic roads may have different causes,

e.g., accidents, road works, and bottlenecks, but one of the

major causes of congestion is the difference between the

demand and the capacity of the roads. One promising way

of addressing this problem is to improve traffic management

and control strategies. Dynamic traffic routing (DTR) [1]

is an effective traffic management and control method that

guides drivers to their route according to current (and future)

traffic conditions when several alternative routes exist to their

destination. In dynamic traffic routing, the notion system

optimum and user optimum [2] play an important role. The

system optimum is achieved when the vehicles are guided

such that the total travel costs of all drivers (typically the

total travel time) are minimized, while the user optimum

means that on all alternative routes used, the costs are

equal and minimal, and higher than those on the routes

that are not used [2]. In general, the system optimum and

the user optimum are two conflicting objectives, because in

the system optimum not every user will optimize his or her

individual objectives, and in the user optimum the collective

objective will not be optimized. In this paper, we aim at

solving the routing problem by considering both the system

and the user optimum, finding a trade-off between them to

benefit both the collective and the individual objectives.

For this purpose, we introduce a new routing algorithm,

derived from the existing class of Ant Colony Optimiza-

tion (ACO) algorithms [3], [4]. ACO has proven to have

strong capabilities for solving hard combinatorial optimiza-

tion problems, and it has several applications in traffic,

The authors are with the Delft Center for Systems and Con-
trol, Delft University of Technology, Delft, The Netherlands, email:
{z.cong,b.deschutter,r.babuska}@tudelft.nl

including traffic routing [5], [6]. However, most of the

algorithms reported in literature have their own limitations,

e.g., the algorithm in [5] only focuses on the user optimum

and ignores the impact of behavior of individual drivers on

the traffic system, while — although it considers the system

optimum — the paper [6] only investigates single-origin

single-destination networks, and it uses a static traffic model

where the traffic conditions are time-invariant, which makes

the result less realistic. These problems are the motivation

for developing a new algorithm in this paper.

In this paper we use a dynamic traffic network simulation

model and include multiple origins and multiple destinations

as well as a dynamic travel cost function that is based

on the current and future conditions of the traffic network.

The main novelty in our approach is that we pay special

attention to the trade-off between the system optimum and

the user optimum when we optimize the routing. Since the

standard ACO algorithm only focuses on the user optimum,

we develop a new ant-based optimization method that allows

to steer the routing decisions towards the system optimum

too, by introducing the stench pheromone, which can be

used to make links less attractive in the case that there are

already too many ants using that link. We use this new ACO

algorithm, together with a dynamic traffic flow model, to

optimize the routing decisions and to prevent or alleviate

traffic congestion.

The rest of this paper is structured as follows. Section

II defines the dynamic traffic routing problem. Next, we

briefly recapitulate the standard ACO algorithm in Section

III. Section IV then introduces the new ACO algorithm

with stench pheromone. In Section V this stench-based ACO

algorithm is then applied to solve the dynamic traffic routing

problem. Section VI illustrates the new method using a

study case involving the Singapore Expressway Network. We

conclude with a short discussion of open issues and topics

for future work in Section VII.

II. PROBLEM STATEMENT

A traffic network can be modeled as a directed graph with

nodes and links as shown in Figure 1. The set of origins of

the network is denoted by O , the set of destinations by D ,

the set internal nodes by N , while L is the set of all links

in the network. For each OD pair (o,d)∈O×D , qin,o,d(k) is

the traffic inflow with destination node d entering at origin

node o at time step k, where k indicates the time instant

t = kT with T the simulation time step of the traffic flow

model. For each link l ∈ L , the flow of vehicles at time
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Fig. 1. Illustration of how the inflow qin,o,d(k) of the OD pair (o,d)
is distributed along multiple routes. The dashed lines correspond to the 4
routes with the highest flows (see the network pruning step of Section V-B
for details).

step k that are traveling towards destination d is denoted by

ql,d(k).
The total inflow Qn,d(k) at time step k of node n ∈ N

with destination node d is given by:

Qn,d(k) = ∑
ℓ∈I(n)

qℓ,d(k),

where I(n) is the set of incoming links for node n. Each

outgoing link l ∈ O(n) (with O(n) the set of outgoing links

for node n) is then characterized by the traffic flow ql,d(k):

ql,d(k) = βn,l,d(k)Qn,d(k),

where βn,l,d(k) is the splitting rate for link l at node n with

the destination d. The total flow ql(k) on link l is then given

by:

ql(k) = ∑
d∈D

ql,d(k) .

Each link has a dynamic cost ϕl(k) per unit traffic flow, so

the resulting flow pattern can be characterized by the cost

function

J(k) =
Np

∑
j=1

∑
l∈L

ϕl(k+ j)ql(k+ j), (1)

where Np is the prediction horizon, which is introduced

so that we can optimize the routing based not only on

the current traffic conditions, but also including the future

traffic conditions. The problem of minimizing J(k) can be

considered as a dynamic version of minimum cost flow

routing problem.

A traffic network normally contains a large number of

links and nodes, so optimizing all the splitting rates βn,l,d(k)
dynamically results in a huge nonlinear, non-convex opti-

mization problem, which is computationally very complex,

making it almost intractable to solve the problem on-line.

To address this issue, we introduce a two-step approach

consisting of a network pruning step, followed by a flow

optimization step using the new stench-based ACO algorithm

that will be proposed in Section IV. The resulting DTR

approach will then be elaborated in Section V. But first we

briefly introduce the standard ACO algorithm.

III. STANDARD ANT COLONY OPTIMIZATION

Essentially, the Ant Colony Optimization (ACO) algorithm

aims to find optimal (e.g., shortest) routes in a network by

assigning and dynamically updating pheromone levels to the

links in the network, where in the end the links with the

highest pheromone levels correspond to the optimal routes.

The most basic ACO algorithm is called the Ant System

[3] and works as follows. A set of M ants are randomly

distributed over the network to search the best route to one or

more destinations in the solution space S . Initially for each

ant c, a partial solution sp,c ∈S is empty and all pheromone

variables are set to a value τ0 > 0. In each iteration step, each

ant c moves from node i to node j in the network, based on

a probability pc{ j|i} as below:

pc{ j|i}=
τα

i j

∑l∈Ni,c
τα

il

, ∀ j ∈Ni,c, (2)

with τi j the pheromone level previously deposited by the

ants on link (i, j) and the parameter α ≥ 1 determining the

relative importance of τi j. The feasible neighborhood Ni,c

of ant c at node i is the set of nodes that are connected to

i and that have not yet been visited by ant c in the current

iteration. Afterwards, it adds link (i, j) to its partial solution

sp,c until it reaches the destination node. This is the inner

loop in the ACO algorithm. Within the inner loop, each ant

repeatedly applies (2) to construct a solution sp,c. Note that

a higher pheromone value τi j in (2) increases the probability

that ants at node i choose node j as their next node.

When all ants have reached a destination,(or when the

maximum number of steps Ks has been reached), all the

candidate solutions sp,c are evaluated using a fitness function

F(s) : S → R
+. The fitness function F(s) is accordingly

used to calculate the pheromone deposit ∆τi j(s) for the next

iteration:

∆τi j(s) =

{

F(s) , if (i, j) ∈ s

0 , otherwise.
(3)

The pheromone level τi j on link (i, j) is updated by:

τi j← (1−ρevap)τi j + ∑
s∈Supd

∆τi j(s), (4)

with ρevap ∈ (0,1) the evaporation rate and Supd the set of

solutions that are eligible to be used for the pheromone

update. This is the outer loop in the ACO algorithm. Note

that there exist various rules to construct Supd, of which the

most standard one belongs to the Ant System and uses all

the candidate solutions found in the current iteration.

IV. ANT COLONY OPTIMIZATION WITH STENCH

PHEROMONE

The main reason for introducing the stench pheromone is

to prevent too many ants from converging to only one optimal

solution s∗. Ants always have the ability to find the best route

in the network, but sometimes one does not only want them

to find the best route only, but rather an optimal distribution

of ants in the network is desired. Unfortunately, standard



ACO has no capability to achieve this goal. However, with

the stench pheromone ants can be pushed away when there

are already enough ants on the best solution, and since no

more ants can be attracted by the best route, they start to

search the second, third, etc. best solutions in the solution

space.

So the stench pheromone is used to keep ants away from a

given link. This stench pheromone, when deposited on a link

(i, j), will result in a decrease of the pheromone level τi j,

and therefore also in a decrease of the probability pc{ j|i}.
As a result fewer ants will choose link (i, j). So two types of

pheromone are used in the new ACO algorithm proposed in

this paper. The regular pheromone is deposited by ants while

the stench pheromone is deposited by the global pheromone

deposit mechanism. The ants will then choose links under

the combined effect of the two types of pheromone. In the

extreme case, when the stench pheromone is strong enough

to cover the regular pheromone on the link (i, j), the total

pheromone level τi j may become negative, which means that

ants try to avoid traveling to this link, and this link is not

attractive for the ants anymore.

Compared to (3), a new pheromone deposit function is

given by:

∆τi j(s) =

{

F(s)−G(i, j) , if (i, j) ∈ s

0 , otherwise.
(5)

where G(i, j) is a fitness function assigning a stench value

to the link (i, j); this value will in general depend on the

number of ants that have selected the link (i, j) in their final

solution (see Section V.V-C for an example).

The resulting value ∆τi j(s) is substituted into the same up-

date function (4) to calculate the pheromone level τi j for the

next iteration. But note that the stench pheromone may also

make τi j negative (see (5)). Correspondingly, pc{ j|i} will

have no practical meaning if τi j is negative, and therefore,

(2) needs to be some modified as follows:

pc{ j|i}=
(max{τmin,τi j})

α

∑l∈Ni,c
(max{τmin,τil})

α , ∀ j ∈Ni,c, (6)

where τmin is the minimum pheromone level on each link,

which guarantees a lower bound of pheromone level on each

link, and thus prevents the denominator of (6) becoming zero.

V. ANT COLONY ROUTING ALGORITHM

A. Main Algorithm

Ant Colony Routing (ACR) is developed to solve the

dynamic traffic routing problem by using the ACO algorithm

with the stench pheromone. It is important to note that there

are several differences between an ant network and a traffic

network. First of all, traffic network management strives for

the system optimum, different from ants which strive for the

user optimum. Second, in a traffic network each vehicle has

a given destination associated to it, while the ants in ACO

do not have individually pre-assigned destinations. Third, a

traffic network is constrained by link capacity, but an ant

network is not. Last but not least, link costs in a traffic

Ant Colony
Routing Network

Traffic

Dynamic Traffic
Simulation

βn,l,d(k)

βn,l,d(k)

ρl(k)
ql(k)
vl(k)

ρsim,l(k)

qsim,l(k)
vsim,l(k)

qin(k)

Fig. 2. Closed-loop control of traffic system with the ACR algorithm and
the dynamic traffic prediction model.

network dynamically depend on the traffic conditions, while

links costs in an ant network are fixed and static. Solutions

for each these problems are proposed in detail below.

In order to make ants strive for the system optimum as

well, the stench pheromone is used to prevent ants from all

converging to the same route (or links). Recall that the stench

deposit mechanism introduced in Section IV can push ants

away from the given link. Therefore, the stench pheromone

makes ants distribute themselves over several best routes, and

hence steers the traffic routing towards the system optimum.

Furthermore, ants in a network with multiple destinations

may be guided to a destination that they are not going to

if the pheromone levels are not distinguished by different

destinations. To solve this problem, we use colored ants,

where we assign one color per destination. Therefore, traffic

flows can follow the trajectory of the corresponding col-

ored ants to the desired destinations. Colored ants produce

colored pheromone, and they only interact with that given

pheromone. Note that the stench pheromone is uncolored

and thus affects all ants.

Moreover, we can add a maximum ant capacity to the links

of the ant network to constrain the number of ants (this can

be done though a barrier function approach by increasing the

stench pheromone drastically as the total number of ants on

a link approaches the maximum link capacity).

Finally, we use a dynamic traffic simulation to define the

link cost. The closed-loop control strategy of using ACR

to determine the correct traffic flow distribution in a traffic

network is illustrated in Figure 2. The dynamic traffic model

is used to predict and simulate the evolution of the traffic

network for the period [kT,(k + Np)T ]. This provides the

simulated variables — density ρsim,l(k+ j), flow qsim,l(k+ j),
and space-mean speed vsim,l(k+ j) on each link l for j =
1, . . . ,Np — to the ACO optimization algorithm. All these

variables are used to determine the dynamic costs ϕl(k+ j),
and pheromone is deposited accordingly. The corresponding

ants distribution is then used to decide the splitting rate

βn,l,d(k) (see (14) below), which is the control signal applied

to the real traffic network during the period [kT,(k+ 1)T ].
At time step k+1, the whole process is repeated again in a

rolling horizon fashion.

The control strategy in Figure 2 represents the upper



control layer, while in the lower control layer, the splitting

rates β are translated into specific (hard or soft) route guid-

ance mechanisms, such as dynamic matrix panels with route

information, dynamic tolling, interaction with route guidance

devices, and so on. However, the exact implementation of the

route guidance mechanisms is outside the scope in this paper

(see, e.g., [7] for more information).

As indicated before the new ACR method we propose

consists of two steps: network pruning and dynamic flow

optimization. These steps are explained in more detail in the

next subsections.

B. Network Pruning

The network pruning part aims to remove the unnecessary

links and nodes in a traffic network and to obtain the

best links for each OD-pair so that flows only have to

be distributed over those links rather than over the entire

network. This is illustrated in Figure 1, where only the routes

indicated by dashed lines could be chosen. Note that the

flows of different OD pairs may share the same links.

For the network pruning step a quasi-static approach is

considered, where a day is divided into several time slots

(e.g., a morning rush hour, a non-busy midday period, and

the evening rush hour) where for each time slot we determine

the best routes considering the average traffic conditions

(in particular, average link speeds) for the given time slot.

The network pruning can be easily solved by using linear

programming, as will be shown next.

The aim is to determine the traffic flows ql,d on each link l

in the network for each destination d ∈D such that the total

travel cost is minimized. We assume here that the travel time

is the travel cost to be optimized. For each link l ∈L we

define the average travel time tl as Ll/vl with Ll the length

of link l and vl the average speed on link l.

Now we can define the problem of minimizing the total

travel time as:

min
ql,d

∑
d∈D

∑
l∈L

T · tl ·ql,d (7)

with T the simulation time interval. Note that (7) aims to

minimize the total travel time, because T ·ql,d expresses the

number of vehicles on link l per simulation step, and thus

T · tl ·ql,d corresponds to the total travel time on link l.

We also have to define some additional constraints:

qlout(o),d = qin,o,d , ∀(o,d) ∈ O×D (8)

∑
d∈D

∑
l∈I(n)

ql,d = ∑
d∈D

∑
l∈O(n)

ql,d , ∀n ∈N (9)

∑
d∈D

ql,d 6 qcap,l , ∀l ∈L (10)

ql,d > 0, ∀l ∈L ,∀d ∈D , (11)

where qcap,l is the capacity of link l, lout(o) is the single

outgoing link of node o (otherwise we can introduce a virtual

link with zero length and zero travel time), and I(n) and O(n)
are respectively the sets of incoming and outgoing links for

node n. Note that (9) states that the inflow of node n equals

the outflow of node n (conservation of vehicles). It is easy to

verify that (7)–(11) is a linear programming problem, which

can be solved very efficiently using, e.g., a simplex method

or an interior-point algorithm [8], [9].

Based on the solution of the above linear programming

problem, we select for each OD-pair (o,d)∈O×D the Nbest

best links with the highest link flows. The non-selected links

and links that do not belong to any path from o to d are then

discarded. The resulting reduced network will then be used

in the dynamic flow optimization step.

C. Dynamic Flow Optimization

The dynamic flow optimization part is based on ACO

with the stench pheromone and colored ants, and works

as follows. The ant network corresponds to the real traffic

network graph, but with only the links selected in the network

pruning step included. At each step k (corresponding to

the time instant t = kT ), we put the ants on the origins

in proportion to the total demand for each OD-pair in the

prediction period [kT,(k+Np)T ] and let them find their way

to their destination, all according to their color. In order to

compute the travel times of the ants on the links, we now

use the dynamic traffic flow model as follows.

At time step k the current state of the traffic network

is measured at estimated. Next, a simulation is run for the

period [kT,(k+Np)T ] using the current state, the expected

demand for each OD-pair, and the current splitting rates

β . From the simulation results the average speed vav,l is

determined for each link l in the network, and next the cost

for each ant traveling on link l can be computed as
Ll

vav,l
,

where Ll is the length of link l.

For the ACO algorithm we define the fitness function F for

a given solution s as the travel time on that route. The stench

function G(i, j) for each link (i, j) could be a monotonously

increasing function of the number of ants Nant
i j on the link

(i, j), which is initially low, and then increases gradually

as the threshold number of ants Nant
thresh,i j is reached. This

threshold number of ants Nant
thresh,i j corresponds to a threshold

traffic density ρthresh,i j in the traffic network, which in its

turn could be equal to the critical traffic density ρcrit,i j, or

in some cases, like links near schools or hospitals, a much

lower value. The general formulation of G(i, j) is:

G(i, j) = max
(

0,Pi j(N
ant
i j −Nant

thresh,i j)
)

(12)

where Pi j is the slope of the stench pheromone function, and

Nant
thresh,i j is the threshold number of ants on link (i, j). The

threshold number of ants can be calculated by:

Nant
thresh,i j = ρthresh,i j ·λi j ·Li j ·α (13)

where λi j is the number of lanes on link (i, j), Li j is the

length of the link (i, j), and α is a coefficient of the number

of vehicles that one ant represents.

The above process consisting of a simulation followed

by the ACO algorithm is repeated several times for each

time k until the splitting rates β converge or until a stopping

criterion (e.g., maximum number of iterations, or the changes

in the splitting rates dropping below a given threshold) is

reached.
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Fig. 3. The central and eastern parts of the Singapore expressway network.

Once the search is finished, we translate the number of ants

back into the splitting rates as follows. Let nants,l,d(k) be the

number of ants going to destination d via link l in the optimal

solution produced by the stench-based ACO-algorithm with

colored ants for time step k. For each node n in the ant

network, each destination d, and each outgoing link l of node

n in the ant network, we can obtain the splitting rate βn,l,d(k)
according to the ratio of the number of ants nants,l,d(k) with

destination d on the link l to the total number of ants with

destination d on all the outgoing links of node n:

βn,l,d(k) =
nants,l,d(k)

∑ℓ∈Oant(n) nants,ℓ,d(k)
(14)

where Oant(n) is the set of outgoing links of node n in the

ant network. If the node n or the link l are present in the

real traffic network graph but not in the ant network (due

to the network pruning step), we set βn,l,d(k) = 0. Next, the

splitting rates β are imposed on the real traffic flows via

route guidance measures.

VI. CASE STUDY

A. Singapore Expressway Network

In order to illustrate the new ACR approach we apply it to

the same case study that was considered in [6], viz. the Sin-

gapore expressway network [10]. Instead of investigating the

whole network, only the central and eastern parts are chosen

(see Figure 3), which contain 18 highway stretches (36 if

we consider both directions), 8 origins, and 8 destinations.

This area includes the central business district, connected

to origins and destinations 5, 6, 7, and 8, as well as the

connection with the airport through origin and destination 4.

In this case study, the ACR algorithm will be applied at

origin o4 (i.e. for traffic from the airport and the east region

of the island), and all traffic is assumed to have its destination

in the business district (destinations d5, d6, d7, d8). We set

the simulation period as 2 hours, representing a morning rush

hours from 7 : 30 am to 9 : 30 am. The inflow of the network

increases from 0 veh/h to 6000 veh/h during the first half

hour, stays at 6000 veh/h for an hour, and then decreases

from 6000 veh/h to 0 veh/h during the last half hour.

B. Simulation Settings

We use the METANET traffic model [11] parameters as

found in [12]: simulation sample time T = 10 s, critical

density ρcrit,m = 27 veh/km/lane, free-flow speed vfree,m =
110 km/h, speed-flow relationship parameter am = 2.34, and

speed equation parameters η = 30 km2/h, τ = 10 s, κ = 20

veh/km.

In order to take the future traffic conditions into consider-

ation, we put the prediction horizon Np = 30, which means

the prediction time length is NpT = 30 ∗ 10 s = 300 s = 5

minutes. Since the maximal inflow of the network is 6000

veh/h, at most 500 vehicles can enter the network during this

period. Therefore, we set the number of ants in the trial to

500, using one ant to represent one vehicle. Moreover, for

a given route s, the travel time cost ϕ(s) is the sum of the

costs on all of links of route s, ϕ(s) = ∑l∈s
Ll

vav,l
. The fitness

function F(s) is the inverse of the travel cost ϕ(s):

F(s) =
1

ϕ(s)
(15)

In the Singapore express network, the slope Pi j in (12)

is set at 1 in most of links. However, link 1, 2, 3, 4, 9,

10, 11, 12, 17, 18, 23, 24, 25, and 26 are in the central

business district, so traffic flows should be more limited on

these links, and hence the corresponding slope Pi j is set at

2 so as to more heavily penalize too many ants converging

on those links. Besides, the threshold density per lane is

25 veh/km/lane. Both parameters are substituted into (13) to

calculate the threshold number of ants on each link.

C. Simulation Results

Through applying network pruning, we find out two best

routes, R1 = {29,6,10} (15 km) and R2 = {29,8,28,11} (16

km). Link 29 is the link connected to the origin 4, and link

6 and 8 are two outgoing links of link 29. For the dynamic

flow optimization part, we first run ACR with and without

the stench pheromone for just one time step to compare the

different results. In Figure 4, we can see the number of ants

on link 29 is always 500, because every ant will pass it.

At the beginning of the iteration cycle, the numbers of ants

choosing link 6 and 8 are nearly equal. However, at the end of

the iteration cycle, almost every ant chooses link 6 if there

is no stench pheromone deposited, while with the stench

pheromone, almost half of the ants choose link 8. This is

because the stench pheromone prevents too many ants from

converging to one link, and thus pushes some ants to search

for a second best link. The splitting rate at each node in the

traffic network is then calculated by the distribution of ants

under the effect of the stench pheromone.

In Figure 5, the blue solid lines represent the flow on

each link in route R1 = {29,6,10}, with destination node

d5, and the red dash lines represent the flow on each link

in route R2 = {29,8,28,11}, with destination node d6. If

we use ACO without the stench pheromone, all the vehicles
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Fig. 4. Without the stench pheromone, all ants tend to choose link 6, while
with the stench pheromone, ants choose both links. Link 6 attracts a little
more ants.

are guided to the best route R1 = {29,6,10}. However, the

capacity of link 6 is 6340 veh/h, while the capacity of link 10

is 4755 veh/h, because there is the bottleneck from link 6 to

link 10. Hence, we need introduce the stench pheromone to

disperse the vehicles. We can see that the flows are divided

over both routes in Figure 5, with a little more vehicles

choosing R1 = {29,6,10}. The stench pheromone decreases

the pheromone amount on the best route, and successfully

directs part of the traffic flows to route R2. Under this traffic

assignment, neither of traffic flows exceeds the capacity.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed a new method for solving the Dynamic

Traffic Routing (DTR) problem using a two-step approach:

network pruning and network flow optimization. This ap-

proach significantly reduces the computational burden of

solving the complex DTR optimization problem. Besides,

we have also developed a novel ant-based algorithm with

the stench pheromone, which can be used to prevent ants

converging to one route and hence it can steer the DTR

distribution towards the system optimum rather than the user

optimum, as is the case in standard ant colony optimization.

Further work includes more detailed case studies, ex-

tensive assessment of the performance and efficiency of

the proposed ant colony routing method compared to other

DTR methods, inclusion of and integration with other traffic

control measures, analysis of the theoretical properties (e.g.,

convergence) of the new ant colony optimization algorithm
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Fig. 5. Using ACO with the stench pheromone, the traffic flow are divided
over R1 and R2.

with stench pheromone, and investigation on how to tune

the trade-off between user optimum and system optimum

through the selection of the stench function G.
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