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Optimal Trajectory Planning for Trains Using Mixed Integer Linear

Programming

Yihui Wang, Bart De Schutter, Bin Ning, Noortje Groot, and Ton J.J. van den Boom

Abstract— The optimal trajectory planning for trains under
constraints and fixed maximal arrival time is considered. The
variable line resistance (including variable grade profile, tun-
nels, and curves) and arbitrary speed restrictions are included
in this approach. The objective function is a trade-off between
the energy consumption and the riding comfort. First, the
nonlinear train model is approximated by a piece-wise affine
model. Next, the optimal control problem is formulated as a
mixed integer linear programming (MILP) problem, which can
be solved efficiently by existing solvers. The good performance
of this approach is demonstrated via a case study.

I. INTRODUCTION

Because of the rising energy prices and environmental

concerns, the energy efficiency of transportation systems

becomes more and more important, and this also includes

railway networks [1], [2]. Meanwhile, the interest of railway

operators in energy efficiency has been rising more and

more in recent years. Therefore, some systems have been

developed to supervise drivers to drive the train optimally,

such as FreightMiser [3] and driving style manager [4].

On the other hand, the automatic train operation system of

advanced train control systems plays a key role in ensuring

accurate stopping, operation punctuality, energy saving, and

riding comfort [5]. It is responsible for calculating the

optimal speed-position reference trajectory based on the

information collected by train control systems, such as line

conditions, traction, and braking performance, etc. Therefore,

an efficient algorithm for calculating the reference trajectory

is significant to the driving performance of the automatic

train operation system.

The research of the optimal control of train operations be-

gan in the 1960s. A simplified train optimal control problem

was studied by Ichikawa [6], [7], which was solved by the

maximum principle. Later on, a lot of researchers explored

this optimal control problem by various methods, which can

be grouped into the following two main categories [4]:

• Analytical solution,

• Numerical optimization.

A. Analytical solution

The train is usually modeled as a mass point in the optimal

control problem. According to whether the traction and
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braking force is continuous or discrete, there are two kinds of

models, i.e. continuous-input models and discrete-input mod-

els. The research on discrete-input models is mainly done by

the SCG group of the University of South Australia [3], [6].

A type of diesel-electric locomotive is considered, whose

throttle can take only a finite number of positions. Each

position determines a constant level of power supply to

the wheels. Several results, which include consideration of

varying grades and speed restrictions, were presented. But

nowadays many locomotives or motor cars can provide a

continuous traction and braking force. For a continuous-

input model, Khmelnitsky [7] described the mathematical

model of the train by using the kinetic energy as the state

variable. In that study, the optimal control problem is solved

under varying gradient and speed restrictions. An analytical

solution, which contains the sequence of optimal controls and

the change points, was obtained by Liu and Golovicher [2]

for the continuous-input model.

The optimal driving style of analytical solution contains

four optimal control regimes: maximum acceleration, cruis-

ing at constant speed, coasting, and maximum deceleration.

It is worth to note that the analytical methods often meet

difficulties if more realistic conditions are considered that

introduce complex nonlinear terms into the model equations

and the constraints [8].

B. Numerical optimization

A number of advanced techniques such as fuzzy and

genetic algorithms have been proposed to calculate the

optimal reference trajectory of train operation. Chang and

Xu [9] proposed a modified differential evolution algorithm

to optimally tune the fuzzy membership functions that pro-

vide a trade-off of punctuality, riding comfort, and energy

consumption. The implementation of a genetic algorithm to

optimize the coast control is demonstrated by Chang and

Sim [10]. Han et al. [11] also use a genetic algorithm to

construct the optimal reference trajectory. They conclude that

the performance of their genetic algorithm is better than that

of the analytic solution obtained by Howlett and Pudney [3].

The train optimal control problem is solved by nonlinear

programming and dynamic programming in [4]. The per-

formance of a sequential quadratic programming algorithm

and discrete dynamic programming are evaluated. Ko et

al. [8] apply Bellman’s dynamic programming to optimize

the optimal reference trajectory. In [12] multi-parametric

quadratic programming is used to calculate the optimal

control law of train operation.



Furthermore, due to the comparable high computing power

available nowadays, more and more researchers are applying

numerical optimization approaches to the train optimal con-

trol problem. But in these approaches, the optimal solution

is not always guaranteed. In addition, the computation is

often too slow, e.g. the computation time in [12] is 12 hours.

Therefore, we propose to solve this optimal control problem

as an MILP problem, which can be solved efficiently using

existing commercial and free solvers [13], [14]. However, we

have to make some approximations in order to construct an

MILP formulation of the nonlinear train operation model.

The remainder of this paper is structured as follows. In

Section II the nonlinear model of train operation is presented.

Section III formulates the optimal control problem of train

operation where the position is chosen as independent vari-

able instead of time. In Section IV a mixed logical dynamic

(MLD) model is formulated and the optimal control problem

is written into an MILP problem. Section V illustrates how

to calculate the optimal reference trajectory by the MILP

approach with a case study. We conclude with a short

discussion of some topics for future work in Section VI.

II. TRAIN MODEL

In the literature of train optimal control, the mass-point

model of train is usually used [15]. The motion of a train

can be described by the following simple continuous-time

model [2]:

mρ
dv

dt
= u(t)−Rb(v)−Rl(s), (1)

ds

dt
= v, (2)

where m is the mass of the train, ρ is a factor to consider

the rotating mass [1], v is the velocity of the train, s is the

position of the train, u is the control variable, i.e. the traction

or braking force, which is bounded by the maximum traction

force umax and the maximum braking force umin, umin ≤ u ≤
umax, Rb(v) is the basic resistance including roll resistance

and air resistance, and Rl(s) is the line resistance caused by

track grade, curves and tunnels.

In practice, according to the Strahl formula [16] the basic

resistance Rb(v) can be described as

Rb(v) = m(a1 +a2v2),

where m is the train’s mass, the coefficients a1 and a2 depend

on the train characteristics and the wind speed, which can

be calculated from the data known about the train.

The line resistance Rl(s) caused by track slope, curves,

and tunnels can be described by [17]

Rl(s) = mgsinα(s)+ fc(r(s))+ ft(lt(s),v),

where g is the gravitational acceleration, α(s), r(s) and lt(s)
are the slope, the radius of the curve, and the length of

the tunnel along the track, respectively. The curve resistance

fc(·) and the tunnel resistance ft(·) are given by empirical

formulas. An example of such an empirical formula of the

curve resistance is Roeckl’s formula [18]

fc(r(s)) =
6.3

r(s)−55
m for r(s)≥ 300m,

fc(r(s)) =
4.91

r(s)−30
m for r(s)< 300m.

When running in tunnels, the train experiences a higher air

resistance that depends on the tunnel form, the smoothness

of tunnel walls, the exterior surface of the train, and so on.

The expression for tunnel resistance is [18]

ft(lt(s),v) = at(lt(s))v
2
,

where at is the tunnel factor, which depends on tunnel

length and train type. For the tracks outside the tunnels, the

coefficient at is equal to zero.

III. OPTIMAL CONTROL PROBLEM

As stated in [2], reference trajectory planning for trains can

be formulated as an optimal control problem. The traction

or braking force u then is the control variable. The state

variables are the train position s and speed v. The objective

function to be minimized could be the trip time, the energy

consumption for a given trip time, or the total operation cost

(a weighted sum of energy consumption and trip time). In

this paper, we consider the energy consumption for a fixed

amount of time T as objective criterion. In addition, the

riding comfort is considered, which is expressed as a function

of the change of the control variable u since reducing the

number of transitions and the rate of change of u may

improve passenger comfort [9]. The objective function can

be written as:

J =
∫ T

0

(

u(t) · v(t)+λ ·
∣

∣

∣

du(t)

dt

∣

∣

∣

)

dt → min (3)

subject to the train dynamics (1) and (2), the following

constraints

umin ≤ u(t)≤ umax (4)

0 ≤ v(t)≤Vmax(s) (5)

and the boundary conditions

s(0) = sstart, v(0) = vstart, (6)

s(T ) = send, v(T ) = vend, (7)

where J is the weighted sum of the energy consumption and

riding comfort of the train operation; the maximum allowable

velocity Vmax(s) depends on the train characteristics and the

line conditions, and as such it is usually a piecewise constant

function of the coordinate s [2], [7]; sstart and vstart are the

positon and the velocity at the beginning of the route; send

and vend are the position and the velocity at the end of the

route. The duration of the trip T is usually given by the

timetable.

As proposed in some previous works [2], [15], [7], [6], it

is better to choose the position s as an independent variable

rather than the time t. On the one hand, the choice of



the position s as the independent variable will simplify the

consideration of track-related data, such as line resistance

and speed limits. On the other hand, the analytical and

numerical study of the optimal control problem will be

significantly simplified. Furthermore, Khmelnitsky [7] chose

the total energy of the train and time t as states where the

total energy includes kinetic and potential energy. Similarly,

Franke et al. [15] used kinetic energy per mass unit and time

as states. The choice of kinetic energy instead of speed v will

facilitate the study of the optimal control problem, because

this choice eliminates some of the model nonlinearities,

but not all model nonlinearities. Therefore, we will also

choose kinetic energy per mass unit E = 0.5v2 and time t

as states, and the position s as the independent variable. The

continuous-time model (1) and (2) can then be rewritten as

the following continuous-space model:

mρ
dE

ds
= u(s)−Rb(

√
2E)−Rl(s), (8)

dt

ds
=

1√
2E

. (9)

The optimal control problem (3)- (7) can be stated as:

J =
∫ send

sstart

(

u(s)+λ ·
∣

∣

∣

du(s)

ds

∣

∣

∣

)

ds → min (10)

subject to the model (8) and (9), the following constraints

umin ≤ u(s)≤ umax, (11)

0 ≤ E(s)≤ Emax(s), (12)

and boundary conditions, which are rewritten as

E(sstart) = Estart, E(send) = Eend, (13)

t(sstart) = 0, t(send) = T, (14)

where Emax(s) = 0.5V 2
max(s), Estart > 0, and Eend = 0.5v2

end.

An assumption should be noted for the above equations.

It is assumed that the unit kinetic energy E(s) > 0, which

means the train’s speed is always strictly larger than zero,

i.e. the train travels nonstop [7]. Khmelnitsky states that this

assumption is not restrictive in practice for two reasons.

First, the speed of the initial start and the terminal stop

can be approximated by small nonzero velocities. Second,

stops at an intermediate point of the trip will not be planned

deliberately in the optimal control design for a single train’s

operation.

IV. SOLUTION APPROACH—MILP

Vašak et al. [12] proposed a discrete-time model of the

train operation to calculate the optimal control law by

dynamic programming. They split the time period into K

intervals and assume the traction force or braking force to

be constant on each interval [kT,(k+ 1)T ), where T is the

sampling time. Franke et al. [15] similarly split the position

horizon [sstart,send] into N intervals to get a discrete-space

model. They assumed that the track and train parameters

as well as traction or breaking force can be considered as

constant in each interval [sk,sk+1] with length ∆sk = sk+1−sk,

for k = 1,2, . . . ,N. Note that s1 = sstart and sN+1 = send. In

this paper, we will get the discrete-space model similarly

as [15], since the optimal control problem is stated by the

choice of s as the independent variable.

A. The mixed logical dynamic (MLD) model

In addition, we assume that Rl(s) is a piecewise constant

function. By redefining the discretization of the interval

[sstart,send] if necessary, we can assume without loss of

generality that Rl(s) is of the following form:

Rl(s) = Rl,k for s ∈ [sk,sk+1].

In the interval [sk,sk+1], the differential equation of the

kinetic energy (8) can then be rewritten as

dE

ds
=

1

mρ
u(k)− a2

ρ
E(s)− 1

ρ
(a1 +Rl,k),

where u(k) is a constant in interval [sk,sk+1]. By defining

ζ = 1
mρ , η =− a2

ρ , γk =− 1
ρ (a1 +Rl,k), this equation can be

rewritten as
dE

ds
= ζ u(k)+ηE(s)+ γk. (15)

Solving this differential equation with initial condition

E(sk) = E(k), we obtain the following formula1 for E(sk+1)

E(k+1) = eη∆sk E(k)+(eη∆sk −1)
ζ

η
u(k)+(eη∆sk −1)

γk

η

with E(1) = Estart. Defining ak = eη∆sk , bk = (eη∆sk − 1) ζ
η

and ck = (eη∆sk −1) γk
η , the above equation can be simplified

as follows:

E(k+1) = akE(k)+bku(k)+ ck. (16)

Note that this is an affine equation. For the differential

equation of time (9), we approximate it by using a trapezoidal

integration rule [19], written as the following equation

t(k+1) = t(k)+
1

2
(

1
√

2E(k)
+

1
√

2E(k+1)
)∆sk (17)

with t(1) = 0. In addition, the nonlinear part in this equation

is approximated by a piece-wise affine (PWA) function.

There are various methods for approximating functions in

a PWA way, see e.g., the overview by Azuma et al. [20].

In this paper, we first select the number of regions of

the PWA function and then optimize the interval lengths

and parameters of the affine functions using least-squares

optimization, minimizing the squared difference between the

original function and the approximation. For example, if we

consider an approximation using 3 affine subfunctions (cf.

Figure 1), the PWA approximation2 of the nonlinear function

f (E) = 1

2
√

2E
can be written as

fPWA(E) =







α1E +β1 for E0 = Emin ≤ E ≤ E1,

α2E +β2 for E1 ≤ E ≤ E2,

α3E +β3 for E2 ≤ E ≤ Emax = E3.

1For the sake of simplicity of notation we use E(k) as a short-hand
notation for E(sk) from now on.

2The approximation error can be reduced by taking more regions.
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Fig. 1. The PWA approximation of the nonlinear function f (E)

Then the time dynamics (17) can be formulated as

t(k+1) = t(k)+(αlE(k)+βl +αmE(k+1)+βm)∆sk, (18)

when El−1 ≤ E(k)≤ El , Em−1 ≤ E(k+1)≤ Em, with l,m ∈
{1,2,3}. This PWA model can be transformed into an MLD

model by introducing some auxiliary logical variables [21].

Here, we introduce auxiliary logical variables δ1(k) and

δ2(k), defined as

[E(k)≤ E1]⇔ [δ1(k) = 1],

[E(k)≤ E2]⇔ [δ2(k) = 1].

Since the maximum and minimum values of E(k) are Emax

and Emin, the logical conditions can be rewritten as [21]

(Emax −E1)δ1(k)≤ Emax −E(k),

(Emin −E1 − ε)δ1(k)≤ E(k)−E1 − ε ,

(Emax −E2)δ2(k)≤ Emax −E(k),

(Emin −E2 − ε)δ2(k)≤ E(k)−E2 − ε ,

(19)

where ε is a small positive number (typically the machine

precision) that is introduced to transform a strict equality

into a non-strict inequality, which fits the MLD and MILP

frameworks [21]. Furthermore, the auxiliary logical variable

δ3(k) is introduced to replace the product δ1(k)δ2(k). This

logical condition can be rewritten as the following system of

linear inequalities [21]:

−δ1(k)+δ3(k)≤ 0,

−δ2(k)+δ3(k)≤ 0,

δ1(k)+δ2(k)−δ3(k)≤ 1.

(20)

By defining new auxiliary variables z1(k) = δ1(k)E(k),
z2(k) = δ2(k)E(k) and z3(k) = δ3(k)E(k), which can be

expressed as [21]

zi(k)≤ Emaxδi(k),

zi(k)≥ Eminδi(k),

zi(k)≤ E(k)−Emin(1−δi(k)),

zi(k)≥ E(k)−Emax(1−δi(k)),

(21)

for i = 1,2,3, the expression αlE(k)+βl can be formulated

as

αlE(k)+βl =
[

−α3 α2 −α3 α1 −α2 +α3

]

z(k)

+
[

−β3 β2 −β3 β1 −β2 +β3

]

δ (k)

+α3E(k)+β3,

where z(k) =
[

z1(k) z2(k) z3(k)
]T

and δ (k) =
[

δ1(k) δ2(k) δ3(k)
]T

. Similarly, the expression

αmE(k + 1) + βm can be formulated as the form above.

The dynamics of the system can then be rewritten as the

following MLD model

x(k+1) = Akx(k)+Bku(k)+Ckδ (k)+Ckδ (k+1)

+Dkz(k)+Dkz(k+1)+ ek, (22)

where x(k) =
[

E(k) t(k)
]T

, Ak =
[

ak 0

∆skα3(ak +1) 1

]

, Bk =

[

bk

∆skα3bk

]

,

Ck = ∆sk

[

0 0 0

−β3 β2 −β3 β1 −β2 +β3

]

, Dk =

∆sk

[

0 0 0

−α3 α2 −α3 α1 −α2 +α3

]

, and ek =
[

ck

∆sk(α3ck +2β3)

]

. The MLD model is subject to

the linear constraints (19), (20), and (21), which can be

written more compactly as

R1,kδ (k)+R2,kδ (k+1)+R3,kz(k)+R4,kz(k+1)

≤ R5,ku(k)+R6,kx(k)+R7,k,
(23)

where the coefficient matrixes Ri,k, for i = 1,2, . . . ,7, are

defined appropriately. In addition, the upper bound and lower

bound constraints for E(k), t(k), and u(k) are also included

in the coefficient matrices.

The objective function (10) can be discretized as

J =
N

∑
k=1

u(k)∆sk +
N−1

∑
k=1

λ |∆u(k)|, (24)

where ∆u(k) = u(k+1)−u(k). We introduce a new variable

ω(k) to deal with the absolute value of ∆u(k), and we add

the linear inequalities:

ω(k)≥ u(k+1)−u(k),

ω(k)≥ u(k)−u(k+1).

Then (24) can be rewritten as

J =
N

∑
k=1

u(k)∆sk +
N−1

∑
k=1

λω(k). (25)

When we minimize the objective function (25), the optimal

value of ω(k) will be equal to |∆u(k)|, so (24) will also be

minimized.

B. The mixed linear programming problem (MILP)

Now the optimal control problem can be recast as a mixed

integer linear programming (MILP) problem, where some of



decision variables are binary and some are real variables. We

define

ũ =











u(1)
u(2)

...

u(N)











, δ̃ =











δ (1)
δ (2)

...

δ (N +1)











, ω̃ =











ω(1)
ω(2)

...

ω(N −1)











,

and in a similar way as δ̃ we also define z̃. Furthermore,

if we define Ṽ =
[

ũT δ̃ T z̃T ω̃T
]T

, the equivalent

formulation of the optimal control problem is obtained as

follows:

min
Ṽ

CT
J Ṽ , (26)

subject to

F1Ṽ ≤ F2x(1)+ f3 (27)

F4Ṽ = F5x(1)+ f6 (28)

where CJ =
[

∆s1 · · · ∆sN 0 · · · 0 1 · · · 1
]T

.

This can be shown as follows. The constraints for the MILP

problem (23) are considered for k = 1,2, . . . ,N. We can

substitute x(k) in the constraints by using the state equation

(22) recursively. The substituted form is obtained as the

following expression:

x(k) =
[ k−1

∏
j=1

A j

]

x(1)+
k−1

∑
i=1

[ k−1

∏
j=i+1

A j

]

Biu(i)+
[ k−1

∏
j=2

A j

]

C1δ (1)

+
k−1

∑
i=2

[ k−1

∏
j=i+1

A j

]

(AiCi−1 +Ci)δ (i)+Ck−1δ (k)

+
[ k−1

∏
j=2

A j

]

D1z(1)+
k−1

∑
i=2

[ k−1

∏
j=i+1

A j

]

(AiDi−1 +Di)z(i)

+Dk−1z(k)+
k−1

∑
i=1

[ k−1

∏
j=i+1

A j

]

ei.

In addition, the end point condition x(N + 1) = [Eend T ]T

needs to be considered in (28). Because we know the end

value of x(N +1), the values of αm and βm in (18) are also

known. So the state equation at the end point can be written

as

x(N +1) = ANx(N)+BNu(N)+CNδ (N)+DNz(N)+ eN

where AN =

[

aN 0

∆sN(α3 +αmaN) 1

]

, BN =

[

bN

∆sNαmbN

]

,

and eN =

[

cN

∆sN(αmcN +βm +β3)

]

. By defining F1, F2, f3,

F4, F5, and f6 properly, we can write all these constraints as

(27) and (28).

The MILP problem (26)-(28) can be solved by several ex-

isting commercial and free solvers, such as CPLEX, Xpress-

MP, GLPK (see e.g. [13], [14]).

V. CASE STUDY

As a benchmark, we use the case study of [12]. The

parameters for the train and rail path are given in Table I.

The PWA approximation of f (E) = 1

2
√

2E
is given in Figure

1. The parameters for the PWA approximation are given in

TABLE I

PARAMETERS OF TRAIN AND LINE PATH

Property Symbol Value

Train mass [kg] m 7 ·105

Basic resistance [N/kg] Rb 0.02+4.417 ·10−5v2

Mass factor ρ 1.06
Maximum velocity [m/s] Vmax 50

Line length [m] sT 104

Minimum kinetic energy [J] Emin 0.1

Maximum traction force [N] umax 4 ·105

Maximum braking force (regular)[N] umin −3 ·105

TABLE II

THE COEFFICIENTS OF THE PWA APPROXIMATION WITH 3 REGIONS

Segment m αm βm Em

1 −0.3525 ·10−3 0.0746 0−145

2 −0.0184 ·10−3 0.0262 145−800

3 −0.0031 ·10−3 0.0140 800−1250

Table II. The length ∆sk for interval [sk,sk+1] depends on

the speed limits, gradient profile, tunnels, and so on. In this

paper, we assume that there is only one speed limit, i.e.

Vmax is equal to 50 m/s for the whole journey as is the case

in [12]. In addition, the length of each interval is assumed

to be the same, i.e. ∆sk is equal to 500 m for k = 1,2, . . . ,20.

The objective function in this paper is a trade-off between

energy consumption and riding comfort. The value of λ in

(25) could be chosen properly according to the requirements,

and is taken equal to 500 in this case study.

In this case study, we consider two cases: for the first one

we choose the total running time equal to 315 s, indicated

by T1, while we select 600 s for the second case, indicated

by T2. The optimal reference trajectories and the traction and

braking forces applied are shown in Figure 2. The running

times and energy consumption are given in Figure 3. The

black solid line shows the results for T1 and the red dashed

line the results for T2. As we can see from the figures, the

energy consumption with running time T2 is lower than that

with running time T1, but at the cost of a longer travel time.
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Fig. 2. The optimal position velocity curve and the input
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Fig. 3. The time and energy consumption

It is worth to note that the computation cost is very low

for this MILP approach. The calculation time for the optimal

control strategy is less than 10 minutes, which is much

quicker than the 12 hours presented in [12].

VI. CONCLUSIONS AND FUTURE WORK

In the current paper, we have considered the optimal

trajectory planning problem for trains. To this aim, the

nonlinear train operation model is formulated as a mixed

logical dynamical (MLD) model by using piece-wise affine

(PWA) approximation. The variable line resistance (including

variable grade profile, tunnels, curves) and speed restrictions

are considered, which are contained in the constraints of

the MLD model. Furthermore, the optimal control problem

is recast as a mixed integer linear programming (MILP)

problem, which can be solved efficiently by existing solvers.

The maximum traction force is considered as constant

in this paper. However, due to the maximum adhesion and

the characteristics of the power equipment, in reality the

maximum traction force is a nonlinear function of the veloc-

ity. For the maximum braking force, here, we just consider

that the service braking force is 0.75 times the maximum

braking force. However, the maximum braking force is also

a nonlinear function of the velocity. In the future, those

nonlinear functions of the traction and braking force will be

approximated by PWA functions too., which can be included

in the MILP problem by introducing more binary variables.

Furthermore, the energy loss of the propulsion system [15] is

not considered in this paper, which will also be approximated

by PWA functions in future work. Finally, it is noted that

the tunnel resistance is considered as constant in this paper.

However, it is a nonlinear function of the velocity, which

also needs to be included in our approach in the future.
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