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Abstract— Because of the rising energy prices and environ-
mental concerns, the calculation of energy-optimal reference
trajectories for trains is significant for energy saving. On the
other hand, with the development automatic train operation
(ATO), the optimal trajectory planning is significant to the
performance of train operation. In this paper, we present an
integrated survey of this field. First, a nonlinear continuous-
time train model and a continuous-space model of train
operations are described, after which the optimal trajectory
planning problem is formulated based on these two models. The
various approaches in the literature to calculate the reference
trajectory are reviewed and categorized into two groups:
analytical solutions and numerical optimization. Finally, a short
discussion of some open topics in the field of optimal trajectory
planning for train operations are given.

Index Terms— train operations, optimal trajectory planning,
energy efficient

I. INTRODUCTION

Because of the rising energy prices and environmental

concerns, the energy efficiency of transportation systems

becomes more and more important [1]. In the US, about

28% of the country energy consumption is represented by the

transportation [2]. Similarly, the energy consumed by trans-

portation is approximately 30% of the UK energy consump-

tion [3]. Furthermore, it is well known that railway transport

combines high transport capacity and high efficiency. It plays

a more and more important role for public transportation

in the near future. The reduction of energy consumption is

one of the key objectives of railway systems. Meanwhile,

the interest of railway operators in energy efficiency has

been rising more and more in recent years. Even a small

improvement in energy consumption can make the railway

operators save a lot of money. Therefore, some systems have

been developed to assist drivers to drive the train optimally,

such as FreightMiser [4], Metromiser [4], and driving style

manager [5].

With the development of modern railway systems, auto-

matic train control system has become vital equipment that

ensures the running safety, shortens the train headway, and
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Fig. 1. The schematic diagram of an ATO system

improves the quality of train operation [6]. An automatic

train control system consists of an automatic train protection

system, an automatic train supervision system, and an au-

tomatic train operation (ATO) system. ATO system plays a

key role in ensuring accurate stopping, operation punctuality,

energy saving, and riding comfort [6]. It is an important

unit of the automatic train control system responsible for

controlling the train speed to achieve safe and reliable

operation. A typical ATO system consists of two levels

of control actions, as conceptually illustrated in Figure 1.

The high-level control involves the optimal control problem

that is responsible for calculating the optimal speed-position

reference trajectory based on the information collected by

automatic train control systems, such as line resistance, speed

limits, maximum traction and braking forces, etc. The low-

level control is used to make the train track the pre-planned

reference trajectory via certain control methods.

The driving performance including punctuality, energy

consumption, etc. strongly depends on the optimal reference

trajectory both when the train is under driver control or con-

trolled by the ATO system. The FreightMiser and Metromiser

systems mentioned before were developed by the scheduling

and control group (SCG) of the University of South Australia

in order to calculate the optimal reference trajectory and to

give advices to the drivers of long-haul trains and suburban

trains respectively [4]. The SCG researchers mainly focused

on minimizing the energy consumption by Pontryagin’s

principle which is also known as maximum principle [4]. The

driving style manager developed by Bombardier implements



discrete dynamic programming to obtain optimal results,

which are then displayed to the train driver [5]. When the

train stops at a station, the driving style manager calculates

the optimal trajectory to the subsequent station using real-

time information. For an ATO system, the calculation of the

optimal trajectory is the core of the high-level control. There-

fore, a feasible and efficient algorithm for calculating the

reference trajectory is significant to the driving performance.

The research on optimal trajectory planning of train op-

erations began in the 1960s. A simplified train optimal

control problem was studied by Ichikawa [7], who solved the

problem by using Pontryagin’s principle. Later on, a lot of re-

searchers explored this optimal control problem by applying

various methods, since it has significant effects for energy

saving, punctuality, and riding comfort. These methods can

be grouped into the following two main categories [5]:

• Analytical solution,

• Numerical optimization.

The aim of this paper is to give an overall view of the

research on the optimal trajectory planning. Thereby, the

research reported in literature will be reviewed using these

two categories.

The rest of this paper is structured as follows. In Section II

the nonlinear continuous-time model and continuous-space

model for trajectory planning are presented. Furthermore,

the optimal trajectory planning problems based on these

two models are formulated. In Section III the research

based on an analytical approach is reviewed. The numerical

optimization approaches used for optimal trajectory planning

are investigated in Section IV. We conclude with a short

discussion of some issues for future work in Section V.

II. PROBLEM DEFINITION

A. Train model

In the literature of train optimal trajectory planning, there

are two approaches to describe train operations: the single

mass-point approach and the distributed mass approach. The

distributed mass approach was proposed by Howlett and Pud-

ney [4]. In addition, they showed that the optimal trajectory

planning problem by using a distributed mass approach can

be equivalent to the one by using the single mass-point

approach. However, the single mass-point approach for a

train is often used in the literature [8]. In this setting, the

motion of a train can be described by the following simple

continuous-time model [2]:

mρ
dv

dt
= u(t)−Rb(v)−Rl(s,v) (1)

ds

dt
= v (2)

where m is the mass of the train, ρ is a factor to consider

the rotating mass [1], v is the velocity of the train, s is the

position of the train, u is the control variable, i.e. the traction

or braking force, which is bounded by the maximum traction

force umax and the maximum braking force umin, umin ≤ u ≤
umax, Rb(v) is the basic resistance including roll resistance
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Fig. 2. Maximum traction force in dependency of train speed

and air resistance, Rl(s,v) is the line resistance caused by

track grade, curves and tunnels.

The maximum traction force umax is often considered as

a constant in the literature [9]. However, in reality it is a

function of velocity v. Due to the maximum adhesion and

the characteristics of the power equipment [1], the diagram of

the maximum traction force umax(v) normally looks like the

one shown in Figure 2 [10]. This diagram is described as a

group of hyperbolic or parabolic formulas in [1], where each

formula approximates the actual traction force for a certain

speed interval. According to the arguments for the maximum

braking force given in [1], the full braking effort is reserved

for an emergency stop. Under normal circumstances the train

driver or automatic train operation system brakes in a comfort

mode, where the maximum force for the service breaking is

0.75 times that of the emergency braking, i.e. the full braking

effort. On the other hand, the braking effort (including the

maximum braking effort) is considered as a constant by some

common safety systems, such as the European Train Control

System and the German continuous train control system [1].

Therefore, the maximum force for service braking is usually

considered as a constant.

In practice, according to the Strahl formula [11] the basic

resistance Rb(v) can be described as

Rb(v) = m(a1 +a2v+a3v2) (3)

where m is the train mass, the coefficients a1, a2, and a3

depend on the train characteristics and the wind speed, which

can be calculated from the data known about the train.

The line resistance Rl(s) caused by track slope, curves,

and tunnels can be described by [12]

Rl(s,v) = mgsinα(s)+ fc(r(s))+ ft(lt(s),v) (4)

where g is the gravitational acceleration, α(s), r(s) and lt(s)
are the slope, the radius of the curve, and the length of

the tunnel along the track, respectively. The curve resistance

fc(·) and the tunnel resistance ft(·) are given by empirical

formulas. An example empirical formulas of the curve resis-

tance is Roeckl’s formula [13]

fc(r(s)) =
6.3

r(s)−55
m for r(s)≥ 300m (5)



fc(r(s)) =
4.91

r(s)−30
m for r(s)< 300m. (6)

When running in tunnels, the train experiences a higher air

resistance that depends on the tunnel form, the smoothness

of tunnel walls, the exterior surface of the train, and so on.

The expression of tunnel resistance is [13]

ft(lt(s),v) = at(lt(s))v
2
, (7)

where at is the tunnel factor, which depends on tunnel

length and train type. For the tracks outside the tunnels, the

coefficient at is equal to zero. For more complete information

on the calculation of at, see the paper written by Vardy and

Reinke [14].

B. Optimal Control Problem based on the time domain

As stated in [2], reference trajectory planning for trains

can be formulated as one of the problems in optimal control

theory. The traction or braking force u then is the control

variable, which is calculated to satisfy conditions and re-

strictions on the control variable and on the state variables,

i.e. train position s and speed v. The objective function could

be the minimum time, or the energy consumption for a given

trip time, or the total operation cost, such as a weighted sum

of electrical energy consumption and trip time. In addition,

the riding comfort can also be considered, which is expressed

as a function of the change of the control variable u since

reducing the number of transitions and the rate of change of u

may improve passenger comfort [15]. The objective function

can then be written as:

J =

∫ T

0
u(t) · v(t)+λ ·

∣

∣

∣

du(t)

dt

∣

∣

∣
)dt → min (8)

subject to train dynamics (1), the following constraints

umin ≤ u(t)≤ umax (9)

0 ≤ v(t)≤Vmax(s) (10)

and the boundary conditions

s(0) = sstart, v(0) = vstart, (11)

s(T ) = send, v(T ) = vend, (12)

where J is the weighted sum of the energy consumption and

riding comfort of the train operation, λ is the weight, the

maximum allowable velocity Vmax(s) depends on the train

characteristics and the line conditions (and as such it is

usually a piecewise constant function of the coordinate s [2],

[16]), sstart and vstart are the coordinate and the velocity at the

beginning of the route, and send and vend are the coordinate

and the velocity at the end of the route. The duration of the

trip T is usually given by the timetable.

C. Optimal control problem based on the position domain

As proposed in some previous works [2], [8], [16], [9],

some researchers stated that it is better to choose the coordi-

nate s as an independent variable rather than time t. On the

one hand, the choice of position s as independent variable

will simplify the consideration of track-related data, such

as line resistance and speed limits. On the other hand, the

analytical and numerical study of the optimal problem will

be significantly simplified. Furthermore, Khmelnitsky [16]

chose the total energy of the train and the time t as states

where the total energy includes kinetic and potential energy.

Similarly, Franke et al. [8] used the kinetic energy per mass

unit and the time as states. The choice of kinetic energy

instead of the speed v facilitates the study of the optimal

control problem, because this choice eliminates some of the

model nonlinearities. So in [8] the kinetic energy per mass

unit E = 0.5v2 and the time t are chosen as states, and the

coordinate s as the independent variable. The continuous-

time model (1) and (2) can then be rewritten as the following

continuous-space model:

mρ
dE

ds
= u(s)−Rb(

√
2E)−Rl(s) (13)

dt

ds
=

1
√

2E
(14)

The optimal control problem (8)-(12) can be stated as:

J =
∫ send

sstart

u(s)+λ ·
∣

∣

∣

du(s)

ds

∣

∣

∣
)ds → min (15)

subject to the model (13) and (14), the following constraints

umin ≤ u(s)≤ umax, (16)

0 ≤ E(s)≤ Emax(s) (17)

and the boundary conditions, which are rewritten as

E(sstart) = Estart, E(send) = Eend (18)

t(sstart) = 0, t(send) = T (19)

where Emax(s) = 0.5V 2
max(s), Estart = 0.5v2

start, and Eend =
0.5v2

end. An assumption should be noted for the above

equations: it is assumed that the E(s)> 0, which means the

train’s speed is always strictly larger than zero, i.e. the train

travels nonstop. Khmelnitsky [16] states that this assumption

is not restrictive in practice for two reasons. First, the speed

of the initial start and the terminal stop can be approximated

by small nonzero velocities. Second, stops at an intermediate

point of the trip will not be planned deliberately in the

optimal control design for a single train’s operation.

III. ANALYTICAL SOLUTION

According to whether the traction and braking force is

continuous or discrete, there are two kinds of solution

approaches. One kind of approaches is for train operations

with a continuous input, while the other one is for train

operations with a discrete input [9].



A. The optimal trajectory planning with a discrete input

When train operations with a discrete input, Only a few

finite number of pre-determined values can be taken by the

control variable u. Nowadays, only some freight diesel lo-

comotive is still with discrete traction and braking force [2],

whose throttle can take only a finite number of positions

and each position of the throttle determines a constant rate

of fuel supply [4]. In each position, the power produced by

the locomotive is directly proportional to the rate of fuel

supply. The research on trajectory planning for a train with

a discrete input is mainly done by the SCG of the University

of South Australia.

The research on optimal trajectory planning for a train

with a discrete input was inspired by the early research of

Howlett [17] for a train with continuous input. Howlett [17]

simplified the analysis by using Pontryagin’s principle to

reformulate the problem as a finite dimensional constrained

optimization where the unknown switching times are the

variables. For a train with a discrete input, the Karush-Kuhn-

Tucker conditions are used to derive the optimal trajectory

for each fixed control sequence by finding the switching

times [9]. Howlett and Leizarowitz [18] obtained an algebraic

equation, rather than a differential equation, from the Euler-

Lagrange equation for certain intervals. This algebraic equa-

tion is useful for the structure of optimal control scenarios

which are composed of segments with pure control and

segments with chattering control.

The optimal trajectory planning problem with a discrete

input was studied for a track without varying gradient and

speed limit by Cheng and Howlett [19]. They showed that

an optimal trajectory depended on three critical values of

the velocity for a prescribed sequence of fuel supply rates.

Then, the problem with speed limits was solved by Pudney

and Howlett [20]. They obtained that on intervals of track

where the speed limit is below the desired cruising speed,

the speed must be held at the limit. the Later on the problem

with continuously varying gradient was solved by Howlett

and Cheng [21]. Afterwards, the problem with non-zero

track gradient and speed limit was solved by Cheng [22],

which was difficult to find analytic solution because it is

no longer possible to follow an arbitrary smooth speed limit

precisely [9].

B. The optimal trajectory planning with continuous-input

Nowadays a lot of locomotives can provide a continuous

traction and braking force. For a continuous-input train,

Khmelnitsky [16] gave a comprehensive analysis of the op-

timal trajectory planning with a continually varying gradient

and speed restrictions. As stated before, he described the

mathematical model of the train by using the total energy

and the time as the state variables. The state equations

are essentially the same as (13) and (14). The Pontryagin’s

principle was applied to obtain the analytical properties about

optimal control scenarios and their sequences. Khmelnitsky

proved that under certain conditions there exists a unique

optimal solution. the The calculation complexity depends on

the complexity of the grade profile and speed restrictions.

Liu and Golovitcher [2] stated that the approach pro-

posed by Khmelnitsky is less effective than the approach

of Golovitcher [23], because the procedure of Khmelnitsky

includes integration of an additional differential equation

for the conjugate function. The calculation of the reference

trajectory in [23] is also based on the Pontryagin’s principle,

but the general rules for building the sequence of optimal

control scenarios and necessary optimality conditions are

simpler algebraic equations. So this approach is very efficient

and the mathematical model is the same. Based on the

former research, a complete solution of the optimal trajectory

planning was given by Liu and Golovicher [2].

Howlett [9] applied the Pontryagin’s principle to find nec-

essary conditions for the reference trajectory. He determined

the optimal switching points by using the key equations

yielded by these necessary conditions. In addition, Howlett

and Pudney [4] showed that any reference trajectory of the

continuous input system can be approximated as closely

as possible by a reference trajectory of the discrete input

system. Recently, new formulae were developed by Vu [24],

which were used to continually update reference trajectories

on-line. Vu stated that the global optimal control strategy

with the critical switching points can be obtained by applying

a new local energy minimization principle over each steep

section separately.

Based on analytical approaches mentioned above, there

are four optimal control scenarios in the optimal trajectory:

maximum acceleration, cruising at constant speed, coasting,

and maximum deceleration. However, a more detailed model

of train operation is considered by Franke et al. [5], which

includes the efficiency of the propulsion system and regen-

erative brake scheme of electrical rail vehicle. The efficiency

of the propulsion system is usually considered as a constant

in literature. In reality, it actually varies greatly with the

operating conditions. The power losses of the propulsion

system is a nonlinear function of the traction force u and

the velocity v (see Figure 1 in [5]). As stated in [5], with the

consideration of the efficiency of the propulsion system, no

maximum acceleration or maximum deceleration is applied

at high velocities, because when maximum traction and

braking force is applied at the high speeds, the power loss

is large. So there is a trade-off between the speed v and the

control variable u.

It is worth to note that the analytical methods often meet

difficulties to find the analytic solution if more realistic

conditions are considered that introduce complex nonlinear

terms into the model equations and the constraints [25].

IV. NUMERICAL OPTIMIZATION

Liu and Golovitcher [2] stated that classical numerical

optimization methods were not feasible to solve the optimal

trajectory planning problem on an on-board computer for

real-time calculations, because these methods, such as dis-

crete dynamic programming, required significant calculation

time. Therefore, the research in this field was impeded for a

long time because of the computation difficulties. However,

due to the high computing power available nowadays, more



and more researchers are applying numerical optimization

approaches to obtain the reference trajectory.

A. Fuzzy and evolutionary algorithms

A number of advanced techniques such as fuzzy and

genetic algorithms have been proposed to calculate the

optimal reference trajectory for train operation. Yasunobu et

al. [26] proposed a fuzzy ATO controller and implemented

it in Sendai of Japan in 1987. This controller can control

each train’s departure, speed regulation, and dwell time.

Membership function plays an important role in ensuring the

control accuracy and robustness of the fuzzy ATO controller.

So Chang and Xu [15] proposed a modified differential

evolution algorithm to optimally tune the fuzzy membership

functions that provide a trade-off among punctuality, riding

comfort, and energy consumption.

The implementation of a genetic algorithm to optimize the

coast control was demonstrated by Chang and Sim [27]. The

optimal results in [27] is given as a coast control tables which

is referenced by ATO system for deciding when to initiate

coasting and resume maximum acceleration. Han et al. [28]

also use a genetic algorithm to construct the optimal refer-

ence trajectory. They defined the switch points of the optimal

control scenarios as the chromosome string and the energy

consumption as the fitness function. Han et al. [28] conclude

that the performance of their genetic algorithm is better than

the analytic solution obtained by Howlett and Pudney [4]

in view of energy cost. A formal method combined genetic

algorithm and fuzzy logic was proposed in [29] to optimize

a weighted sum between energy consumption and running

time. Bocharnikov et al. [29] concluded that the energy

saving was affected by the acceleration and deceleration rates

by running a series of simulations in parallel by using genetic

algorithm. Acikbas and Soylemez [30] combined artificial

neural networks and genetic algorithm to obtain the optimal

coasting speed. The objective function is considered as a

weighted sum of energy consumption and the cost of running

time.

B. Dynamic programming

Some decision variables of the analytical solution can

obtained by using gradient search, such as cruising speeds,

switching points [5]. The combination of the analytical

solution and gradient search has been successfully applied

by some research [5].

Nowadays, computation power has increased considerably

compared to the period which most of the papers mentioned

in section III were written. Therefore, Franke et al. [5]

proposed a more detailed nonlinear train model, in which

the power loss of the inverter locomotive is modeled. The

optimal trajectory planning problem based on this nonlinear

model is solved by nonlinear programming and dynamic

programming [5]. It is concluded that discrete dynamic

programming turned out to be better to deal with the

nonlinear optimal problem compared to sequential quadratic

programming, because the overall calculation time of discrete

dynamic programming is deterministic and the result of the

computation is obtained in the form of a feedback control

law. Franke et al. [5] states that no maximum acceleration

or maximum deceleration is applied at high velocities when

considering the power loss of the propulsion system (see also

the end of section III-B).

Ko et al. [25] apply Bellman’s dynamic programming to

optimize the optimal reference trajectory. The original prob-

lem is then transformed into a multi-state decision process.

Dynamic programming, a gradient method, and sequential

quadratic programming are introduced to solve the optimal

trajectory planning problem in [31]. Under simple and

complicated operation conditions, the simulations showed the

gradient method had good convergence.

Multi-parametric quadratic programming 1 is used in [32]

to calculate the optimal control law of train operation. The

nonlinear train model with quadratic resistance is approxi-

mated by a piecewise affine function. The resulting optimal

control law is a time-varying piecewise affine function, which

relates the traction force to the train position and speed.

Therefore, this is a off-line computed optimal feedback

control policy that can be easily evaluated on-line.

However, the optimal solution is not always guaranteed in

these numeric optimization approaches. Since, the ”optimal”

solution obtained could be a local minimum. In addition,

the convergence speed is uncertain in general. Moreover,

the computation of these numeric optimization approaches is

often too slow for real-time application, e.g. the computation

time in [32] is 12 hours.

V. DISCUSSION

The optimal trajectory planning problems based on

the nonlinear continuous-time model and continuous-space

model of train operations are presented in this paper. The

various methods in the literature are grouped into these two

main categories: analytical solution and numerical optimiza-

tion.

As stated above, the analytical methods often meet diffi-

culties to find analytical solutions if more realistic conditions

are considered that introduce complex nonlinear terms into

the model equations and the constraints. For the numerical

optimization approaches, the optimal solution is not always

guaranteed. In addition, the computation is often too slow.

So the following open topics for future work arise.

First, there are some efficient optimal control software

packages using nonlinear programming available so there is

a trade-off involved between optimality and computational

speed, such as DIDO [33], GPOPS [34], PROPT [35]. New

approaches can be explored to solve this optimal trajectory

planning problem by using these efficient optimal control

softwares. Moreover, it would interesting and highly relevant

1The multi-parametric quadratic programming problem is defined as
follows:

min
x

xT Hx+(C+qT E)x

s.t.

Ax ≤ b+Dq

with q a parameter.



to obtain guarantees on the convergence speed and on the

degree of sub-optimality of the solution found. In the latter

content, one option is to solve the optimal trajectory planning

problem as a mixed integer linear programming (MILP)

problem, which can be solved efficiently using existing

commercial and free solvers [36], [37]. The optimal solution

of the MILP problem is the global minimum and always

guaranteed. However, we have to make some approximations

to construct an MILP formulation of the nonlinear train

operation model.

In our view, significant progress can be achieved in the

optimal trajectory planning domain for train with the devel-

opment of efficient approaches that provide a good trade-off

between accuracy and computational efficiency.
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