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Observers for Linear Distributed-Parameter Systems:

A Survey

Z. Hidayat, R. Babuška, B. De Schutter, A. Núñez

Abstract—This paper reviews different observer design me-
thods for linear dynamic distributed-parameter systems. In such
systems, the states, inputs, and outputs depend on some spatial
variable. This dependence, along with additional aspects such
as the boundary conditions, increase the complexity of the state
estimation problem and of the design methods. The paper in par-
ticular surveys observers for first-order and second-order linear
distributed-parameter systems based on their infinite-dimensional
and finite-dimensional descriptions.

I. INTRODUCTION

In many real-world problems, the states, inputs, and outputs

of a mathematical model of a system depend on a spatial

variable, which is usually a position in a one-dimensional or

a multi-dimensional space. This kind of systems are called

distributed-parameter systems (DPSs), in contrast to lumped-

parameter systems, whose variables do not depend on spatial

parameters. Examples of DPSs can be found in process control,

e.g., robotics, bio-reactors, glass feeders, biomedical engineer-

ing, flexible structures, and vibrations. An overview of DPS

applications can be found in [1].

For the operation of a control system, the knowledge of

states of the system is important. In most cases it is not

possible to have full information of the system’s states due to

the fact that not all of the variables can be measured. Installing

all the necessary sensors may not be physically possible or

the costs may become prohibitive. In such a case, the states

can be estimated using state estimators (observers). One of

the basic state estimators for linear, lumped-parameter systems

is the Luenberger observer [2]. This type of observer has

attracted much attention and various design methods have

been proposed for both the linear and the nonlinear cases.

For surveys on observer design methods for lumped-parameter

systems, see, e.g., [3] for nonlinear observers and [4] for

sliding-mode observers.

The control and state estimator design for DPSs is more

complex than in the lumped-parameter case [5]–[8]. The

presence of spatial variables imposes limitations to the design,

e.g., observation and/or actuation may occur at the boundaries

only. Research on observer design for DPSs has not been

so extensive as in the case of lumped-parameter systems.

Furthermore, papers on distributed-parameter observers are

scattered in the literature and, to the authors’ best knowledge,

there are no surveys on this topic. This paper aims at filling this

gap. We survey the techniques that are currently available for

The authors are with Delft Center for Systems and Control, Delft Univer-
sity of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands Email:
{z.hidayat; r.babuska; b.deschutter; a.a.nunezvicencio}@tudelft.nl

the design of observers for first-order and second-order linear

DPSs. In addition, we identify challenges for future research

in this field.

This paper is organized as follows. After an introduction

in Section I, a brief review of the observer design problem

for lumped-parameter systems is presented in Section II. Sec-

tion III introduces models of DPSs. Section IV presents the

observer design problem including: observers in infinite and

finite-dimensional spaces and adaptive observers. In Section

V observers for second-order temporal systems are introduced,

followed by Section VI, which addresses distributed estimation.

Section VII concludes the paper.

II. LUMPED-PARAMETER OBSERVER DESIGN

In this section, we briefly recall the observer design problem

for lumped-parameter systems. Consider the following linear

time-invariant system:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(1)

where x(t) ∈ R
n, u ∈ R

r, and y(t) ∈ R
q are the input, state,

and output vector, respectively, and A, B, C are state, input,

and output matrices that have appropriate dimensions. The dot

over a variable means the time derivative of the variable. The

estimate of the state, x̂(t), is obtained as the output of the

following observer [9]:

˙̂x(t) = Ax̂(t) +Bu(t) +K
(

y(t)− Cx̂(t)
)

(2)

where K ∈ R
n×q is the observer gain. The corresponding

observer design problem is to find K such that the estimation

error e(t) = x̂(t) − x(t) asymptotically converges to zero:

limt→∞ e(t) = 0. This can be achieved if the real parts of all

the eigenvalues of A−KC are negative.

III. DISTRIBUTED-PARAMETER SYSTEMS

Distributed-parameter systems are modeled by partial differ-

ential equations (PDEs). The evolution of states of a PDE is

described in an infinite-dimensional space. DPSs are therefore

called infinite-dimensional systems [10]. Take the following

normalized 1D heat equation1 as an example:

∂x(z, t)

∂t
=

∂2x(z, t)

∂z2
+ u(z, t), z ∈ (0, 1) (3a)

1The normalized 1D heat equation describes the temperature distribution
over a rod with unity length as a function of time under the effect of a heat
source.



∂x(0, t)

∂z
=

∂x(1, t)

∂z
= 0, t ≥ 0 (3b)

x(z, 0) = x0(z), z ∈ [0, 1] (3c)

where x and u are respectively the temperature and the input

heat flow, and z is the spatial variable. The first equation

describes the dynamics, while the second and third equation are

the boundary condition and the initial condition respectively.

A PDE like (3) when expanded with an output equation can

also be expressed as an abstract state space equation:

ẋ(t) = Ax(t) +Bu(t) (4a)

y(t) = Cx(t), x(0) = x0. (4b)

The A, B, C above are defined on a normed linear space

[11]. It should be noted that A, B, C are operators and they

have different meaning from those in (1). For (3), this can

be done by taking the trajectory segment x(·, t) = {x(z, t) |
0 ≤ z ≤ 1} as the state and by identifying the state

space X with the normed space L2(0, 1) of functions x(·, t)
that are square-integrable on the spatial interval [0, 1] with

‖x(·, t)‖ =
(

∫ 1

0
|x(z, t)|2 dz

)
1

2

[11]. Define the operators A

and B on X to be

A =
d2

dz2
with the domain

D(A) =

{

h ∈ L2(0, 1)

∣

∣

∣

∣

h,
dh

dz
are absolutely continuous,

d2h

dz2
∈ L2(0, 1) and

dh(0)

dz
=

dh(1)

dz
= 0

}

B = I

where D(A) is the domain of A, I is the identity, and the

function x0(·, 0) ∈ L2(0, 1) is the initial state. The output

operator C is determined later since it depends of sensor

locations.

The input trajectory u(·, t) and output trajectory y(·, t) are

defined similarly to the state. The abstract model simplifies

the representation of the PDE model by incorporating the

boundary condition into the definition of the domain of A,

D(A).
For the purpose of observer and controller design, the di-

mension of the system must be reduced. This process is called

lumping and there are two kinds of lumping [8], [12]: early

lumping and late lumping.

In early lumping, the first step of the design process is to

reduce the system dimensionality using spatial approximation

methods, e.g., finite-difference or finite-element methods. The

dimension reduction step results in a finite-dimensional system

of ODEs that serves as the basis for observer design. Next,

temporal discretization can be applied to obtain discrete-time

system models.

In late lumping, the infinite-dimensional model is used

during analysis and design. The resulting observer has an

infinite number of dimensions, which are then lumped for the

implementation.

Several order reduction methods can be used for both

early and late lumping. They are Galerkin approximation

[13], proper orthogonal decomposition [14], and eigenfunction

expansion [15].

IV. DISTRIBUTED-PARAMETER OBSERVERS

In the literature, there are several approaches to observer

design for DPSs. The first approach uses the PDE model (3)

and makes use of the available analysis methods for PDEs.

The second approach uses the abstract model (4) and applies

the existing analysis tools in functional analysis.

For the PDE model (3) the observers have the following

form [8]:

∂x̂(z, t)

∂t
=

∂2x̂(z, t)

∂z2
+ u(z, t)

+ ℓ(z)
(

x̂(z, t)− x(z, t)
)

, z ∈ (0, 1) (5a)

∂x̂(z, t)

∂z
= ℓb(z)

(

x̂(z, t)− x(z, t)
)

, t ≥ 0, z ∈ {0, 1} (5b)

x̂(z, 0) = x̂0(z), z ∈ [0, 1] (5c)

where ℓ(z) and ℓb(z) are the observer gains. Inserting (3) and

(5) into the error equation:

e(z, t) = x̂(z, t)− x(z, t) (6)

results in

∂e(z, t)

∂t
=

∂2e(z, t)

∂z2
+ ℓ(z)e(z, t), z ∈ (0, 1) (7a)

∂ê(z, t)

∂z
= ℓb(z)e(z, t), t ≥ 0 z ∈ {0, 1} (7b)

e(z, 0) = e0(z) = x̂0(z)− x0(z), z ∈ [0, 1] (7c)

The observer design problem is to determine the observer gains

such that the estimation error goes to zero

lim
t→∞

e(z, t) = 0, z ∈ [0, 1]

For model (4), the observer has the following form

˙̂x(t) = Ax̂(t) +Bu(t) +K
(

y(t)− Cx̂(t)
)

(8a)

x̂(0) = x̂0 (8b)

The observer design problem involves finding an observer gain

operator K that makes the estimation error e, whose evolution

is described by

ė(t) = (A−KC)e(t)

e(0) = x̂0 − x0 ,
(9)

asymptotically tend to zero.

We can now proceed to an overview of observer design

methods for DPSs. A taxonomy of observers for linear DPSs is

shown in Figure 1. Note that for infinite-dimensional systems,

beside the observer design techniques, the existence of the

observer has also been investigated.

A. Finite-Dimensional Observers

Finite-dimensional observers are observers that are designed

using the early-lumping approach. The lumping results in

a system of ODEs and makes the observer design methods

similar to the case of lumped-parameter systems, but they often

include additional elements such as the influence of sensor

locations.
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Fig. 1. Overview of observer design approaches for linear DPSs.

Orner and Foster [13] have designed an optimal controller

for a system modeled by a PDE. The order of the model is

reduced using the Galerkin approximation2. The observer is

designed to include the influence of the sensor location by

optimizing the term A−KC in (2).

Stavroulakis and Sarachik [15] have developed an observer

for an optimal control system in which the eigenfunction

expansion is used to reduce the order of the model. The

observer design follows the method proposed in [16], in which

it has been shown that eigenvalues of observers used for

optimal control systems cannot be assigned arbitrarily and a

systematic design approach has also been given.

An observer that estimates the states of the system and

unknown input functions using output measurements has been

introduced by Kobayashi and Hitotsuya [17]. In [17], it is

assumed that the system in Hilbert space H is decomposable

into an N -dimensional part:

ẋf(t) = Afxf(t) + PF (t), xf(0) = xf,0

and an infinite-dimensional part:

ẋi(t) = Aixi(t) +QF (t), xi(0) = xi,0

where xf and xi are the state variables of the finite-dimensional

part and the infinite-dimensional part, P and Q are orthogonal

projections such that H = PH + QH and Q = I − P , Af

and Ai are the restrictions of A to PH and QH respectively,

and F (t) is the unknown input function. An observer for the

N -dimensional part has the following form:

˙̂xf(t) = Rx̂f(t) + Sy(t), x̂f(0) = xf,0

for continuous linear operators R and S where y(t) =
Mxf(t) +Mxi(t) is the measurement equation and where R

fulfills the observer condition [18]: R = Af − SM . Using

the solution of the dynamic error equation and assuming that

the projected system is observable, the eigenvalues of R can

be assigned arbitrarily. The estimated states are then used to

approximate the input function F (t). In [19] Kobayashi has

investigated the same problem but for a discrete-time system

and unknown initial states.

Efe [14] has designed a sliding-mode observer for a reduced-

order model obtained by proper orthogonal decomposition. The

stability and convergence of the observer are proved using

Lyapunov stability conditions.

2Galerkin methods are a class of methods for converting a continuous
operator problem (such as a differential equation) into a discrete problem.

B. Infinite-Dimensional Observers

When the observer design takes the late-lumping approach,

the resulting observer has an infinite number of dimensions

and it has the form of (5) or (8).

1) Generalization of the observer theory for finite-

dimensional systems: One of the fundamental problems

associated with the abstract model (4) is the generalization of

observer theory for finite-dimensional systems to the infinite-

dimensional case. We can see that the observer equations (8)

are the same as those of finite-dimensional systems. However,

we cannot directly apply the finite-dimensional observer

equations to infinite-dimensional systems because of the

different underlying space on which the operators are defined

in the infinite-dimensional case [5].

To generalize observer theory to infinite-dimensional sys-

tems, Kitamura et al. [20] introduced conditions for the ex-

istence and realizability of the observer (8) with no input.

The full-order and reduced-order case are also considered with

two types of measurements: spatially continuous and spatially

discrete.

Gressang and Lamont [21] have investigated another general-

ization of (4), including a class of linear functional differential

equations. In that paper, observability has been proven as

a sufficient condition to design full-order and reduced-order

observers. It also shown that the eigenvalues of an observer-

based state feedback system are the union of the eigenvalues

of the closed-loop system and of the observer. However, the

generalization does not allow the observer to have arbitrary

eigenvalues.

Sakawa and Matsushita [22] have investigated the feedback

stabilization of parabolic PDEs and proved that controllability

and observability are necessary and sufficient conditions to

stabilize the system. This result is applied to the observation

problem and it can be shown that observability guarantees the

observers to converge.

An extension to the Luenberger observer in relation with

sensor locations in DPSs has been studied by El Jai and

Amouroux [23]. This study has shown that sensor configura-

tions have a relation with the detectability of the system and

the existence of the observer. This means that there are certain

sensor configurations that allow the observers to exist and, at

the same time, there are also certain sensor configurations for

which the observer does not exist.

2) Observer Design: Several observer design methods can

be found in the literature. Liu and Lapidus [24] have intro-



duced a Lyapunov-based observer design for system (4) under

the assumption that there are no inputs. The gain operator

K can be obtained by first defining a Lyapunov functional

based on a norm of the estimation error and next applying the

Lyapunov stability condition to this Lyapunov functional.

Yaz et al. [25] have proposed a type of observers called

receding-window observers. The observer is in the form (8)

with the following observer gain calculation

K(PN−1) = APN−1C
T(CPN−1C

T +R)−1 (10)

where N is a positive integer and where PN is computed by

iterating the following Riccati and gain equations:

K(Pk) = APkC
T(CPkC

T +R)−1

Pk+1 = (A−K(Pk)C)Pk(A−K(Pk)C)T

+K(Pk)RK(Pk)
T +Q

(11)

with k = 0, . . . , N − 1, P0, R, and Q positive definite

operators, and N the window length of the observer. In [25]

the convergence of the observer and its bounded noise rejection

and robustness to parameter perturbation properties are proved.

We can see from (10) and (11) that the observer is similar to

the Kalman filter (with R and Q the covariance matrices of

respectively the measurement noise and the process noise).

Another observer design method has been introduced by

Smyshlyaev and Krstic [26] for boundary observation and

control3 of a class of parabolic PDEs (3). The observer

is called backstepping observer because a backstepping-like

transformation4 is applied to the estimation error e(z, t). It

has been shown that the observer gain computation in the new

coordinates ensures the stability of the observer in the original

coordinates. Miranda et al. [27] have added a sliding-mode

term to the observer to obtain a sliding-mode observer.

A prime application of observers in control systems involves

feedback stabilization. A functional observer design has been

proposed by Fujii [28] for feedback stabilization for boundary

control. The resulting observer involves convolution of the

input, which results in an infinite-dimensional observer.

The backstepping observer in [26] is also applied to feed-

back stabilization using boundary control, where the situations

of collocated and anti-collocated5 actuator and sensor are

considered. A similar approach is taken in [29] for the sliding-

mode control problem in a non-collocated actuator and sensor

case.

Köhne [30] designed an observer for a heated-slab set-up

by late lumping. The parameters of the observer are calculated

via eigenfunction expansion of the dynamic estimation error

equation.

3Boundary control and/or observation systems are a class of DPSs in which
the actuation and/or observation is performed at the spatial boundary of the
system.

4The backstepping-like transformation converts a system into another stable
system using an invertible kernel-based transformation.

5For a 1D heated bar, “anti-collocated” that means the heater is at one end
and the sensor is at the other end.

C. Adaptive Observers

For systems with unknown parameters, adaptive observers

are used to simultaneously reconstruct the states and asymp-

totically identify the parameters of the system. Results in this

topic for lumped-parameter systems can be traced back to the

beginning of the 1970s [31].

For the application of adaptive observer for DPSs, in [32],

Lilly has extended the result of [33] and shown that a reduced-

order model can be used to identify parameters and states

of an infinite-dimensional system. It is shown that if the

residual energy from the unmodeled dynamics is bounded

over a finite interval and the input is persistently exciting,

then the estimation will be bounded. This assumes no input

boundedness nor plant stability.

Demetriou and Ito [34] have studied adaptive observers of

the following form to overcome additive perturbations from

output feedback:

ẋ(t) = (A+∆)x(t) +Bu(t)

y(t) = Cx(t)
(12)

where the matrices B and C have a finite rank, and ∆ is the

additive perturbation from output feedback. Several cases of

∆, assuming the same input-output locations (collocation), are

presented and for each case an adaptation law obtained using

the Lyapunov redesign method [35] is given.

Curtain et al. [36] have extended the results of [34] for the

non-collocated case. Reference [37] addresses the case of time-

varying input parameters. The adaptation laws are obtained by

using the Lyapunov redesign method [35].

Demetriou et al. [38] have proposed an adaptive fault

detection observer to monitor and accommodate actuator faults.

When the actuator fault occurs, the observer generates a non-

zero residual signal. After the fault is detected, the residual

signal is also used to automatically reconfigure the system.

V. SECOND-ORDER DISTRIBUTED-PARAMETER SYSTEMS

Flexible structures and vibration are examples of DPSs that

are modeled as second-order time derivative systems [39] that

can be written as [40]:

ẍ(t) +Dẋ(t) + Fx(t) = Bu(t) (13a)

y(t) = C
[

xT(t) ẋT(t)
]T

(13b)

x(0) = z0 ẋ(0) = v0 (13c)

where x and ẋ are the position and velocity states respectively,

D is the damping operator, F is the stiffness operator, and C

is the output operator.

While (13) can be transformed into a standard state equation

ẋ(t) = Ax(t) + Bu(t) and uses a Luenberger observer, to

keep the structure, Demetriou [41] has designed the observer

directly in the second-order form instead of designing it from

the first-order representation. The method also modified the

output equation by

y(t) =
[

yTp (t) yTv (t)
]T

=
[

xT(t)CT
p ẋT(t)CT

v

]T



where Cp and Cv are matrices with suitable dimensions. Then

the observer is designed using the following form

¨̂x(t) +D ˙̂x(t) + F x̂(t) = Bu(t)

+Kp

(

yp(t)− Cpx̂(t)
)

+Kv

(

yTv (t)− Cv
˙̂x(t)

)

(14)

where Kp and Kv are the observer gains. This type of

observers are called natural observers [41]. In [41], the abstract

representation along with the stability and convergence analy-

sis are presented. It can be seen that the observer is basically

a Luenberger-type observer with a separate state gain for the

velocity and position states. Another second-order observer

method that allows observing systems with a positive semi-

definite damping was proposed in [42].

The solution to (13a) can be calculated using eigenfunction

expansion:

x(t) =

M
∑

i=1

xi(t)φi

where φi is the eigenvector corresponding to ith eigenvalue

that corresponds to ith mode of the system. Theoretically M =
∞, but it is usually set to a finite number, say J , since in

practice actuators and sensors are not able to deal with very

high frequencies. The high-frequency modes
∑∞

i=J+1
xi(t)φi

are called the residual or spillover [43].

When the frequencies of the modeled system and its residual

are sufficiently separated, the measurement signals are filtered

using low-pass filters to remove high-frequency components.

However, the separation principle does not apply anymore in

this case. Instead of filtering the sensor output, Chait and

Radcliffe [44] filtered the estimation error and the filter is

included in the observer design, which results in an augmented

observer. In [45], an observer has been designed as a part of

a vibration control that is robust to the spillover.

VI. DISTRIBUTED ESTIMATION

A recent development in the area of state estimation for

DPSs is distributed estimation using sensor networks as mea-

surement system. Sensor networks consist of several sensor

nodes where each node has embedded computation, communi-

cation, and power modules. A node acts as a local observer that

computes estimates using its own model and measurements.

The communication module allows the sensor nodes to share

information with other nodes in the network within a specified

communication topology.

Demetriou [46] has proposed a distributed Luenberger ob-

server using sensor network with the consensus method [47].

Each node i in the network has a model similar to (4) but

with a modified measurement equation to reflect the sensor

node index

yi(t) = Cixi(t) (15)

for i ∈ {1, . . . , N} where N is the number of nodes in

the network. For each node i, the following local observer

is applied

˙̂xi(t) = Aix̂(t) +Bu(t) +Giyi(t) (16)

where Gi denotes the observer gain and it is such Ai = A−
GiCi generates a stable semigroup. The distributed observer

with consensus for node i can be written as

˙̂xi(t) = Aix̂(t) +Bu(t) +Giyi(t)

+ αiΦi

N
∑

j=1, i6=j

(x̂j(t)− x̂i(t)) (17)

where Φi is the consensus operator gain and αi is an additional

weighting term. In [46], an adaptive consensus observer has

also been introduced in which the consensus term αiΦi is

made adaptive.

Consensus filters are also proposed in [40] for second-order

DPSs based on Luenberger-type observers, resulting in a filter

called natural Luenberger consensus filter.

VII. SUMMARY AND CHALLENGES

We have presented a review of state observer design methods

for first-order and second-order linear distributed-parameter

systems (DPSs). We have addressed linear observers for

infinite-dimensional and finite-dimensional systems. In addi-

tion, adaptive methods and distributed state estimation methods

for sensor networks have been presented.

The observer design problem in DPSs is more com-

plex than for lumped-parameter systems due to the infinite-

dimensionality nature of the problem. At the same time, this

field is less explored compared to that of lumped-parameter

systems. Given the increasing importance of DPSs in current

and future applications, we can identify several challenges.

The first is robustness of the observer against model uncer-

tainty. A number of results are available for robust design of

lumped-parameter observers, e.g., [48], [49], but so far only a

few of them have been extended to the distributed-parameter

setting.

Another challenge is discrete-time observer analysis and

design. It is true that spatially-temporally discretized DPSs

can be considered as (high-dimensional) lumped-parameter

systems. However, in this case the spatially neighboring states

have strongly influence one another. Beside stability and

convergence analysis, for a spatially large system, the spatially-

temporally discretized system will have a large number ele-

ments in the state vector. Fast and reliable numerical compu-

tation methods are therefore of great importance for this field.

The observer design methods presented in this paper can be

applied, for instance, to estimate the temperature and humidity

distribution in a greenhouse or state estimation of a flexible-

link robot [50]. Application of the observer design methods

to such systems and performance comparisons over real data

sets are topics for future work.
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