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Hierarchical Model-Based Control for

Automated Baggage Handling Systems

A.N. Tarău, B. De Schutter, and H. Hellendoorn

Abstract This paper presents a unified and extended account of previous work re-

garding modern baggage handling systems that transport luggage in an automated

way using destination coded vehicles (DCVs). These vehicles transport the bags at

high speeds on a network of tracks. To control the route of each DCV in the system

we first propose centralized and distributed predictive control methods. This results

in nonlinear, nonconvex, mixed-integer optimization problems. Therefore, the pro-

posed approaches will be expensive in terms of computational effort. As an alter-

native, we also propose a hierarchical control framework where at higher control

levels we reduce the complexity of the computations by simplifying and approxi-

mating the nonlinear optimization problem by a mixed-integer linear programming

(MILP) problem. The advantage is that for MILP problems solvers are available

that allow us to efficiently compute the global optimal solution. To compare the

performance of the proposed control approaches we assess the trade-off between

optimality and CPU time for the obtained results on a benchmark case study.

1 Introduction

The state-of-the-art technology used by baggage handling systems at airports to

transport the bags in an automated way incorporates scanners that scan the (elec-
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Fig. 1 DCVs running on a network of tracks (Photo courtesy of Vanderlande Industries)

tronic) baggage tags on each piece of luggage, baggage screening equipment for se-

curity scanning, networks of conveyors equipped with junctions that route the bags

through the system, and destination coded vehicles (DCVs). As illustrated in Figure

1, a DCV is a metal cart with a plastic tub on top. These carts are propelled by linear

induction motors mounted on the tracks. The DCVs transport the bags at high speed

on a network of tracks. Note that the DCVs are used in large airports only, where the

distances between the check-in desks and the end points towards which the baggage

has to be transported are very large (for these airports the conveyor systems are too

slow, and therefore, a faster carrier is required for each bag).

In this chapter we consider a DCV-based baggage handling system. Higher-level

control problems for such a system are route assignment for each DCV (and im-

plicitly the switch control of each junction), line balancing (i.e., route assignment

for each empty DCV such that all the loading stations have enough empty DCVs at

any time instant), and prevention of buffer overflows. The velocity control of each

DCV is a low-level control problem. Low-level controllers determine the velocity

of each DCV so that a minimum safe distance between DCVs is ensured and so that

the DCVs are held at switching points, if required. So, a DCV runs at maximum

speed, vmax, unless overruled by the local on-board collision avoidance controller.

Other low-level control problems are coordination and synchronization when load-

ing a bag onto a DCV (in order to avoid damaging the bags or blocking the system),

and when unloading it to its end point. We assume the low-level controllers already

present in the system, and we focus on the higher-level control problems of a DCV-

based baggage handling system, in particular the route assignment of the DCVs.

Currently, the track networks on which the DCVs transport the baggage have

a simple structure, with the loaded DCVs being routed through the system using

routing schemes based on preferred routes. These routing schemes adapt to respond

on the occurrence of predefined events. However, the load patterns of the system

are highly variable, depending on, e.g., the season, time of the day, type of aircraft

at each gate, or the number of passengers for each flight [3]. Also note that the

first objective of a baggage handling system is to transport all the checked-in or

transfer bags to the corresponding end points before the planes have to be loaded.

However, due to the airport’s logistics, an end point is allocated to a plane only
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within a given time span before the plane’s departure. Hence, the baggage handling

system performs optimally if each of the bags to be handled arrives at its given end

point within a specific time window. So, predefined routes are far from optimal.

Therefore, we will not consider predefined preferred routes, but instead we will

develop and compare efficient control methods to determine the optimal routing of

the DCVs.

In the literature, the route assignment problem has been addressed to a large

extent for automated guided vehicles (AGVs), see e.g., [10, 12]. Traditionally, the

AGVs that execute the transportation tasks are controlled by a central server via

wireless communication. Hence, the computational complexity of the centralized

routing controller increases with the number of vehicles to be routed. In this con-

text, [18] presents a decentralized architecture for routing AGVs through a ware-

house. However, even for a small number of AGVs to be used for transportation (12

AGVs), the communication requirements are high. But in baggage handling sys-

tems the number of DCVs used for transportation is large (typically airports with

DCV-based baggage handling systems have more than 700 DCVs). Hence, in prac-

tice, designing an on-board routing controller for each DCV is not yet tractable.

Also, we do not deal with a shortest-path or shortest-time problem, since, due to the

airport’s logistics, we need the bags at their end points within given time windows.

The DCV routing problem has been presented in [4] where an analogy to data

transmission via internet is proposed, and in [9] where a multi-agent hierarchy has

been developed. However, the analogy between routing DCVs through a track net-

work and transmitting data over internet has limitations, see [4], while the latter ref-

erence, [9], does not focus on control approaches for computing the optimal route

of DCVs, but on designing a multi-agent hierarchy for baggage handling systems

and analyzing the communication requirements. Moreover, the multi-agent system

of [9] faces major challenges due to the extensive communication required. There-

fore, the goal of our work is to develop and compare efficient control approaches

(viz., predictive control methods) for routing each DCV transporting bags to its end

point. This paper integrates results of previous work [14, 16, 17], presents all the

methods that previously proved to be efficient; and compares the obtained results

for a benchmark case study over typical and extreme scenarios. Moreover, we ad-

dress the trade-off between accuracy of the overall performance of the system and

the total computational effort required to compute the optimal solution.

This chapter is structured as follows. In Section 2 we describe the automated bag-

gage handling process. Next, in Section 3, we present the control objective which

will be later on used when solving the DCV routing problem. Furthermore, in Sec-

tion 4, we propose several control approaches for determining the optimal route for

each bag through the baggage handling network. First we develop and compare cen-

tralized and distributed predictive methods that could be used to maximize the per-

formance of the DCV-based baggage handling system. But these methods involve

nonlinear, nonconvex, mixed-integer optimization problems that are very expensive

to solve in terms of computational effort. Therefore, we also propose an alterna-

tive approach for reducing the complexity of the computations by simplifying the

nonlinear optimization problem and writing it as a mixed-integer linear program-
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Fig. 2 Baggage handling system using DCVs

ming (MILP) optimization problem, for which solvers are available that allow us to

efficiently compute the global optimal solution. This approach will then be incorpo-

rated in a hierarchical control framework for routing the DCVs. The analysis of the

simulation results and the comparison of the proposed control methods and control

frameworks are elaborated in Section 5. Finally, in Section 6, we draw conclusions

and we present possible directions for future research.

2 System description and original model

Now we briefly recapitulate the event-driven route choice model of a baggage han-

dling system that we have developed in [13]. The nodes via which the DCVs enter

the track network are called loading stations, the nodes via which the DCVs exit the

network are called unloading stations, while all the other nodes in the network are

called junctions. The section of track between two nodes is called link.

Consider the general DCV-based baggage handling system with L loading sta-

tions and U unloading stations sketched in Figure 2.

The DCV-based baggage handling system operates as follows: given a demand of

bags and the network of tracks, the route of each DCV (from a given loading station

to the corresponding unloading station) has to be computed subject to operational

and safety constraints such that the performance of the system is optimized.

The model of the baggage handling system we have developed in [13] consists of

a continuous part describing the movement of the individual vehicles transporting

the bags through the network, and of the following discrete events: loading a new

bag onto a DCV, unloading a bag that arrives at its end point, updating the position

of the switches into and out of a junction, and updating the speed of a DCV. The

state of the system consists of the positions of the DCVs in the network and the

positions of each switch of the network. According to the discrete-event model of

[13], as long as there are bags to be handled, the system evolves as follows: we shift

the current time to the next event time, take the appropriate action, and update the

state of the system.

Let DCVi denote the DCV that transports the ith bag that entered the track net-

work up to the current time instant. According to the model, for each bag that has to

be handled, we compute the time instants when each bag enters and exits the track
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network. Let t load
i denote the time instant when the ith bag that entered the track net-

work is loaded onto a DCV (so, this is DCVi) and let tunload
i denote the time instant

when the same bag is unloaded at its end point. Then we consider two models of

the baggage handling system which will be used for (1) route control — where we

determine a route for each DCV, and consequently, the switch will be positioned so

that each DCV travels on the assigned route — and (2) switch control — where we

determine switch positions over the simulation period — respectively:

t = M
route ctrl

(

T ,x(t0),r
)

or

t = M
switch ctrl

(

T ,x(t0),U
)

where:

• t= [t load
1 . . . t load

Nbags tunload
1 . . . tunload

Nbags ]⊤ with Nbags the number of bags to be handled

in the given simulation period.
• T is the tuple that consists of the arrival times at loading stations for all the bags

to be handled.
• x(t0) is the initial state of the system with t0 the initial simulation time.
• r is the route control sequence defined as follows: assume that there is a fixed

number R of possible routes from a loading station to an unloading station and

that the R routes are numbered 1,2, . . . ,R. Let r(i)∈ {1,2, . . . ,R} denote the route

of DCVi. Then the route sequence is represented by r = [r(1)r(2) · · · r(Nbags)]⊤.
• U is the switch control input for the entire network defined as U = (u1, . . . ,uS)

with us = [usw in
s (1) . . . usw in

s (Nbags)usw out
s (1) . . . usw out

s (Nbags)]⊤ for s= 1, . . . ,S,

where S is the number of junctions and where usw in
s ( j) is the position of the

switch into junction Ss when the jth bag crosses Ss and usw out
s ( j) is the position

of the switch out junction Ss when the jth bag crosses Ss.

Without loss of generality (i.e., by creating virtual junctions connected by virtual

links of zero length) we can assume each junction to have at most 2 incoming

links (indexed by the labels 0 and 1) and at most 2 outgoing links (also indexed

by 0 and 1). We call the switch that makes the connection between a junction and

its incoming links a switch-in, and the switch that makes the connection between

a junction and its outgoing links a switch-out.

The operational constraints derived from the mechanical and design limitations

of the system are the following: the speed of each DCV is bounded between 0 and

vmax, while a switch at a junction has to wait at least τswitch time units between

two consecutive toggles in order to avoid the quick and repeated back and forth

movements of the switch which may lead to mechanical damage. We assume τswitch

to be an integer multiple of τs where τs is the sampling time. In this chapter we

denote the operational constraints by C (t)≤ 0.
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3 Control objective

Since the baggage handling system performs successfully if all the bags are trans-

ported to their end point before a given time instant, from a central point of view, the

primary objective is the minimization of the overdue time. A secondary objective is

the minimization of the additional storage time at the end point. This objective is

required due to the intense utilization of the end points in a busy airport. Let Nbags

be the number of bags that the baggage handling system has to handle. Hence, one

way to construct the objective function J
pen
i corresponding to the bag with index i,

i ∈ {1,2, . . . ,Nbags}, is to penalize the overdue time and the additional storage time.

Accordingly, we define the following penalty for bag i:

J
pen
i (tunload

i ) =σi max(0, tunload
i − tclose

i )+λ1 max(0, tclose
i − τ

open
i − tunload

i ) (1)

where tclose
i is the time instant when the end point of bag i closes and the bags

are loaded onto the plane, σi is the static priority of bag i (the flight priority), and

τ
open
i is the maximum possible length of the time window for which the end point

corresponding to bag i is open for that specific flight. The weighting parameter λ1 >
0 expresses the penalty for the additionally stored bags. Note that the control actions

involved in r and U influence J
pen
i in the sense that they influence the time instant

when bag i is unloaded. Moreover, all approaches that we propose have in common

the fact that we are interested in tunload
i with respect to the given unloading time

window. Therefore, we have chosen tunload
i as argument of J

pen
i .

Moreover, the above performance function has some flat parts, which yield diffi-

culties for many optimization algorithms. Therefore, in order to get some additional

gradient and also minimize the energy consumption, we also include the time that a

bag spends in the system. This results in (see Figure 3):

Ji(t
unload
i ) = J

pen
i (tunload

i )+λ2(t
unload
i − t load

i ) (2)

where λ2 is a small weight factor (0 < λ2 ≪ 1).

The final objective function to be used when comparing the proposed control

approaches is given by:
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Jtot(t) =
Nbags,sim

∑
i=1

J
pen
i (tunload

i ) (3)

where Nbags,sim is the number of bags that reached their end point during the sim-

ulation period [t0, t0 + τsim), where t0 the initial simulation time and τsim is either

the time instant when all the bags have been handled (and then Nbags,sim = Nbags) or

τsim = τmax sim with τmax sim the maximum simulation period.

4 Control methods

In this section we develop and compare centralized and distributed predictive meth-

ods that could be used to optimize the performance of the system. The centralized

control method results in a nonlinear, nonconvex, mixed-integer optimization prob-

lem that is very expensive to solve in terms of computational effort. Therefore, we

also propose an alternative approach for reducing the complexity of the computa-

tions by approximating the nonlinear optimization problem by a mixed-integer lin-

ear programming (MILP) problem. The MILP approach will then be incorporated

in a hierarchical control framework.

4.1 Centralized MPC

Since later on we will use model predictive control (MPC) for determining the routes

of the DCVs in the network, in this section we first briefly introduce the basic con-

cepts of MPC.

MPC is an on-line model-based control design method, see e.g., [11], that uses

a receding horizon principle. In the basic MPC approach, given an horizon N, at

step k ≥ 0, where k is integer-valued, corresponding to the time instant tk = kτs with

τs the sampling time, the future control sequence u(k),u(k+1), . . . ,u(k+N −1) is

computed by solving a discrete-time optimization problem over the period [tk, tk +
Nτs) so that a performance criterion defined over the considered period [tk, tk +
Nτs) is optimized subject to the operational constraints. After computing the optimal

control sequence, only the first control sample is implemented, and subsequently the

horizon is shifted. Next, the new state of the system is measured or estimated, and a

new optimization problem at time tk+1 is solved using this new information.

We define now a variant of MPC, where k is not a time index, but a bag index.

If k > 0, then bag step k then corresponds to the time instant t load
k when the kth

bag has just entered the track network, while bag step k = 0 corresponds to the

initial simulation time t0. For this variant of MPC, the horizon N corresponds to

the number of bags for which we look ahead, while computing the control inputs

r(k+1), r(k+2), . . . , r(k+N) where r(k+ j) with represents the route of DCVk+ j

(from a given loading station to the corresponding unloading station). Next, we
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implement all the computed control samples, and accordingly we shift the horizon

with N steps. So, once we have assigned a route to a DCV, the route of that DCV

cannot be changed later on.

The total objective function of centralized MPC is then defined as:

JCentr MPC
k,N (t(k)) =

k+N

∑
i=1

Ji(t̂
unload
i )

where t̂unload
i is the predicted unloading time of DCVi depending on the routes of the

first k+N bags that entered the network, and t(k)= [t load
1 . . . t load

k+N tunload
1 . . . tunload

k+N ]⊤.

Now let r(k) denote the future route sequence for the next N bags entering the

network at bag step k: r(k) = [r(k + 1) r(k + 2) . . . r(k +N)]⊤. Accordingly, the

MPC optimization problem at bag step k is defined as follows:

min
r(k)

JCentr MPC
k,N (t(k))

subject to

t(k) = M route ctrl
(

T ,x(t load
k ),r(k)

)

C (t(k))≤ 0

When using centralized MPC, at each bag step k, the future route sequence r(k)
is computed over an horizon of N bags so that the objective function is minimized

subject to the dynamics of the system and the operational constraints.

Centralized MPC can compute on-line the route of each DCV in the network, but

it requires a large computational effort as will be illustrated in Section 5. Therefore,

we also propose distributed control approaches, which offer a trade-off between the

optimality of the performance for the controlled system and the time required to

compute the solution.

4.2 Distributed MPC

One can decrease the computation time required by the centralized control approach

proposed above by implementing a distributed approach that computes local control

actions by solving local optimization problems similar to those that we have detailed

in [15].

4.2.1 Levels of influence

In distributed model predictive route choice control we consider local subsystems,

each consisting of a junction Ss with s ∈ {1,2, . . . ,S}, its incoming and its outgoing

links. But in contrast to decentralized approaches, data is communicated between

neighboring junctions, which are characterized by the concept of level of influence.

The levels of influence are defined as follows.
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Let us first assign one or more levels of downstream influence to each junction in

the network. We assign downstream influence level 1 to each junction in the network

connected via a link to a loading station. Next, we consider all junctions connected

to some junction with influence level 1 via an outgoing link, and we assign influence

level 2 to them. In this way we recursively assign an influence level to each junction

with the constraint that at most κmax
d downstream influence levels are assigned to

a given junction1. For example see Figure 4 where we define maximum 2 levels of

downstream influence for each junction in the network (κmax
d = 2). For this exam-

ple we have considered the junctions S1 and S2 to have been assigned downstream

influence level 1. Then S3 and S4 are assigned level 2 (since these junctions are con-

nected to S1 and S2 via outgoing links). Next, we assign influence level 3 to S4, S5,

S3, and S6 (since they are connected to S3 and S4). Note that now S3 and S4 have

two levels of downstream influence: 2 and 3. Therefore, S5 and S6 are also assigned

influence level 4 (since they are connected to S3 and S4 with influence level 3).

Similarly we can also assign levels of upstream influence to each junction in

the network. We assign upstream influence level 1 to each junction in the network

connected via a link to an unloading station. Next, we assign upstream influence

level 2 to all the junctions connected to some junction on upstream influence level

1 via its incoming links. Recursively, we then assign levels of upstream influence to

each junction with the constraint that at most κmax
u levels of upstream influence are

assigned to a given junction.

4.2.2 Distributed MPC with a single round of downstream communication

Let us now consider distributed MPC with a single round of downstream communi-

cation. This means that first the local controller of each junction with influence level

1 solves the local optimal switch control problem.

After computing the optimal switch control sequence, each junction with influ-

ence level 1 then communicates to its neighboring junctions at level 2 which bags

1 The constraint that at most κmax
d downstream influence levels are assigned to a junction limits the

computational complexity and keeps all levels of influence finite.
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(out of all the bags over which we make the prediction for the corresponding junc-

tion with influence level 1) will enter the incoming link of the junction at level 2

and at which time instant they will do so. Next, we iteratively consider the junctions

at levels 2,3, . . . ,Kdownstream, were Kdownstream is the largest level of downstream in-

fluence assigned in the network. Then, for each junction with influence level larger

than 1, we compute a local solution to the local MPC problem as presented next.

Assume Ss with s ∈ {1, . . . ,S} has influence level κd > 1. Let S
prev
s,l denote the

neighboring junction of Ss connected via the incoming link2 l ∈ {0,1} of Ss (so,

S
prev
s,l has influence level κd − 1). Then, we compute a local solution for Ss to the

local MPC problem defined below over an horizon of

Ns = min
(

Nmax,
1

∑
l=0

(

nhorizon
s,l +n

pred cross
s,l,0 +n

pred cross
s,l,1

)

)

(4)

bags where Nmax is the maximum prediction horizon for the local MPC problem,

nhorizon
s,l is the number of DCVs traveling on link l ∈ {0,1} going into Ss at the time

instant when we start optimizing, and n
pred cross
s,l,m is the number of DCVs traveling

towards S
prev
s,l on its incoming link m that we predict (while solving the local opti-

mization problem at S
prev
s,l ) to cross S

prev
s,l and to continue their journey towards Ss

(n
pred cross
s,l,m < nhorizon

s,l ).

Let us now index3 the bags that successively cross junction Ss during the en-

tire simulation period [t0, t0 + τmax sim) as bs,1,bs,2, . . . ,bs,N
bags
s

, where N
bags
s is the

number of bags that cross Ss during the simulation period.

Recall that we use a variant of MPC with a bag index. So, in this approach, the

local control is updated at every time instant when some bag has just entered an

incoming link of junction Ss. Let tcrt
s be such a time instant.

Then we determine bag index k such that tcross
s,k ≤ tcrt

s < tcross
s,k+1, where tcross

s,k is

defined as the time instant when bag bs,k has just crossed the junction. If no bag has

crossed the junction yet, we set k = 0.

When solving the local MPC optimization problem for junction Ss, we will use

a local objective function JDistr MPC
s,k,Ns

. The local objective function is computed via a

simulation of the local system for the next Ns bags that will cross the junction, and

is defined as follows:

JDistr MPC
s,k,Ns

(ts(k)) =
min(Ns,N

cross
s )

∑
j=1

Jk+ j(t̂
unload,∗
s,k+ j )+λ pen(Ns −Ncross

s )

where

• Ncross
s is the number of DCVs that actually cross junction Ss during the prediction

period,

2 Recall that we may assume without loss of generality that each junction has at most 2 incoming

links.
3 This order depends on the evolution of the position of the switch-in at junction Ss.
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• t̂
unload,∗
s,k+ j is the predicted unloading time instant of bag bs,k+ j,

• λ pen is a nonnegative weighting parameter,

• ts(k) = [t load
s,k+1 . . . t load

s,k+Ns
t̂
unload,∗
s,k+1 . . . t̂

unload,∗
s,k+Ns

]⊤ with t load
s,k+ j the loading time instant

of bag bs,k+ j

The second term λ pen(Ns −Ncross
s ) of the local objective function is included for

the following reasoning. Assume that, at step k, there are no DCVs traveling on

the incoming link l ∈ {0,1} of junction Ss, while some DCVs travel on link 1− l.

If this term would not be considered, then JDistr MPC
s,k,Ns

(t) would be minimal when

the switch-in is positioned on link l during the prediction period. However, this is

obviously not a good solution when the endpoints are open.

The MPC optimization problem at junction Ss for bag k is then defined as fol-

lows:

min
us(k)

JDistr MPC
s,k,Ns

(ts(k))

subject to

ts(k) = M local,switch ctrl
(

T ,xs(t
cross
s,k ),us(k)

)

C (ts(k))≤ 0

with Ns given by (4). Note that in this approach M local,switch ctrl
(

T ,xs(t
cross
s,k ),us(k)

)

describes the local dynamics of junction Ss with its incoming and outgoing links and

additional data from neighboring junctions (if any).

After computing the optimal control, only usw in
s (k+1) and usw out

s (k+1) are ap-

plied. Next the state of the system is updated. At bag step k+1, a new optimization

will be then solved over the next Ns bags.

Every time some bag has crossed some junction we update the local control of

junctions in the network as follows. Assume that some bag has just crossed junction

Ss which has assigned level κd. Then, we update the control as follows. We consider

a subtree rooted at Ss and consisting of nodes of subsequent levels of influence that

are connected via a link to nodes already present in the subtree. So, only the control

of the switch-in and switch-out of the junctions in this subtree have to be updated.

4.2.3 Distributed MPC with a single round of downstream and upstream

communication

In order to further improve the performance of the distributed control approach pre-

sented above, we now add an extra round of communication and consider distributed

MPC with one round of downstream and upstream communication.

So, every time a bag has crossed a junction we compute the local control se-

quences according to the downstream levels of influence as explained above. Then

for the junctions on level 1 of upstream influence we update the release rate of their

incoming links as follows. We take as example junction Ss with κu = 1. For all

other junctions we will apply the same procedure. We virtually apply at Ss the opti-

mal control sequence u∗
s that we have computed when optimizing in the downstream

direction. Let t
last,∗
s be the time instant at which the last bag crossed Ss (out of all
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Network controller

Switch controllerSwitch controller

DCV controller DCV controller DCV controller DCV controller

Fig. 5 Hierarchical control for DCV-based baggage handling systems

the bags over which we make the prediction for Ss). Let τ rate be the length of the

time window over which we compute the link release rate. The variable τ rate can be

derived using empirical data. Then if t
last,∗
s < t0+τ rate we set ζs,l = ζ max for l = 0,1

with ζ max the maximum number of DCVs per time unit that can cross a junction

using maximum speed. Otherwise, if nrate
s,l > 0 with nrate

s,l the number of DCVs that

left the outgoing link l of Ss within the time window [t last,∗
s − τ rate, t last,∗

s ), we set

ζs,l =
nrate

s,l

τ rate
. Finally, if nrate

s,l = 0 we set ζs,l = ε with 0 < ε ≪ 1. Now we solve the

local MPC problem presented in Section 4.2.2 using the updated release rates and

we compute the local control of all junctions at upstream level κu +1. Recursively,

we compute the local control until level Kupstream where Kupstream is the largest level

of upstream influence assigned in the network.

By also performing the upstream round of communication, more information

about the future congestion is provided via the updated release rate. This informa-

tion might change the initial intended control actions of each junction. Typically (if

one allows sufficient time to compute the solution of each local optimization prob-

lem), this new variant of distributed MPC increases the performance of the system,

but also the computational effort increases since we deal with one more round of

optimizations.

4.3 Hierarchical MPC

In order to efficiently compute the route of each DCV we propose a hierarchical

control framework that consists of a multi-level control structure, see Figure 5. The

layers of the framework can be characterized as follows:

• The network controller considers flows of DCVs instead of individual DCVs.

Moreover, the network controller determines reference DCV flow trajectories

over time for each link in the network. These flow trajectories are computed so

that the performance of the DCV-based baggage handling system is optimized.

Then the optimal reference flow trajectories are communicated to switch con-

trollers.
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• The switch controller present in each junction receives the information sent by

the network controller and determines the sequence of optimal positions for its

ingoing and outgoing switches at each time step so that the tracking error between

the reference flow trajectory and the actual flow trajectory is minimal.
• The DCV controller present in each vehicle detects the speed and position of the

vehicle in front of it, if any, and the position of the switch into the junction the

DCV travels towards to. This information is then used to determine the speed to

be used next such that no collision will occur and such that the DCV stops in

front of a junction the switch of which is not positioned on the link that the DCV

travels on.

The lower levels in this hierarchy deal with faster time scales (typically in the

milliseconds range for the DCV controllers up to the seconds range for the switch

controllers), whereas for the higher-level layer (network controller) the frequency

of updating is up to the minutes range.

4.3.1 Route control

We now focus on the network controller. In Section 5 it will be shown that when

each DCV is considered individually, the predictive switch control problem in DCV-

based baggage handling systems results in a huge nonlinear integer optimization

problem with high computational complexity and requirements, making the prob-

lem in fact intractable in practice. So, since considering each individual DCV is too

computationally intensive we will now consider streams of DCVs instead (charac-

terized by real-valued demands and flows expressed in vehicles per second). In this

paper the routing problem will then be recast as the problem of determining flows

on each link. Once these flows are determined, they can be implemented by switch

controllers at the junctions. So, the network controller provides flow targets to the

switch controllers, which then have to control the position of the switch into and out

of each junction in such a way that these targets are met as well as possible. This

corresponds to blocking flows before a junction whenever necessary and possible,

and routing the DCVs towards the outgoing links.

In the literature one can find extensive work addressing the flow-over-time prob-

lem, see e.g., [8]. However, in this paper we propose a non-standard, but efficient

approach to model the flows of DCVs as presented next.

Set-up

We consider the following set-up. We have a transportation network with a set of

origin nodes O consisting of the loading stations, a set of destination nodes D con-

sisting of the unloading stations, and a set of internal nodes I consisting of all the

junctions in the network. We define the set of all nodes as V = O ∪I ∪D . The

nodes are connected by unidirectional links. Let L denote the set of all links.

Furthermore, let the time instant tk be defined as



14 A.N. Tarău, B. De Schutter, and H. Hellendoorn

...

...

Do,d

tt0 tKsimt1 t2 tKsim−2 tKsim−1

Do,d(0)

Do,d(1)
Do,d(K

sim −2)

Do,d(K
sim −1)

Fig. 6 Piecewise constant demand profile Do,d

tk = t0 + kτnc

with t0 that time when we start the simulation and τnc the sampling time for

the network controller. Then, for each pair (o,d) ∈ O ×D , there is a dynamic,

piecewise constant demand pattern Do,d(·) as shown in Figure 6 with Do,d(k) the

demand of bags at origin o with destination d in the time interval [tk, tk+1) for

k = 0,1, . . . ,Ksim−1 with Ksim the simulation horizon (we assume that beyond tKsim

the demand is 0).

Next, let Ld be the set of links that belong to some route going to destination d,

Ld ⊆ L . We denote the set of incoming links for node v ∈ V by L in
v , and the set

of outgoing links of v by L out
v . Note that for origins o ∈O we have L in

o = /0 and for

destinations d ∈ D we have L out
d = /0. Also, assume each origin node to have only

one outgoing link and each destination node to have only one incoming link4. Then

|L out
o |= 1 and |L in

d |= 1.

Next, for each destination d ∈D and for each link ℓ ∈Ld in the network we will

define a real-valued flow uℓ,d(k). The flow uℓ,d(k) denotes the number of DCVs per

time unit traveling towards destination d that enter link ℓ during the time interval

[tk, tk+1).
The aim is now to compute using MPC, for each time step k, flows uℓ,d(k) for

every destination d ∈D and for every link ℓ ∈Ld in such a way that the capacity of

the links is not exceeded and such that the performance criterion is minimized over

a given prediction period [tk, tk+N). Later on we will write a model of the baggage

handling system to be used by the network controller, and show that this model can

be rewritten as an MILP model. Therefore, in order to obtain an MILP optimiza-

tion problem one has to define a linear or piecewise affine performance criterion.

Possible goals for the network controller that allow linear or piecewise affine per-

formance criteria are reaching a desired outflow at destination d or minimizing the

lengths of the queue in the network.

4 If a loading station has more than one outgoing link, then one can virtually expand that loading

station into a loading station connected via a link of length 0 to a junction with 2 outgoing links,

etc.; similarly, one can virtually expand an unloading station with more than one incoming link.
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Model

We now determine the model for the DCV flows through the network. Let τℓ denote

the free-flow travel time on link ℓ. Recall that the free-flow travel time of link ℓ rep-

resents the time period that a DCV requires to travel on link ℓ when using maximum

speed. In this subsection we assume the travel time τℓ to be an integer multiple of

τnc, say

τℓ = κℓτ
nc with κℓ an integer. (5)

In case the capacity of a loading station is less than the demand, queues might

appear at the origin of the network. Let qo,d(k) denote the length at time instant

tk of the partial queue of DCVs at origin o going to destination d. In principle, the

queue lengths should be integers as their unit is “number of vehicles”, but we will

approximate them using reals.

For every origin node o ∈ O and for every destination d ∈ D we now have:

uℓ,d(k)6 Do,d(k)+
qo,d(k)

τnc
for ℓ ∈ L

out
o ∩Ld (6)

with Do,d(k) = 0 for k > K. Moreover,

qo,d(k+1) = max

(

0, qo,d(k)+
(

Do,d(k)− ∑
ℓ∈L out

o ∩Ld

uℓ,d(k)
)

τnc

)

(7)

But queues can form also inside the network. We assume that the DCVs run with

maximum speed along the track segments and, if necessary, they wait in vertical

queues before crossing the junction. Let qv,d(k) denote the length at time instant tk
of the vertical queue at junction v∈I , for DCVs going to destination d ∈D . Taking

into account that a flow on link ℓ has a delay of κℓ time steps before it reaches the

end of the link, for every internal node v ∈ I and for every d ∈ D we have:

Fout
v,d (k)6 F in

v,d(k)+
qv,d(k)

τnc
(8)

where F in
v,d(k) is the flow into the queue at junction v, defined as:

F in
v,d(k) = ∑

ℓ∈L in
v ∩Ld

uℓ,d(k−κℓ) (9)

and where Fout
v,d (k) is the flow out of the queue at junction v, defined as:

Fout
v,d (k) = ∑

ℓ∈L out
v ∩Ld

uℓ,d(k) . (10)

The evolution of the length of the queue for every internal node v ∈ I and for

every d ∈ D is given by:
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qv,d(k+1) = max
(

0,qv,d(k)+
(

F in
v,d(k)−Fout

v,d (k)
)

τnc
)

(11)

Moreover, for each origin o ∈ O and for each junction v ∈ I we have the fol-

lowing constraints:

∑
d∈D

qo,d(k+1)≤ qmax
o (12)

∑
d∈D

qv,d(k+1)≤ qmax
v (13)

where qmax
o and qmax

v express respectively the maximum number of DCVs the con-

veyor belt transporting bags towards loading station o can accommodate and the

maximum number of DCVs the track segments of the incoming links of junction v

can accommodate.

We also have the following constraint for every link ℓ:

∑
d∈D

uℓ,d(k)6Umax
ℓ (14)

where Umax
ℓ is the maximum flow of DCVs that can enter link ℓ.

Then, at time step k, the model of the DCV flows through the network of tracks

describing (6)–(14) can be written as a system of equalities and a system of inequal-

ities as follows:

qk+1 = M
eq(qk,uk)

M
ineq(qk+1,uk)≤ 0

where

• qk is the vector consisting of all the queue lengths qo,d(k), for all o ∈ O and for

all d ∈ D , and of all the queue lengths qv,d(k), for all v ∈ I and for all d ∈ D ,
• uk is the vector consisting of all the flows uℓ,d(k), for all d ∈D and for all ℓ∈Ld .

Performance criterion

Next we define the performance to be used for computing the optimal routing at step

k for a prediction period of N time steps. The objective is to have each bag arriving

at its end point within a given time interval [tclose
d − τ

open
d , tclose

d ) where tclose
d is the

time instant when the end point d closes and τ
open
d is the time period for which the

end point d stays open for a specific flight. We assume tclose
d and τ

open
d to be integer

multiples of τs.

Hence, one MPC objective that allows a piecewise affine performance criterion

is to achieve a desired flow at destination d during the prediction period. Let udesired
d

denote the desired piecewise constant flow profile at destination d as sketched in



Hierarchical Model-Based Control for Automated Baggage Handling Systems 17

tclose
d − τ

open
d tclose

d

t

udesired
d

τnc

Fig. 7 Desired arrival profile at destination d

Figure 7, where the area under udesired
d equals the total number of bags out of the

total demand that have to be sent to destination d. Note that udesired
d (k) = 0 for all

k < k
open
d and all k ≥ kclose

d with k
open
d =

tclose
d

−τopen

τnc and kclose
d =

tclose
d
τnc .

Let κℓd
=

τℓd
τnc . Hence, one can define the following penalty for flow profiles cor-

responding to destination d ∈ D :

J
pen
d,k =

∣

∣udesired
d (k)−uℓd ,d(k+κℓd

)
∣

∣

where ℓd is the incoming link of destination d.

Later on we will include the penalty term

k+N−1−κℓd

∑
i=k

J
pen
d,i into the MPC perfor-

mance criterion for each destination d and for each time step k. Note that we make

the summation of these penalization indices only up to k +N − 1− κℓd
since for

i > k+N −1−κℓd
the variable uℓd ,d(k+κℓd

) is not defined at MPC step k.

Moreover, note that using as MPC performance criterion ∑
k+N−1−κℓd
i=k J

pen
d,i for

each destination d and for each time step k, could have adverse effects for small

prediction horizons. Therefore, to counteract these effects, we also consider as ad-

ditional controller goal maximizing the flows of all links that are not directly con-

nected to unloading stations. To this aim, let τ link
ℓ,d,k be the typical5 time required for

a DCV that entered link ℓ in [tk, tk+1) to reach destination d, with τ link
ℓ,d,k an integer

multiple of τs. Also, let κl,d =
τ link
ℓ,d,k

τnc . Then one can define the following penalty:

Jflow
ℓ,d,k =

{

uℓ,d(k) if k
open
d −κl,d ≤ k < kclose

d −κl,d

0 otherwise

Later on this penalty will be used in the MPC performance criterion.

Next, in order to make sure that all the bags will be handled in finite time, we

also include in the MPC performance criterion the weighted length of queues at each

junction in the network as presented next. Let τ
junc
v,d be the typical5 time required for

5 These durations are determined based on historical data.
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a DCV in the queue at junction v to reach destination d, with τ
junc
v,d (k) an integer

multiple of τnc. Also, let κv,d =
τ

junc
v,d (k)

τnc . Then we define the new penalty:

Joverdue
v,d,k =

{

dmin
v,d qv,d(k) if k ≥ kclose

d −κv,d

0 otherwise

where dmin
v,d represents the length of the shortest route from junction v to destination

d. Note that Joverdue
v,d,k is nonzero only for steps that are larger than or equal to kclose

d −

κv,d . Moreover, for these steps Joverdue
v,d,k is proportional to dmin

v,d . The reason for this

is that we want to penalize more the queues at junctions that are further away from

destination d since the DCVs in those queues will need a longer time to travel to d.

Finally, let L dest denote the set of links directly connected to unloading stations.

Then the MPC performance criterion is defined as follows:

Jk,N = ∑
d∈D

( k+N−1−κℓd

∑
i=k

λdJ
pen
d,i +β

k+N−1

∑
i=k

∑
v∈I

Joverdue
v,d,i −α

k+N−1

∑
i=k

∑
ℓ∈(L \L dest)∩Ld

Jflow
ℓ,d,i

)

with λd > 0 a weight that expresses the importance of the flight assigned to destina-

tion d, α ≪ 1 and β ≪ 1 nonnegative weighting parameters.

Then the nonlinear MPC optimization problem is defined as follows:

min
uk,...,uk+N−1,qk+1,...,qk+N

Jk,N

subject to

qk+1 = M eq(qk,uk)
...

qk+N = M eq(qk+N−1,uk+N−1)
M ineq(qk+1,uk)≤ 0

...

M ineq(qk+N ,uk+N−1)≤ 0

The nonlinear MPC optimization problem defined above is typically complex and it

requires large computational effort to solve. Therefore, in the next section we will

recast this problem into a MILP one for which efficient and fast solvers are available.

MILP optimization problem for the network controller

The general formulation of a mixed-integer linear programming problem (MILP) is:

min
x

c⊤x

subject to

Aeqx = beq

Ax ≤ b
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xlow ≤ x ≤ xup

xi is an integer, for each i ∈ I

where c, x, xlow, xup, beq, and b are vectors, with xlow the lower bound for x and xup

the upper bound, and where Aeq and A are matrices (all these vectors and matrices

have appropriate size), and I ⊂ {1, . . . ,n} where n is the number of variables.

Next we transform the dynamic optimal route choice problem presented above

into an MILP problem, for which efficient solvers have been developed [5]. To this

aim we use the following equivalences, see [2], where f is a function defined on

a bounded set X with upper and lower bounds M and m for the function values,

δ is a binary variable, y is a real-valued scalar variable, and ε is a small tolerance

(typically the machine precision):

P1 : [ f (x)6 0] ⇐⇒ [δ = 1] is true if and only if

{

f (x)6 M(1−δ )
f (x)> ε +(m− ε)δ ,

P2 : y = δ f (x) is equivalent to















y 6 Mδ
y > mδ
y 6 f (x)−m(1−δ )
y > f (x)−M(1−δ ) .

As example we will show how equation (7) of the nonlinear route choice model pre-

sented in the previous section can be transformed into a system of linear equations

and inequalities by introducing some auxiliary variables. For the other equations of

the route choice model we apply a similar procedure.

We consider now (7). This is a nonlinear equation and thus it does not fit the

MILP framework. Therefore, we will first introduce the binary variables δo,d(k)
such that

δo,d(k) = 1 if and only if

qo,d(k)+
(

Do,d(k)− ∑
l∈L out

o ∩Ld

uℓ,d(k)
)

τnc
6 0 (15)

and rewrite (7) as follows:

qo,d(k+1) =
(

1−δo,d(k)
)

·
(

qo,d(k)+
(

Do,d(k)− ∑
l∈L out

o ∩Ld

uℓ,d(k)
)

τnc
)

. (16)

Condition (15) is equivalent to (cf. Property P1):

{

f (k)6 (qmax
o +Dmax

o,d τnc)(1−δo,d(k))

f (k)> ε +(−Umaxτnc − ε)δo,d(k) ,
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where f (k) = qo,d(k)+
(

Do,d(k)− ∑
l∈L out

o ∩Ld

uℓ,d(k)
)

τnc, qmax
o is the maximal queue

length at origin o, and where Dmax
o,d = maxk Do,d(k) is the maximal demand for

origin-destination pair (o,d).
However, (16) is still nonlinear since it contains a multiplication of a binary vari-

able δo,d(k) with a real-valued (linear) function. However, by using Property P2 this

equation can be transformed into a system of linear inequalities.

The rest of the model equations can be transformed, in a similar way, into a

system of MILP equations. Next we will transform the MPC performance criterion

into its MILP form.

The problem

min
k+N−1

∑
i=k

∑
d∈D

λd

∣

∣

∣
udesired

d (i)−uℓd ,d(i+κℓd
)
∣

∣

∣

can be written as:

min
k+N−1

∑
i=k

∑
d∈D

λdudiff
d (i)

s.t.

udiff
d (i)> udesired

d (i)−uℓd ,d(i+κℓd
)

udiff
d (i)>−udesired

d (i)+uℓd ,d(i+κℓd
)

for i = k, . . . ,k+N −1.

which is a linear programming problem.

If we add the MILP equations of the model, the nonlinear optimization problem

of Section 4.3.1 can be written as an MILP problem.

Several efficient branch-and-bound MILP solvers [5] are available for MILP

problems. Moreover, there exist several commercial and free solvers for MILP prob-

lems such as, e.g., CPLEX, Xpress-MP, GLPK, or lp solve, see [1] for an overview.

In principle, — i.e., when the algorithm is not terminated prematurely due to time or

memory limitations, — these algorithms guarantee to find the global optimum. This

global optimization feature is not present in the other optimization methods that can

be used to solve the original nonlinear, nonconvex, nonsmooth optimization prob-

lem. Moreover, if the computation time is limited (as is often the case in on-line

real-time control), then it might occur that the MILP solution can be found within

the allotted time whereas the global and multi-start local optimization algorithm still

did not converge to a good solution (as will be illustrated in Section 5).

4.3.2 Switch control

We now focus on the switch controller for the proposed hierarchy, and on how opti-

mal switch positions can be determined.

Recall that at each control step k, the network controller provides optimal flows

for each link in the network and for each destination. Let these flows be denoted by
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u
opt
ℓ,d(k), . . . , u

opt
ℓ,d(k+N−1) with d ∈D , ℓ∈L ∩Ld and N the prediction horizon of

the network controller. Then the switch controller of each junction has to compute

optimal switch-in and switch-out positions such that the tracking error between the

reference optimal flow trajectory and the flow trajectory obtained by the switch

controller is minimal for each network controller time step k = 0, . . . ,Ksim.

Recall that the optimal flows u
opt
ℓ,d(k), . . . ,u

opt
ℓ,d(k+N − 1) are determined for the

time window [tk, tk+N) with tk = t0 + kτnc. In order to determine the switch control

action during the time window [tk, tk+N) we will now again use MPC. Next we will

refer to one junction v ∈ I only. For all other junctions, the switch control actions

are determined similarly.

Let τsc be the switch controller sampling6 time. Also, let ksc be an integer that

expresses the number of switch control actions determined until now. At tk, ksc is

defined as ksc = τnc

τsc k. Then let tsw
ksc denote the time instant corresponding to the time

step ksc of the switch controller, tsw
ksc = t0 + kscτsc with t0 the time instant when we

start the simulation.

Furthermore, let sin
v (k

sc) denote the position of the switch-in at junction v during

the time interval
[

tsw
ksc , tsw

ksc+1

)

and let sout
v (ksc) denote the position of the switch-out

at junction v during
[

tsw
ksc , tsw

ksc+1

)

.

We want to determine the switch control sequence during the time window

[tk, tk+N) while using MPC with a prediction period of Nsc steps. Hence, at each

MPC step ksc, the switch controller solves the following optimization problem:

min
sv,ksc ,Nsc

Jsw
v,ksc,Nsc (17)

with sv,ksc,Nsc = [sin
v (k

sc) . . . sin
v (k

sc+Nsc−1) . . . sout
v (ksc) . . . sout

v (ksc+Nsc−1)]⊤ if

junction v has 2 incoming and 2 outgoing links and with sv,ksc,Nsc containing only

switch-in or only switch-out positions if junction v has only 1 outgoing or only 1

incoming link respectively, and where the local MPC performance criterion Jsw
v,ksc,Nsc

is defined as:

Jsw
v,ksc,Nsc = ∑

ℓ∈L out
v

∣

∣

∣
X

opt
ℓ,k,ksc,Nsc(u

opt
ℓ )−Xℓ,ksc,Nsc(sv,ksc,Nsc)

∣

∣

∣

+ γ
(

nsw in
ksc,Nsc(sv,ksc,Nsc)+nsw out

ksc,Nsc(sv,ksc,Nsc)
)

where

• X
opt
ℓ,k,ksc,Nsc(u

opt
ℓ ) denotes the optimal number of DCVs to enter the outgoing link

ℓ of junction v during the period
[

tsw
ksc , tsw

ksc+Nsc−1

)

, where u
opt
ℓ is the vector con-

sisting of all the flows u
opt
ℓ,d(k), . . . ,u

opt
ℓ,d(k+N) with d ∈ D and ℓ ∈ L ∩Ld . The

variable X
opt
ℓ,k,ksc,Nsc(u

opt
ℓ ) is derived later on (see (18)).

• Xℓ,ksc,Nsc(sv,ksc,Nsc) is the actual number of DCVs entering link ℓ during the pre-

diction period. The variable Xℓ,ksc,Nsc is determined via simulation for a nonlinear

6 We select the sampling time τnc of the network controller and the sampling time τsc of the switch

controller such that τnc is an integer multiple of τsc.
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tk tk+1 tk+2 tk+pksc−1 tk+pksc

τ left
1,ksc (p−2)τnc τ left

2,ksc

tsw
ksc tsw

ksc+Nsc−1

Fig. 8 Prediction window
[

tsw
ksc , tsw

ksc+Nsc−1

)

over which we solve the MPC optimization problem

(17) illustrated with respect to the window [tk, tk+pksc ) for pksc > 2

(event-based) model similar to the one used in the distributed MPC approach of

Section 4.2 (the difference is that now the switch positions sv,ksc,Nsc are given for

each period [tsw
ksc , tsw

ksc+1), . . . , [tsw
ksc+Nsc−1, t

sw
ksc+Nsc) instead of for each of the next

Ns DCVs to cross a junction);
• nsw in

ksc,Nsc(sv,ksc,Nsc) and nsw out
ksc,Nsc(sv,ksc,Nsc) represent the number of toggles of the

switch-in and of the switch-out respectively during the time period
[

tsw
ksc , tsw

ksc+Nsc

)

that are obtained from the simulation;
• γ is a nonnegative weighting parameter.

Next we derive the variable X
opt
ℓ,k,ksc,Nsc(u

opt
ℓ ). To this aim, we first determine how

many steps pksc of the network controller will be involved in solving (17) as fol-

lows: pksc =
⌈

Nscτsc

τnc

⌉

where ⌈x⌉ denotes the smallest integer larger than or equal to

x (so, pksc ≥ 1). Furthermore, note that the index k of the time instant tk for which

tk ≤ tsw
ksc < tk+1 can be computed as follows: k =

⌊

kscτsc

τnc

⌋

where ⌊x⌋ denotes the

largest integer less than or equal to x. Figure 8 illustrates the prediction window
[

tsw
ksc , tsw

ksc+Nsc−1

)

with respect to the window [tk, tk+pksc ).

The variable X
opt
ℓ,k,ksc(u

opt
ℓ ) is given by:

X
opt
ℓ,k,ksc,Nsc(u

opt
ℓ ) =τ left

1,ksc ∑
d∈D

u
opt
ℓ,d(k)+ τnc

k+pksc−2

∑
i=k+1

∑
d∈D

u
opt
ℓ,d(i)

+ τ left
2,ksc ∑

d∈D

u
opt
ℓ,d(k+ pksc −1) (18)

where ∑
k+ j
i=k+1 x(i) = 0 by definition for j < 1 and where

τ left
1,ksc = min(tk+1, t

sw
ksc+Nsc−1)− tsw

ksc and τ left
2,ksc =

{

tsw
ksc+Nsc−1 − tk+pksc−1 if pksc > 1

0 otherwise.

5 Simulation results

In this subsection we compare the performance of the centralized, distributed, and

hierarchical MPC based on a simulation example.
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Fig. 9 Case study for a DCV-based baggage handling system

5.1 Set-up

We consider the network of tracks depicted in Figure 9 with four loading stations,

two unloading station, nine junctions, and twenty unidirectional links. Note that this

network allows more than four possible routes to each destination from any origin

point (e.g., U1 can be reached from L1 via junctions S1,S4,S8; S1,S4,S8,S9,S8; S1,
S2,S5,S4,S8; S1,S2,S5,S6,S5, S4,S8; S1,S2,S6,S7,S9,S8, and so on). We consider

this network because on the one hand it is simple, allowing an intuitive understand-

ing of and insight in the operation of the system and the results of the control7, and

because on the other hand, it also contains all the relevant elements of a real set-up.

We assume that the velocity of each DCV varies between 0 m/s and vmax =
20 m/s, and that the minimum time period after we allow a switch toggle is

τswitch = 2 s. The lengths of the track segments are indicated in Figure 9.

In order to faster assess the efficiency of our control method we assume that we

do not start with an empty network but with a network already populated by DCVs

transporting bags.

We consider 6 typical scenarios where 2400 bags will be loaded into the bag-

gage handling system (600 bags arrive at each loading station in the time interval

[t0, t0+100s)). These scenarios include different classes of demand profiles for each

loading station, different initial states of the system, queues on different links, and

different time criticality measures (e.g., cases where the transportation of the bags

is very tight, i.e., the last bag that enters the system can only arrive in time at the

corresponding end point if the shortest path is used and its DCV is continuously

running with maximum speed, or cases where the timing is more relaxed).

7 The proposed control approaches allow the choice of routes containing loops.
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Table 1 Comparison of average performance of the system and total computation time

Control approach Japproach,avg(s) total CPU time (s)

Centralized MPC 1.13 ·106 1.95 ·105

Distributed MPC downstream communication 2.27 ·107 3.90 ·104

Distributed MPC communication back & forth 1.90 ·107 1.46 ·105

Hierarchical MPC 1.98 ·105 1.06 ·102

5.2 Discussion

In order to solve the nonlinear, nonsmooth MPC optimization problem, one may

use specialized search algorithms [6, 7] such as sequential quadratic programming

algorithms, pattern search, genetic algorithms, and so on. We have chosen the ge-

netic algorithm ga of the Matlab optimization toolbox Genetic Algorithm and Di-

rect Search with multiple runs and “bitstring” population, since simulations show

that this optimization technique gives good performance, with the shortest compu-

tation time.

Based on simulations we now compare, for the given scenarios, the proposed

control methods. For all the proposed predictive control methods we set the horizon

to N = 5 bags. We make this choice since for a larger horizon, the computation

time required to obtain a good solution of the local optimization problem increases

substantially. Hence, using larger horizons for the considered MPC optimization

problems, yields a considerably larger total computation time.

Let J
tot,approach
j denote the performance of the baggage handling system corre-

sponding to scenario index j and the considered control approach. Moreover, let

Japproach,avg denote the average performance:

Japproach,avg =
1

|∆ | ∑
j∈∆

J
tot,approach
j

with ∆ the set of considered scenarios. Then in Table 1 we list the average results.

Theoretically the performance of the baggage handling system obtained when

using the centralized predictive switch control is better than when using the hierar-

chical approach. However, to obtain the true performance of centralized MPC would

require extremely high computational time, see e.g., [13] where the CPU time is

over 2 hours for routing 25 bags (on a network with only 2 junctions) when using a

prediction horizon N = 2. Hence, to obtain the true optimum with centralized MPC

requires a too high computational burden — centralized control becomes intractable

in practice when the number of junctions is large due to the high computation time

required. Therefore, the need to limit the computation time is required. In these

simulations, in order to reduce the computational effort of the route choice control

using centralized MPC, we ran the genetic algorithm 4 times for each optimization

problem, while limiting the time allowed to compute a solution to 400 s).

The simulation results indicate that distributed MPC gives worse performance

than centralized MPC. But this happens due to the time limitations that we have
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imposed when solving the nonlinear optimization problems. Note that when us-

ing distributed MPC we ran the genetic algorithm once for each local optimization

problem, while allowing a maximum of 3 generations of population. We have cho-

sen these options in order to have a balance between the overall performance and

the total computation time.

Regarding the hierarchical control approach we note that we have set the con-

trol time step for the network controller to 60 s, and the control time step for the

switch controller was set to 2 s. The simulation results indicate that using the hier-

archical control framework yields a better system performance than using the other

predictive methods. But, recall that the solutions of centralized or distributed MPC

were returned by the prematurely terminated global and multi-start local optimiza-

tion method. However, even with the computational restrictions mentioned above

(we allow a limited amount of time for solving an optimization problem), the total

computation time of centralized MPC and of distributed MPC with a single round of

downstream and upstream communication is much larger than (over 40 hours) the

one of the hierarchical control (an average of 100 s per junction, plus 6 s for solving

the MILP optimization problems).

Hence, the advantage of using hierarchical MPC is clear: much better perfor-

mance and much lower computational effort. To compute centralized or distributed

MPC solutions in a more precise way one should route only a few bags on a very

simple network. But then all approaches show the same performance, the only ad-

vantage of using the hierarchical framework is the low computation time.

6 Summary

We have considered the baggage handling process in large airports using destination

coded vehicles (DCVs) running at high speeds on a network of tracks. Then, for a

DCV-based baggage handling system, we have developed and compared efficient

control methods to determine the optimal DCV routing. In particular, we have de-

veloped and compared centralized, distributed, and hierarchical predictive methods

to control the DCV routing.

In practice, centralized model predictive control (MPC) is not suitable for de-

termining the optimal DCV routing due to the high computation time required to

solve the route choice optimization problem. The simulation results indicate that

distributed MPC yields a worse performance than centralized MPC when hard com-

putational restrictions are imposed in solving the nonlinear optimizations. Simu-

lation results also indicate that the hierarchical control with MILP flow solutions

outperforms the other predictive control approaches where the multi-start local op-

timization method has been terminated prematurely.

In future work we will perform extensive simulations in order to assess the ef-

ficiency of these control approaches. Moreover, we will further improve the per-

formance of the distributed MPC by considering multiple up and down rounds of

optimizations and by extending the range of communication exchange to more than



26 A.N. Tarău, B. De Schutter, and H. Hellendoorn

one level. Also, in order to account for the increased computation and communica-

tion time of such an approach, we will extend the local control area to more than

one node and assess the efficiency and the balance between performance and com-

putation and communication requirements of such an alternative approach.
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