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On the eigenstructure of a class of max-plus linear systems

G.A.D. Lopes, B. Kersbergen, T. van den Boom, B. De Schutter, and R. Babuška

Abstract— Various applications in scheduling, such as train
timetables and multi-legged locomotion, can be modeled using
systems of max-plus linear equations. In this framework, the
eigenvalue of the system matrix represents the total cycle time,
whereas the eigenvector dictates the steady state behavior.
For a class of concurrent two-state cyclic systems, with di-
rect application to legged locomotion, we present closed-form
expressions for the eigenvalue and eigenvector of the system
matrix. Additionally, we probe into the transient properties of
this class of max-plus linear systems by computing the coupling
time.

I. INTRODUCTION

Max-plus linear discrete-event systems (MPL-DES) are a

subclass of timed DES (classes of discrete event systems

where there exists an underlying time structure) that can

be framed in systems of linear equations in the max-plus

algebra [1], [2], [3]. DES that enforce synchronization can

be modeled in this framework. MPL systems inherit a large

set of analysis and control synthesis tools thanks to many

parallels between the max-plus-linear systems theory and the

traditional linear systems theory. At the time of writing, the

theory of max-plus algebras has been successfully applied

to railroads [4], [5], queuing systems [6], resource allocation

[7], and recently image processing [8] and legged locomotion

[9], [10]. This paper continues the authors’ application of

max-plus systems to legged locomotion by investigating the

structural properties of the system matrix.

Legged systems are traditionally modeled as limit cycles

in cross products of circles in the phase space of the set of

continuous time gaits (see Holmes et al. [11] for an extensive

review on the elements of dynamic legged locomotion). In

[10] we have introduced an abstraction to represent the

combinatorial nature of the gait space for many-legged robots

into ordered sets of leg index numbers. This abstraction

allows for a systematic and straightforward implementation

of motion controllers for many-legged robots. In this paper

we present closed-form expressions for the eigenvalue and

eigenvector of the system matrix for a class of max-plus

linear systems. Such results can be utilized to compute the

coupling time which in turn allows us to predict how many

steps does a robot need to take to achieve steady-state after

a gait switch or a large perturbation.

We start by revisiting in Section II the theory of max-

plus algebras and in Section III we demonstrate how legged

locomotion can be modeled by max-plus linear systems.

In Section IV we present closed-form expressions for the
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eigenvalue and eigenvector of the system matrix and in

Section V we compute the coupling time.

II. MAX-PLUS ALGEBRA

Max-plus algebras were introduced in the sixties by Giffler

[12] and Cuninghame-Green [13]. In the late seventies the

second author wrote the first book [1], and in the eighties

Cohen et al. [14] presented a system-theoretic view. A few

additional books have been published on the topic including

[2], [3]. For a historical overview see [15]. The structure of

the max-plus algebra is as follows: let ε := −∞, e := 0,

and Rmax = R ∪ {ε}. Define the operations ⊕,⊗ : Rmax ×
Rmax → Rmax by:

x⊕ y := max(x, y)

x⊗ y := x+ y

Definition 1: The set Rmax with the operations ⊕ and

⊗ is called the max-plus algebra, denoted by Rmax =
(Rmax,⊕,⊗, ε, e).

Theorem 1: [2] The max-plus algebra Rmax has the alge-

braic structure of a commutative idempotent semiring.

The max-plus algebra can be interpreted as the traditional

linear algebra with the operations ‘+’ and ‘×’ replaced

by the operators ‘max’ and ‘+’, respectively, with the

supplemental difference that the additive inverse does not

exist, thus resulting in a semiring. Matrices can be defined

by taking Cartesian products of Rmax. Define the matrix sum

⊕, matrix product ⊗, and matrix power operations by:

[A⊕B]ij = aij ⊕ bij := max(aij , bij)

[A⊗ C]ij =

m⊕

k=1

aik ⊗ ckj := max
k=1,...,m

(aik + ckj)

D⊗k := D ⊗D ⊗ . . .⊗D
︸ ︷︷ ︸

k-times

,

where A,B ∈ R
n×m
max , C ∈ R

m×p
max , D ∈ R

n×n
max , and the

i, j element of A is denoted by aij = [A]ij . In this context,

the max-plus zero E , “one” 1, and identity E matrices are

defined by:

[E ]ij = ε

[1]ij = e

[E]ij =

{
e if i = j
ε otherwise.



We use the following notation to illustrate the dimensions of

the previous matrices:

En×m ∈ R
n×m
max ; 1n×m ∈ R

n×m
max ; En ∈ R

n×n
max

Finally, we define D⊗0 := E and x⊗0 := e. Now let

A∗ :=

∞⊕

k=0

A⊗k.

If A∗ exists then the vector x = A∗ ⊗ b solves the system

of max-plus linear equations

x = A⊗ x⊕ b, (1)

with A ∈ R
n×n
max and b ∈ R

n
max (see [2], Theorem 3.17). The

matrix D ∈ R
n×n
max is called nilpotent if

∃k < ∞, ∀p > k : D⊗p = E

It is always the case that if D is nilpotent then k < n.

Definition 2: The (square) matrix A is called irreducible

if no permutation matrix B exists such that the matrix Ā,

defined by

Ā = BT ⊗A⊗B,

has an upper triangular block structure (an alternative defini-

tion states that a matrix A is irreducible if its communication

graph is strongly connected [3]).

Eigenvectors λ and eigenvalues v are defined in the same

way as in the traditional algebra, where v 6= E :

A⊗ v = λ⊗ v

For max-plus linear systems the eigenvalue of the system

matrix represents the total cycle time, whereas the

eigenvector dictates the steady-state behavior.

Theorem 2: [2] If A is irreducible, there exists one and

only one eigenvalue (but possibly several eigenvectors).

Definition 3: For A,B ∈ R
n×m
max We say that matrix A

overcomes B, written as A ≥ B if ∀(i, j) ∈ {1, . . . , n} ×
{1, . . . ,m} we have:

[A]i,j ≥ [B]i,j

In this situation we get that A⊕B = A.

III. MODELING LEGGED LOCOMOTION

We model legged locomotion by abstracting the

continuous-time motion of the legs into discrete-event

cycles. Let li(k) be the time instant leg i lifts off the ground

and ti(k) be the time instant it touches the ground, both for

the k-th event index. Here, k is considered to be a global

event counter. For a traditional alternating swing/stance1

gait one can impose that the time instant when the leg

touches the ground must equal the time instant it lifted off

the ground for the last time plus the time it stays in flight

(denoted by τf ):

ti(k) = li(k) + τf (2)

Analogously, we get a similar relation for the lift-off time:

li(k) = ti(k − 1) + τg, (3)

where τg is the stance time and ti uses the previous event

index such that equations (2) and (3) can be used iteratively.

Suppose now that one aims to synchronize leg i with leg j
in such a way that leg i can only lift off τ∆ seconds after

leg j has touched the ground (τ∆ is the double stance time).

One can then write the relation:

li(k) = max (ti(k − 1) + τg, tj(k − 1) + τ∆)

=
[
τg τ∆

]
⊗

[
ti(k − 1)
tj(k − 1)

]

. (4)

Equation (4) enforces simultaneously that both the leg i
stays at least τg seconds in stance and will only lift off at

least τ∆ seconds after leg j has touched down. When both

conditions are satisfied, lift-off takes place. Following this

reasoning, one can efficiently represent motion gaits in terms

of synchronization of timed events.

For an n-legged robot, let the full discrete-event state

vector be defined by:

x(k) = [t1(k) · · · tn(k)
︸ ︷︷ ︸

t(k)

l1(k) · · · ln(k)
︸ ︷︷ ︸

l(k)

]T .

The 2n-dimensional system equations for the cycles repre-

sented by equations (2),(3) take the form:

[
t(k)
l(k)

]

=

[
E τf ⊗ E
E E

]

⊗

[
t(k)
l(k)

]

⊕

[
E E

τg ⊗ E E

]

⊗

[
t(k − 1)
l(k − 1)

]

(5)

According to (5) all legs follow the same rhythm, i.e. all legs

rotate with the same period of at least τf + τg seconds. The

introduction of the extra identity matrices E in (5) results in

the extra trivial constraints t(k + 1) ≥ t(k) and l(k + 1) ≥
l(k). This enforces however, that the resulting system matrix

will be irreducible (see last section of the proof of Theorem

3).

We assume that all leg synchronizations are achieved by

enforcing a relation between the next lift-off time of a leg

with the touchdown time of other legs (as in equation (4)).

This assumption is expressed by the additional matrices P

1The biology and robotics communities use the terms leg “swing” and
“stance” to denote when a leg is in flight or is touching the ground
supporting the body, respectively. “Double stance” represents two legs
touching the ground. In this paper we use the term double stance to denote
when more than one leg is in stance.



and Q (that we define next) added to equation (5), resulting

in the synchronized system:
[

t(k)
l(k)

]

=

[
E τf ⊗ E
P E

]

⊗

[
t(k)
l(k)

]

⊕

[
E E

τg ⊗ E ⊕Q E

]

⊗

[
t(k − 1)
l(k − 1)

]

(6)

which one can write using simplified notation as:

x(k) = A0 ⊗ x(k)⊕A1 ⊗ x(k − 1). (7)

Lemma 1: [10] A sufficient condition for A∗
0 to exist is

that the matrix P is nilpotent in the max-plus sense.

Equation (7) can be written explicitly by

x(k) = A∗

0 ⊗A1 ⊗ x(k − 1)

= A⊗ x(k − 1), (8)

where A = A∗
0 ⊗A1 is called the system matrix.

For a robot with n legs let ℓ1, . . . , ℓm be sets of integers

such that

m⋃

p=1

ℓp = {1, . . . , n}, and

∀i 6= j, ℓi ∩ ℓj = ∅

i.e., each set ℓp takes elements of {1, . . . ,m} with no overlap

between sets. Define rp = #ℓp. We consider that each

ℓp contains the indices of a set of legs that recirculate

simultaneously (i.e. liftoff together). A gait G is defined as

an ordering relation of groups of legs:

G = ℓ1 ≺ ℓ2 ≺ · · · ≺ ℓm (9)

This ordering relation is interpreted in the following manner:

the set of legs indexed by ℓi+1 swings immediately after

all the legs ℓi have reached stance arriving from their own

swing. For example, a trotting gait on a quadruped robot

where the legs are sorted by front-left, front-right, back-left,

back-right, is represented by:

{1, 4} ≺ {2, 3}

Given the previous notation, the matrices P and Q in

equation (6) can be generated by: ∀j ∈ {1, . . . ,m−1}, ∀p ∈
ℓj+1, ∀q ∈ ℓj ,

[P ]p,q = τ∆ (10)

and ∀p ∈ ℓ1, ∀q ∈ ℓm

[Q]p,q = τ∆, (11)

where all other entries of P and Q are ε. For example in the

trotting gait defined above we get:

P =







ε ε ε ε
τ∆ ε ε τ∆
τ∆ ε ε τ∆
ε ε ε ε







and Q =







ε τ∆ τ∆ ε
ε ε ε ε
ε ε ε ε
ε τ∆ τ∆ ε






.

Define the function ♭ that transforms a gait into a vector of

integers (here we assume that the ordering (9) is represented

as a set of sets):

♭ : {[ℓ1]1, . . . , [ℓ1]i1} ≺ · · · ≺ {[ℓm]1, . . . , [ℓm]im} 7→

[[ℓ1]1, . . . , [ℓ1]i1 . . . [ℓm]1, . . . , [ℓm]im ]
T

For example ♭ ({1, 4} ≺ {2, 3}) = [1 4 2 3]T .

Definition 4: A gait Ḡ is called a normal gait if the

elements of the vector ♭
(
Ḡ
)

are sorted increasingly.

For a gait G, define the similarity matrix C such that:

C =

[
C̄ E
E C̄

]

where ∀i, j ∈ {1, . . . , n}:

[
C̄
]

i,j
=

{
e if [♭(G)]i = j
ε otherwise

As an example, for the gait G = {1, 4} ≺ {2, 3} we obtain:

C̄ =







e ε ε ε
ε ε ε e
ε e ε ε
ε ε e ε







The similarity matrix C is such that

C ⊗ CT = CT ⊗ C = E

Moreover, C transforms the system matrix A of an arbitrary

gait G into the system matrix Ā of a normal gait Ḡ via the

similarity:

Ā = C ⊗A⊗ CT

Such transformation is very useful since, by effectively

switching lines and columns in A, one obtains a very

structured matrix Ā where analysis is much simpler. Thus,

the interpretation of the similarity matrix C is that we can

always rename the legs in a manner that simplifies the

calculus. The matrices P and Q can also be transformed

into their “normal” counterparts via:

P̄ = C̄ ⊗ P ⊗ C̄T

Q̄ = C̄ ⊗Q⊗ C̄T

The structure of the matrices P̄ and Q̄ is illustrated by

equations (22) and (23), respectively.

IV. EIGENSTRUCTURE OF THE SYSTEM MATRIX

Let τδ = τf ⊗ τ∆ and consider the following assumptions

(which are always satisfied in practice):

A1 τg, τf > 0; τ∆ ≥ 0
A2 τg ⊗ τf ≤ τ⊗m

δ

Theorem 3: If assumptions A1, A2 verify then the matrix

A defined by equations (8), (6) has a unique eigenvalue



λ = τ⊗m
δ and an eigenvector v (up to scaling factor) defined

by

∀j ∈ {1, . . . ,m}, ∀q ∈ ℓj : [v]q = τf ⊗ τ⊗j−1
δ

[v]q+n = τ⊗j−1
δ .

Proof: Let [v̄]q = [v]q+n for all j and q ∈ ℓj . One can see

that v = [(τf ⊗ v̄)T v̄T ]T . We now show that λ and v are an

eigenvalue and eigenvector of A, respectively. Replacing the

state variable x(k − 1) by v and x(k) by λ⊗ v in equation

(7), a necessary and sufficient condition for λ and v to be

an eigenvalue and an eigenvector of A is:

λ⊗ v = λ⊗A0 ⊗ v ⊕A1 ⊗ v (12)

⇒ λ⊗ v = A∗

0 ⊗A1
︸ ︷︷ ︸

A

⊗v

Let us show that expression (12) indeed holds. We expand

the matrices A0, and A1 to obtain:

λ⊗ v = λ⊗

[
τf ⊗ v̄

v̄

]

=

λ⊗

[
E τf ⊗ E
P E

]

⊗ v ⊕

[
E E

τg ⊗ E ⊕Q E

]

⊗ v =

[
E λ⊗ τf ⊗ E

λ⊗ P ⊕ τg ⊗ E ⊕Q E

]

⊗

[
τf ⊗ v̄

v̄

]

The previous expression results in the following two equa-

tions:

λ⊗ τf ⊗ v̄ = τf ⊗ v̄ ⊕ λ⊗ τf ⊗ v̄ (13)

λ⊗ v̄ = τf ⊗ (λ⊗ P ⊕ τg ⊗ E ⊕Q)⊗ v̄ ⊕ v̄ (14)

Since λ > 0, equation (13) is always verified, thus one needs

only to address equation (14), which can be simplified due

to τf ⊗ τg > 0:

λ⊗ v̄ = (τf ⊗ τg)⊗ v̄ ⊕ τf ⊗ (λ⊗ P ⊕Q)⊗ v̄ (15)

If τg⊗τf > λ then the previous equation does not hold true.

Therefore we consider only the case when τg ⊗ τf ≤ λ (i.e.

assumption A2) and focus on the right-hand term of equation

(15) to obtain the simpler expression:

λ⊗ v̄ = τf ⊗ (λ⊗ P ⊕Q)⊗ v̄ (16)

If (16) is verified, then (15) is also true. Let τ∆ ⊗ P0 = P
and τ∆⊗Q0 = Q, i.e., all entries of matrices P0 and Q0 are

either 0 or ε. Since λ = τ⊗m
δ and τδ = τf ⊗ τ∆, we obtain:

τ⊗m
δ ⊗ v̄ = τδ ⊗ (τ⊗m

δ ⊗ P0 ⊕Q0)⊗ v̄. (17)

We now consider two cases:

i) First we analyze the row indices of equation (17) that are

elements of the sets ℓ2, . . . , ℓm. I.e., ∀j ∈ {1, . . . ,m − 1}
and ∀p ∈ ℓj+1, for each row p we obtain (notice that

accordingly to (11) all the elements of [Q0]p,· are ε since

p /∈ ℓ1, and that [v̄]p = τ⊗j
δ for p ∈ ℓj+1):

[
τ⊗m
δ ⊗ v̄

]

p
= τδ ⊗

[
τ⊗m
δ ⊗ P0 ⊕Q0

]

p,·
⊗ v̄ ⇔

[
τ⊗m
δ ⊗ v̄

]

p
= τδ ⊗

[
τ⊗m
δ ⊗ P0

]

p,·
⊗ v̄ ⊕ [Q0]p,·

︸ ︷︷ ︸

ε

⊗v̄ ⇔

τ⊗m
δ ⊗ τ⊗j

δ = τδ ⊗
⊕

q∈ℓj

τ⊗m
δ ⊗ [P0]p,q ⊗ [v̄]q ⇔

τ⊗m+j
δ = τδ ⊗ τ⊗m

δ ⊗ τ⊗j−1
δ ⇔

τ⊗m+j
δ = τ⊗m+j

δ

Thus for rows p equation (17) holds true.

ii) We now look at all the remaining rows p such

that p ∈ ℓ1 (noticing now that accordingly to (10) all the

elements of [P0]p,· are ε and that [v̄]p = e since p ∈ ℓ1):

[
τ⊗m
δ ⊗ v̄

]

p
= τδ ⊗

[
τ⊗m
δ ⊗ P0 ⊕Q0

]

p,·
⊗ v̄ ⇔

[
τ⊗m
δ ⊗ v̄

]

p
= τδ ⊗

[
τ⊗m
δ ⊗ P0

]

p,·
︸ ︷︷ ︸

ε

⊗ v̄ ⊕ [Q0]p,· ⊗ v̄ ⇔

τ⊗m
δ = τδ ⊗

⊕

q∈ℓm

[Q0]p,q ⊗ [v̄]q ⇔

τ⊗m
δ = τδ ⊗ τ⊗m−1

δ ⇔

τ⊗m
δ = τ⊗m

δ

Combining i) and ii) we conclude that equation (17) holds

true.

Irreducibility of the system matrix Ā (and its counterpart A)

can be readily verified by inspection of (21) together with

the expressions for V (equation (25)) and W (equation (24)):

the n− rm to n columns and rows of Ā are non-ε, and thus,

any node of the graph can be reached by any other node

via these columns and rows. Can can now take advantage of

Theorem 2 to conclude that the eigenvalue is unique.

V. COUPLING TIME

Theorem 4: [16] Let A be an irreducible matrix. Then

there exists c ∈ N\{0} (the cyclicity of A), λ ∈ R (the

unique eigenvalue of A), and k0 ∈ N (the coupling time of

A) such that

∀k ≥ k0 A⊗(k+c) = λ⊗c ⊗A⊗k

Theorem 4 describes an important property of max-plus-

linear systems when the system matrix A is irreducible:

it guarantees the existence of a (uncontrolled) steady-state

regime that can be achieved in a number of finite steps

k0, denoted the coupling time. Computing the coupling

time is very important in our application since it gives the

number of steps the robot needs to take to reach steady-state

after a gait transition or a perturbation. The second main

contribution of this paper comes in the form of the following

lemma:

Lemma 2: The coupling time for the max-plus-linear sys-

tem defined by equations (8), (6) is k0 = 2 with cyclicity

c = 1.



Proof: The coupling time is obtained by a laborious but

straightforward set of computations. For an arbitrary gait G
we compute the normal gait Ḡ via the similarity transform

C. From here on we use the normal system matrix Ā to

compute the coupling time, culminating in the same result

for the original matrix A. By observing the structures of Ā0

and Ā1 (derived from P̄ and Q̄) a closed form solution can

be obtained for Ā∗
0:

Ā∗

0 =

[
W τf ⊗W
W̄ W

]

where W = (τf ⊗ P̄ )∗ and W̄ is such that

τf ⊗ W̄ ⊕ E = W . The structure of W is illustrated in

equation (24). An expression for Ā is then obtained:

Ā = Ā∗

0 ⊗ Ā1

=

[
W τf ⊗W
W̄ W

]

⊗

[
E E

τg ⊗ E ⊕ Q̄ E

]

=

[
W ⊕ τf ⊗ τg ⊗W ⊕ τf ⊗W ⊗ Q̄ τf ⊗W

W̄ ⊕ τg ⊗W ⊕W ⊗ Q̄ W

]

Let V = W ⊗ Q̄, illustrated by equation (25). One can show

that:

W ⊗W = W (18)

W ⊗ V = V (19)

V ⊗ V = (λ− τf )⊗ V, (20)

where “−” in equation (20) is the traditional the minus sign.

Since µ ⊗ W ≥ W for any µ > 0 the previous expression

simplifies to:

Ā =

[
τf ⊗ (τg ⊗W ⊕ V ) τf ⊗W

τg ⊗W ⊕ V W

]

(21)

Computing successive products of Ā and taking advantage

of its structure and equations (18)-(20) one can write its k-th

power Ā⊗k, valid for all k ≥ 2, illustrated by equation

(26) (in this equation, the max-plus product sign ⊗ was

dropped due to the limited printing space). By inspection

of the expression of Ā⊗k in (26) one can observe that most

terms are multiplying by a power of the eigenvalue λ. To

factor out λ of the matrix in (26) it is sufficient to show

that τf ⊗ V ⊗ W ≥ τf ⊗ τg ⊗ W , i.e. all the terms of

τf⊗V ⊗W are larger then τf⊗τg⊗W . This can be confirmed

in a straightforward fashion by inspecting equations (24)

and (27). Taking advantage of this simplification one can

obtain equations (28)–(30). Together with the similarity

transformation we obtain the result valid for k ≥ 2:

A⊗(k+1) = C ⊗ Ā⊗k ⊗ CT

= C ⊗ λ⊗ Ā⊗k ⊗ CT = λ⊗A⊗k,

thus concluding that the coupling time is k0 = 2 with

cyclicity c = 1.

VI. CONCLUSIONS

We have considered a class of max-plus linear systems

for the synchronization of multiple two-state cycles, such

as in the circumstance of legged locomotion in robotics,

and have shown that its important structural properties can

be obtained in closed-form. The eigenvalue of the system

matrix represents the total cycle time, the eigenvector dictates

the steady-state behavior, and the coupling time exposes

the transient response. This result brings important insight

into the modeling and control of legged locomotion systems

where large numbers of legs result in a combinatorial gait

space (due to all the possible combinations in which multiple

legs can be synchronized). Further research is now taking

place in relaxing the structure of the system matrix, towards

addressing the synchronization of more general cyclic sys-

tems.
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[9] G. Lopes, R. Babuška, B. De Schutter, and T. van den Boom,

“Switching max-plus models for legged locomotion,” in Proc. of IEEE

Int. Conf. on Robotics and Biomimetics, 2009, pp. 221–226.
[10] G. Lopes, T. van den Boom, B. De Schutter, and R. Babuška,
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(24)
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






En×(n−rm)

τ∆ ⊗ 1r1×rm

τ∆ ⊗ τδ ⊗ 1r2×rm

...

τ∆ ⊗ τ
⊗(m−1)
δ ⊗ 1rm×rm




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τf
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


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Ā⊗(k+1) =

[
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(
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