
Delft University of Technology
Delft Center for Systems and Control

Technical report 11-041

Optimistic planning for sparsely stochastic
systems∗

L. Buşoniu, R. Munos, B. De Schutter, and R. Babuška

If you want to cite this report, please use the following reference instead:
L. Buşoniu, R. Munos, B. De Schutter, and R. Babuška, “Optimistic planning for
sparsely stochastic systems,” Proceedings of the Workshop on Monte-Carlo Tree
Search: Theory and Applications (MCTS) at the 21st International Conference on
Automated Planning and Scheduling (ICAPS 2011), Freiburg, Germany, 2 pp., June
2011.

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/11_041.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/11_041.html

Optimistic Planning for Sparsely Stochastic Systems

Lucian Buşoniu, Rémi Munos
Team SequeL

INRIA Lille-Nord Europe, France

Bart De Schutter, Robert Babuška
Delft Center for Systems and Control

Delft University of Technology, the Netherlands

Abstract

We describe an online planning algorithm for finite-
action, sparsely stochastic Markov decision processes,
in which the random state transitions can only end up
in a small number of possible next states. The algo-
rithm builds a planning tree by iteratively expanding
states, where the most promising states are expanded
first, in an optimistic procedure aiming to return a good
action after a strictly limited number of expansions.
The novel algorithm is called optimistic planning for
sparsely stochastic systems.

Introduction

We describe an online planning algorithm for Markov de-
cision processes (MDPs). In particular, we consider finite-
action, sparsely stochastic MDPs, in which the random state
transitions can only end up in a small number N of possible
next states. Many systems of interest are sparsely stochas-
tic, e.g. when deterministic dynamics are combined with dis-
crete random variables such as user input.

At each step, the algorithm builds a planning tree by tak-
ing the current state as the root node and then expanding
new states. Each expansion exploits the sparsity of the tran-
sitions to add all the possible next states, for all the M dis-
crete actions, as children to the planning tree. The algorithm
works with a strict limit of n expansions, so each state to
expand must be carefully chosen. An optimistic procedure is
adopted that expands the most promising states first – i.e.,
states corresponding to larger upper bounds on the possible
returns. We call the resulting algorithm optimistic planning
for sparsely stochastic systems (OPSS). We evaluate OPSS
empirically for the inverted pendulum, comparing it to alter-
native planning algorithms.

To formalize the class of problems addressed, we denote
by x ∈ X the (countable) states, by u ∈ U the actions,
by f(x, u, x′) the stochastic dynamics (probability of reach-
ing x′ by applying u in x), and by r the rewards, computed
with the reward function ρ(x, u, x′). The goal is to maximize
the expected discounted sum of future rewards (return), with
discount factor γ ∈ (0, 1).

The following are required. (i) There is a small finite num-
ber M of actions. (ii) After applying any action in any state,
the number of next states reachable with positive probability
is at most a small finite N . (iii) The rewards are bounded in

the interval [0, 1]. The crucial point here is (ii), i.e., that the
system is ‘sparsely stochastic’: if we were to represent for
some x, u the transition probabilities f(x, u, ·) as a vector of
length |X|, this vector would be sparse because |X| ≫ N .
Part (i) is quite standard, while (iii) can always be ensured
by translating and scaling the (bounded) reward function.

We measure algorithm quality by the ‘simple regret’, that
is, the loss incurred by choosing the action ualgo given by the
algorithm and then acting optimally, with respect to acting
optimally from the first step:

R(x) = max
u∈U

Q∗(x, u)−Q∗(x, ualgo) (1)

where Q∗ is the optimal Q-function.

Algorithm

The algorithm builds a tree T starting from a root containing
the state from which we must plan, x0, and then expanding
at each iteration a node from the set of leaves S . Each node is
identified with its state x; a child node is denoted x′ and has
the meaning of next state; leaves are denoted s. Node depth
is d(x). Each expansion consists of generating and adding
all the N one-step successor states of the node-to-expand,
for all M actions. The algorithm stops growing the tree after
n expansions and returns an action chosen on the basis of
the final tree.

The procedure for expanding nodes employs upper
bounds b and lower bounds ν on the values of each node x
(the value of x is the best return achievable over paths start-
ing at x0 and passing through x). These bounds are found
starting from the leaves, e.g. for the b-values:

b(s) = R(s) +
γd(s)

1− γ
, b(x) = max

u∈U

∑

x′

f(x, u, x′)b(x′)

where R(s) is the partial return accumulated along the path
to s, and x′ ranges through all the children of x reachable by

taking action u. To get ν, simply remove the term
γd(s)
1−γ

.

To obtain a set of candidate nodes for expansion, an op-
timistic subtree T † is recursively built, by starting from
the root and selecting at each node x only children as-
sociated to a greedy action in the b-values: u†(x) ∈
argmaxu∈U

∑

x′ f(x, u, x′)b(x′). This procedure is opti-
mistic because it uses upper bounds as if they were optimal

values. Among the leaves of this subtree, the node to expand

is selected using: argmaxs∈S† P(s) γd(s)

1−γ
, where P(s) is the

probability to reach s.
To motivate this choice, note that both the optimal value

and the value of the optimistic action u†(x0) lie between
the lower bound

∑

s∈S† P(s) ν(s) and the upper bound
∑

s∈S† P(s) b(s). This implies the regret of u†(x0) is at

most the difference between the two:
∑

s∈S† P(s) [b(s) −

ν(s)] =
∑

s∈S† P(s)
γd(s)

1−γ
. Thus, by targeting the leaf with

the largest contribution to this range, the expansion rule
aims to maximally improve the knowledge about the regret
of u†(x0), allowing the algorithm to make more informed
choices later.

After n expansions, the algorithm selects at the root
an action u0 ∈ argmaxu∈U

∑

x′ f(x0, u, x
′)ν(x′). Algo-

rithm 1 summarizes OPSS in high-level pseudocode. Note
that, since its updates are independent of the budget n, OPSS
can just as well be used as an anytime algorithm.

Algorithm 1 OP for sparsely stochastic systems

Input: state x0, model f, ρ, computational budget n
1: T1 = {x0}
2: for ℓ = 1, . . . , n do

3: build T †
ℓ , the optimistic subtree of Tℓ

4: select node to expand: sℓ ∈ argmax
s∈S

†

ℓ

P(s) γd(s)

1−γ

5: expand sℓ, obtaining Tℓ+1

6: end for
Output: u0 ∈ argmaxu∈U

∑

x′ f(x0, u, x
′)ν(x′)

Results and discussion
Using a sparsely stochastic variant of the inverted pen-
dulum swingup (Buşoniu et al. 2011), the behavior of
OPSS is studied for a computational budget n vary-
ing in {100, 200, . . . , 1000}. OPSS is compared to a
uniform planning algorithm, which always expands a
node having the smallest depth, and to OLOP. Since
OLOP has a different computational unit, consisting of
simulating a single random transition instead of NM
such transitions, it is allowed NM = 6n transitions for
fairness. To obtain a global performance measure, the
algorithms find actions for the states on the grid X0 =
{

−π, −150π
180 , −120π

180 , . . . , π
}

× {−15π,−14π, . . . , 15π},
and the average simple regret on this grid is computed.

Figure 1, top reports the regret of the three algorithms.
As expected, OPSS is better than uniform planning, since it
expands the planning trees in a smart way. As Figure 1, bot-
tom shows, this results in much deeper trees than for uniform
planning. Less expected is that, despite its strong theoretical
guarantees, OLOP works poorly, similarly to uniform plan-
ning. This happens because the computational budgets con-
sidered do not allow OLOP to sufficiently decrease the upper
confidence bounds on the returns; any advantage OLOP may
have can only manifest for larger budgets. Note that, because
the algorithms simulate a similar number of transitions, their
execution times are similar.

200 400 600 800 1000
10

−3

10
−2

10
−1

10
0

n

re
g

re
t

OPSS, regret

Uniform, regret

OLOP, mean regret

200 400 600 800 1000
4

6

8

10

12

14

16

n

tr
e
e
 d

e
p
th

OPSS, tree depth

Uniform, tree depth

OLOP, mean tree depth

Figure 1: Comparison between OPSS, uniform planning,
and OLOP: average regret over X0 (top), average tree depth
over X0 (bottom). Mean results over 10 runs are reported for
OLOP, as this algorithm works with random realizations of
trajectories.

Related work: OPSS is most related to the OP algorithms
of (Hren and Munos 2008; Bubeck and Munos 2010). The
algorithm of (Hren and Munos 2008) is geared towards de-
terministic systems; OPSS reduces to it in the deterministic
case, and generalizes it to stochastic systems. Compared to
the open-loop OP (OLOP) of (Bubeck and Munos 2010),
which is designed for nonsparsely stochastic systems, OPSS
takes advantage of the sparse stochasticity to find determin-
istic upper bounds on the returns, rather than upper confi-
dence bounds in high probability, as in OLOP. The idea of
using upper and lower bounds to explore a planning tree was
also used in (Walsh, Goschin, and Littman 2010).

A more extensive description and study of OPSS can be
found in (Buşoniu et al. 2011).

Future work: The most important next step is the theoret-
ical analysis of the regret as a function of the computational
budget n. Also, while expanding the optimistic leaf with the
largest contribution to the regret bound is intuitively a good
choice, other options might be better for the algorithm in
the long run. Finally, it will be interesting to empirically
compare OPSS with other planning algorithms such as UCT
(Kocsis and Szepesvári 2006).

References
Bubeck, S., and Munos, R. 2010. Open loop optimistic planning.
In COLT, 477–489.

Buşoniu, L.; Munos, R.; De Schutter, B.; and Babuška, R. 2011.
Optimistic planning for sparsely stochastic systems. In ADPRL,
48–55.

Hren, J.-F., and Munos, R. 2008. Optimistic planning of determin-
istic systems. In EWRL, 151–164.

Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-Carlo
planning. In ECML, 282–293.

Walsh, T. J.; Goschin, S.; and Littman, M. L. 2010. Integrating
sample-based planning and model-based reinforcement learning.
In AAAI.

