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Modeling and control of switching max-plus-linear systems with random

and deterministic switching

Ton J. J. van den Boom · Bart De Schutter

Abstract Switching max-plus-linear (SMPL) systems are discrete-event systems that can switch
between different modes of operation. In each mode the system is described by a max-plus-linear
state equation and a max-plus-linear output equation, with different system matrices for each
mode. The switching may depend on the inputs and the states, or it may be a stochastic process.
In this paper two equivalent descriptions for switching max-plus-linear systems will be discussed.
We will also show that a switching max-plus-linear system can be written as a piecewise affine
system or as a constrained max-min-plus-scaling system. The last translation can be established
under (rather mild) additional assumptions on the boundedness of the states and the inputs.
We also develop a stabilizing model predictive controller for SMPL systems with deterministic
and/or stochastic switching. In general, the optimization in the model predictive control approach
then boils down to a nonlinear nonconvex optimization problem, where the cost criterion is piece-
wise polynomial on polyhedral sets and the inequality constraints are linear. However, in the case
of stochastic switching that depends on the previous mode only, the resulting optimization problem
can be solved using linear programming algorithms.

Keywords discrete-event systems · randomly switching max-plus-linear systems · equivalent
classes · stabilizing control · model predictive control

1 Introduction

There exist many modeling frameworks for discrete-event systems such as queuing theory, (ex-
tended) state machines, formal languages, automata, temporal logic models, generalized semi-
Markov processes, Petri nets, and computer simulation models (see [8,21,43] and the references
therein). In general, models that describe the behavior of a discrete-event system are nonlinear
in conventional algebra. However, there is a class of discrete-event systems that can be described
by a model that is “linear” in the max-plus algebra [4,11,20]. Such discrete-event systems are
called max-plus-linear systems. Essentially, they can be characterized as discrete-event systems in
which only synchronization and no choice occurs. So typical examples are serial production lines,
production systems with a fixed routing schedule, railway networks, legged robots, transmission
lines, and urban traffic systems.

The basic control problem for MPL systems consists in determining the optimal input times
(e.g., feeding times of raw material or starting times of processes or activities) for a given reference
signal (e.g., due dates for the finished products or completion dates for processes or activities).
In the literature many different approaches are described to solve this problem. Among these the
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most common ones are based on residuation and on model predictive control (MPC). Residuation
essentially consists in finding the largest solution to a system of max-plus inequalities with the
input times as variables and the due dates as upper bounds. Residuation-based approaches for
computing optimal input times are presented or used in [6,10,18,26,29,31,35,36,37]. The MPC
approach is essentially based on the minimization of the error between the actual output times and
the due dates, possibly subject to additional constraints on the inputs and the outputs. The MPC
approach for MPL systems has been developed in [13,33,34,40,46]. Another approach, based on
invariant subspaces, is proposed in [23,32].

In [48] we have introduced the class of switching max-plus-linear (SMPL) systems. This class
consists of discrete-event systems that can switch between different modes of operation. In each
mode the system is described by a max-plus-linear state equation and a max-plus-linear output
equation, with different system matrices for each mode. In [48] the mode switching was a function
of the input signals and the previous state; in the current paper the switching can also depend
on a stochastic sequence. The class of SMPL systems with deterministic and stochastic switching
contains discrete-event systems with synchronization but no choice, in which the order of events
may vary randomly and often cannot be determined a priori. This randomness may be due to e.g.
(randomly) changing production recipes, varying customer demands or traffic demands, failures
in production units, or faults in transmission links.

In this paper we discuss two types of SMPL system descriptions and we show that the two
descriptions are equivalent. Furthermore, we show that an SMPL system can be rewritten as a
piecewise affine system or as a max-min-plus-scaling system. Using the results of [19] we also
implicitly prove that an SMPL system can be rewritten as an (extended) linear complementarity
(ELC/LC) system or as a mixed logic dynamical (MLD) system, which are system descriptions
that are often used in the field of hybrid systems. Using these results we can transfer properties
of piecewise affine systems and max-min-plus-scaling systems to SMPL systems. Finally, we will
present a design procedure for stabilizing model predictive controllers for SMPL systems with both
types of switching procedures.

This paper will review and extend the results of [48], [49], [50] and [51]. The most important
changes with respect to [51] are the revision of the proofs and the improvement of the presentation
of the material. The main change with respect to [49] and [50] is the correction in Theorem 1. We
also relaxed the condition of a row-finite matrix C by the condition that the system is structurally
observable in Theorem 1. We improved the definitions for the maximum growth rate and we
explicitly provide an algorithm to compute this value. Further we have extended the paragraph
on the optimization in the MPC algorithm and added some lines to Section 5 to indicate how
MPC techniques using PWA and MMPS systems can be used to compute a predictive controller
for SMPL systems. Finally we added a paragraph to Section 5 on MPC for SMPL systems with
deterministic switching. The paper is organized as follows. In Section 2 we introduce the max-plus
algebra and the concept of SMPL systems. In Section 3 we define a second class of SMPL systems
and discuss the equivalences between the two classes of SMPL systems. Furthermore we will show
that SMPL systems can be rewritten as piecewise affine systems or max-min-plus-scaling systems.
Section 4 presents conditions for a stabilizing controller, and in Section 5 we derive a stabilizing
model predictive controller for SMPL systems.

2 Max-Plus Algebra and SMPL Systems

2.1 Max-plus algebra

In this section we give the basic definition of the max-plus algebra [4,11].
Define ε = −∞ and Rε = R ∪ {ε}. The max-plus-algebraic addition (⊕) and multiplication (⊗)
are defined as follows:

x⊕ y = max(x, y) , x⊗ y = x+ y
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for any x, y ∈ Rε, and

[A⊕B]i,j = ai,j ⊕ bi,j = max(ai,j , bi,j)

[A⊗ C]i,j =
n
⊕

k=1

ai,k ⊗ ck,j = max
k=1,...,n

(ai,k + ck,j)

for matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε . The matrix ε is the max-plus-algebraic zero matrix:

[ε]i,j = ε for all i, j. A max-plus diagonal matrix S = diag⊕(s1, . . . , sn) has elements [S]i,j = ε

for i 6= j and diagonal elements [S]i,i = si for i = 1, . . . , n. The matrix E = diag⊕(0, . . . , 0) is
the max-plus identity matrix. The max-plus-algebraic matrix power of A ∈ R

n×n
ε is defined as

follows: A⊗
0
= E and A⊗

k
= A ⊗ A⊗

k−1
for k = 1, 2, . . . . Let S⊗

−1
denote the inverse of S in

max-plus algebra, so S ⊗ S⊗
−1

= S⊗
−1

⊗ S = E. diagonal up to a permutation of rows. S is
invertible if it has one and only one entry in each row and column which is different from ǫ. If all
si are finite, the max-plus inverse of a max-plus diagonal matrix S = diag⊕(s1, . . . , sn) is equal to

S⊗
−1

= diag⊕(−s1, . . . ,−sn).

2.2 SMPL systems

Switching Max-Plus-Linear (SMPL) systems are discrete-event systems that can switch between
different modes of operation [48]. In each mode ℓ ∈ {1, . . . , nL}, the system is described by a
max-plus-linear state equation and a max-plus-linear output equation:

x(k) = A(ℓ(k)) ⊗ x(k − 1)⊕B(ℓ(k)) ⊗ u(k) (1)

y(k) = C(ℓ(k)) ⊗ x(k) (2)

in which the matrices A(ℓ) ∈ R
nx×nx
ε , B(ℓ) ∈ R

nx×nu
ε , C(ℓ) ∈ R

ny×nx
ε are the system matrices for

the ℓth mode1. We assume that there are nL possible modes.
The index k is called the event counter. For SMPL systems the state x(k) typically contains

the time instants at which the internal events occur for the kth time, the input u(k) contains the
time instants at which the input events occur for the kth time, the output y(k) contains the time
instants at which the output events occur for the kth time, and the mode ℓ(k) determines which
max-plus linear model is valid during the kth event.

In [48] we have considered SMPL systems with deterministic switching depending on the previ-
ous state or on an input signal. In [49] we have introduced SMPL systems with random switching,
in which the mode switching depended on a stochastic sequence. In this paper we consider the com-
bination of both switching types [50]. For the SMPL system (1)-(2), the mode switching variable
ℓ(k) then in general depends on both stochastic variables as well as deterministic variables (state
and inputs). The switching actions are determined by a switching mechanism. For the SMPL sys-
tem (1)-(2), the mode switching variable ℓ(k) is a stochastic process that depends on the previous
mode ℓ(k − 1), the previous state x(k − 1), the input variable u(k), and an (additional) control
variable v(k). We denote the probability of switching to mode ℓ(k) given ℓ(k − 1), x(k − 1), u(k),
and v(k) by P [L(k) = ℓ(k)|ℓ(k − 1), x(k − 1), u(k), v(k)], where L(k) is a stochastic variable and
ℓ(k) is its value. We assume that for all ℓ(k), ℓ(k − 1) ∈ {1, . . . , nL},the probability P is piecewise
affine on polyhedral sets in the variables x(k−1), u(k), and v(k). Since P is a probability, we have

0 ≤ P [L(k) = ℓ(k)|ℓ(k − 1), x(k − 1), u(k), v(k)] ≤ 1

and
nL
∑

ℓ(k)=1

P [L(k) = ℓ(k)|ℓ(k − 1), x(k − 1), u(k), v(k)] = 1

1 Note that if we consider an SMPL system with only one mode, we have a special subclass, namely the class of
regular max-plus-linear systems.
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To illustrate the different types of mode switching, we will now present three simple examples.
In the first example we discuss deterministic switching, in which the mode switching only depends
on the previous state or an input signal. In a second example we discuss random switching, in
which the mode switching entirely depends on a stochastic sequence. In a third example we discuss
stochastic switching with a probability depending on the state.

Example 1 (deterministic switching):
Consider the system in Figure 1 with three modes, starting in mode 1 at event step k. Let v(k) be
a control variable that determines the system to stay in mode 1 (for v(k) < 0.3), to switch from
mode 1 to mode 2 (for 0.3 ≤ v(k) < 0.7), or to switch to mode 3 (for v(k) ≥ 0.7).

mode 1

mode 2

mode 3

v(k) < 0.3 0.3 ≤ v(k) < 0.7

v(k) ≥ 0.7

Fig. 1 Deterministic switching.

We achieve this by defining the probability functions

P [L(k) = 1|1, x(k − 1), u(k), v(k)] =

{

1 for v < 0.3 , ∀x, u
0 for v ≥ 0.3 , ∀x, u

P [L(k) = 2|1, x(k − 1), u(k), v(k)] =







0 for v < 0.3 , ∀x, u
1 for 0.3 ≤ v < 0.7 , ∀x, u
0 for v ≥ 0.7 , ∀x, u

P [L(k) = 3|1, x(k − 1), u(k), v(k)] =

{

0 for v < 0.7 , ∀x, u
1 for v ≥ 0.7 , ∀x, u

In general for deterministic switching, the probability functions are piecewise constant with values
either 0 or 1.

Example 2 (stochastic switching with fixed probability):
Consider the system in Figure 2 with three modes, starting in mode 1 at event step k. In this
case of stochastic switching we assume that the probability to stay in mode 1 is equal to γ, that
the probability to switch from mode 1 to mode 2 is equal to β, and that the probability to switch
from mode 1 to mode 3 is equal to 1− β − γ, where β, γ ∈ [0, 1] are constants and γ + β ≤ 1.

mode 1

mode 2

mode 3

γ β

1− β − γ

Fig. 2 Stochastic switching.

We can achieve this by defining the probability functions

P [L(k) = 1|1, x(k − 1), u(k), v(k)] = γ , ∀x, u

P [L(k) = 2|1, x(k − 1), u(k), v(k)] = β , ∀x, u

P [L(k) = 3|1, x(k − 1), u(k), v(k)] = 1− β − γ , ∀x, u
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In general for stochastic switching with fixed probability, the probability functions are piecewise
constant with values between 0 and 1.

Example 3 (stochastic switching with a probability depending on the state):
Consider the system in Figure 3 with two modes, starting in mode 1 at event step k. In this
example, the switching probability depends on the state of the system. Consider a system with
state x(k). Let x1(k) be the first entry of the state. We assume the system always stays in mode
1 for x1(k) < 0, and always switches from mode 1 to a mode 2 for x1(k) > 1; for x1(k) ∈ [0, 1] we
have a probability equal to x1(k) to stay in mode 1, and a probability equal to 1−x1(k) to switch
from mode 1 to mode 2.

mode 1 mode 2P [L(k) = 1|1, x(k − 1), u(k), v(k)]

P [L(k) = 2|1, x(k − 1), u(k), v(k)]

Fig. 3 State-dependent stochastic switching.

We can achieve this by defining the probability functions

P [L(k)1|1, x(k − 1), u(k), v(k)] =







1 for x1(k) < 0 , ∀x, u
x1(k) for 0 ≤ x1(k) ≤ 1 , ∀x, u
0 for x1(k) > 1 , ∀x, u

P [L(k) = 2|1, x(k − 1), u(k), v(k)] =







0 for x1(k) < 0 , ∀x, u
1− x1(k) for 0 ≤ x1(k) ≤ 1 , ∀x, u
1 for x1(k) > 1 , ∀x, u.

In general for stochastic switching with a probability depending on the state or the input the
probability functions are piecewise affine in the state or the input.

Definition 1 A polyhedral partition {Γi}i=1,...,ns
of the space R

nw is defined as the partitioning
of the space R

nw into non-overlapping polyhedra Γi, i = 1, . . . , ns of the form

Γi = { w(k) | Si w(k) �i si } , for i = 1, . . . , ns,

for some matrices Si ∈ R
q×nw and vectors si ∈ R

q, and with �i a vector operator2 where the
entries stand for either ≤ or < and there holds

ns
⋃

i=1

Γi = R
nw and Γi ∩ Γj = ∅ for i 6= j

⋄

Definition 2 ([49,50,51]) Consider the system (1)-(2) with nL possible modes and let the prob-
ability of switching to mode ℓ(k) given ℓ(k − 1), x(k − 1), u(k), v(k) be denoted by P [L(k) =
ℓ(k)|ℓ(k− 1), x(k− 1), u(k), v(k)]. Then the system (1)-(2) is a type-1 Switching Max-Plus-Linear
(SMPL) system if for any given ℓ(k) ∈ {1, . . . , nL}, P [L(k) = ℓ(k)|·, ·, ·, ·] is a probability function
that is piecewise affine on polyhedral partition of the space of the variables ℓ(k − 1), x(k − 1),
u(k), v(k).

⋄

2 we need this construction that allows both strict and non-strict inequalities since the sets Γi have to be non-
overlapping.
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Remark 1 Consider a type-1 SMPL system with switching probability P . If we define the vec-

tor w(k) =
[

ℓ(k − 1) xT (k − 1) uT (k) vT (k)
]T

∈ R
nw , then there exist a polyhedral partition

{Γi}i=1,...,ns
of Rnw and vectors αm,i, and scalars βm,i for i = 1, . . . , ns, m ∈ {1, . . . , nL} such

that the probability P can be written as

P [L(k) = ℓ(k)|w(k)] = αT
ℓ(k),i w(k) + βℓ(k),i , if w(k) ∈ Γi (3)

Remark 2
Since P is a probability, for any w(k) we have

0 ≤ P [L(k) = ℓ(k)|w(k)] ≤ 1 , for ℓ(k) = 1, . . . , nL

and
nL
∑

ℓ(k)=1

P [L(k) = ℓ(k)|w(k)] = 1

Remark 3
As was mentioned in Section 1, the switching of the mode cannot always be determined a priori,
but may have a stochastic behavior. For example, in the case of a production system we can use
the probability P to describe the changing production recipes or varying customer demands; or
in transmission links each mode may represent a network with a specific set of faults, and the
probability P may describe the chance of this set of faults to occur.

Example 1 Production system I. Consider the production system of Figure 4. This system
consists of three machines M1, M2, and M3. Three products (A,B,C) can be made with this
system, each with its own recipe, meaning that the order in the production sequence is different
for every product.

M1

M2

M3

d1 = 1

d2 = 1

d3 = 5

✓
✓
✓
✓✓✼

✲ ✲

❙
❙
❙
❙❙ ✲

✲

❅
❅
❅❘
❅

❅
❅■ �

�
�✠
�
�
�✒

u(k) y(k)

A,C

B

A

B

B,C

C

A

C

A,B

Fig. 4 A production system.

For product A (using recipe ℓ(k) = 1) the production order is M1-M2-M3, which means that
the raw material is fed to machine M1 where it is processed. Next, the intermediate product is
sent to machine M2 for further processing, and finally the product A is finished in machine M3.
Similarly, for product B (using recipe ℓ(k) = 2) the processing order is M2-M1-M3, and for product
C (using recipe ℓ(k) = 3) the processing order is M1-M3-M2. We assume that the type of the kth
product (A, B or C) is available at the start of the production, so that we do know ℓ(k) when
computing u(k).

Each machine starts working as soon as possible on each batch, i.e., as soon as the raw material
or the required intermediate products are available, and as soon as the machine is idle (i.e., the
previous batch has been finished and has left the machine). We define u(k) as the time instant
at which the system is fed with the raw material for the kth product, xi(k) as the time instant
at which machine i starts processing the kth product, and y(k) as time instant at which the
kth product leaves the system. We assume that all the internal buffers are large enough, and no
overflow will occur.



Modeling and control of switching max-plus-linear systems with random and deterministic switching 7

We assume the transportation times between the machines to be negligible, and the processing
times of the machines M1, M2 and M3 to be given by d1 = 1, d2 = 2 and d3 = 3, respectively.
The system equations for recipe A are given by

x1(k) = max(x1(k − 1) + d1, u(k)) ,

x2(k) = max(x1(k) + d1, x2(k − 1) + d2)

= max(x1(k − 1) + 2d1, x2(k − 1) + d2, u(k) + d1) ,

x3(k) = max(x2(k) + d2, x3(k − 1) + d3)

= max(x1(k − 1) + 2d1 + d2, x2(k − 1) + 2d2, x3(k − 1) + d3, u(k) + d1 + d2) ,

y(k) = x3(k) + d3 ,

leading to the system matrices for recipe A:

A(1) =





d1 ε ε

2d1 d2 ε

2d1 + d2 2d2 d3



 , B(1) =





0
d1

d1 + d2



 , C(1) =
[

ε ε d3
]

.

Similarly we derive for recipe B:

A(2) =





d1 2d2 ε

ε d2 ε

2d1 d1 + 2d2 d3



 , B(2) =





d2
0

d1 + d2



 , C(2) =
[

ε ε d3
]

,

and for recipe C:

A(3) =





d1 ε ε

2d1 + d3 d2 2d3
2d1 ε d3



 , B(3) =





0
d1 + d3

d1



 , C(3) =
[

ε d2 ε
]

.

The switching probability from one recipe to the next one is assumed to be given by:

P [L(k) = 1|1, x(k − 1), u(k), v(k)] = 0.64 , P [L(k) = 2|1, x(k − 1), u(k), v(k)] = 0.18 ,

P [L(k) = 1|2, x(k − 1), u(k), v(k)] = 0.18 , P [L(k) = 2|2, x(k − 1), u(k), v(k)] = 0.64 ,

P [L(k) = 1|3, x(k − 1), u(k), v(k)] = 0.18 , P [L(k) = 2|3, x(k − 1), u(k), v(k)] = 0.18 ,

P [L(k) = 3|1, x(k − 1), u(k), v(k)] = 0.18 ,

P [L(k) = 3|2, x(k − 1), u(k), v(k)] = 0.18 ,

P [L(k) = 3|3, x(k − 1), u(k), v(k)] = 0.64 ,

(4)

which means that if we have a specific recipe for product k, then the probability of having the
same recipe for product k+1 is 64%, and the probability of a switching to each other recipe is 18%.

Now define

S1 =
[

1 0 . . . 0
]T

s1 = 2 �1≡≤

S2 =
[

−1 0 . . . 0
]T

s2 = −2 �2≡<

α1,1 =
[

−0.46 0 . . . 0
]T

β1,1 = 1.10

α1,2 =
[

0 0 . . . 0
]T

β1,2 = 0.18

α2,1 =
[

0.46 0 . . . 0
]T

β2,1 = −0.28

α2,2 =
[

0 0 . . . 0
]T

β2,2 = 0.18

α3,1 =
[

0 0 . . . 0
]T

β3,1 = 0.18

α3,2 =
[

0 0 . . . 0
]T

β3,2 = 0.64

then the SMPL system can be written in the form of Definition 1, Definition 2 and Remark 1.
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Example 2 Production system II. Now consider the production system of Example 1, but
assume that the products B and C are equivalent, but are produced using different recipes (so
M2-M1-M3 for B and M1-M3-M2 for C). This means that if we need to produce a product B/C
we can choose the recipe (so either B or C). We therefore introduce an auxiliary binary control
variable v(k) ∈ {0, 1} that can be used to choose between processing recipe B and C. The switching
probability from one recipe to the next one is now given by:

P [L(k) = 1|1, x(k − 1), u(k), v(k)] = 0.64 , P [L(k) = 2|1, x(k − 1), u(k), v(k)] = 0.36 v(k)
P [L(k) = 1|2, x(k − 1), u(k), v(k)] = 0.18 , P [L(k) = 2|2, x(k − 1), u(k), v(k)] = 0.64 v(k)
P [L(k) = 1|3, x(k − 1), u(k), v(k)] = 0.18 , P [L(k) = 2|3, x(k − 1), u(k), v(k)] = 0.64 v(k)
P [L(k) = 3|1, x(k − 1), u(k), v(k)] = 0.36 (1−v(k)) ,
P [L(k) = 3|2, x(k − 1), u(k), v(k)] = 0.64 (1−v(k)) ,
P [L(k) = 3|3, x(k − 1), u(k), v(k)] = 0.64 (1−v(k)) .

(5)
Note that for any v(k) ∈ {0, 1} there holds P [L(k) = 1|i, x(k−1), u(k), v(k)]+P [L(k) = 2|i, x(k−
1), u(k), v(k)] + P [L(k) = 3|i, x(k − 1), u(k), v(k)] = 1 for i = 1, 2, 3.

Now define

S1 =
[

1 0 . . . 0
]T

s1 = 1 �1≡≤

S2 =
[

−1 0 . . . 0
]T

s2 = −1 �2≡<

α1,1 =
[

0 0 . . . 0
]T

β1,1 = 0.64

α1,2 =
[

0 0 . . . 0
]T

β1,2 = 0.18

α2,1 =
[

0 0 . . . 0.36
]T

β2,1 = 0

α2,2 =
[

0 0 . . . 0.64
]T

β2,2 = 0

α3,1 =
[

0 0 . . . −0.36
]T

β3,1 = 0.36

α3,2 =
[

0 0 . . . −0.64
]T

β3,2 = 0.64

then the SMPL system can be written in the form of Definition 1, Definition 2 and Remark 1.

Remark 4 In the Examples 1 and 2 we have assumed sufficiently large internal buffers and neg-
ligible transportation times between the machines. Note however that we have done so to simplify
the example; it is not a limitation in the theory.

3 Equivalence in classes of SMPL systems

In this section we introduce an alternative class of SMPL systems, called type-2 SMPL systems,
and we show that type-1 and type-2 SMPL systems are equivalent. Furthermore we will show that
SMPL systems can be rewritten as piecewise affine systems or max-min-plus-scaling systems, two
well-known classes of hybrid systems. The relations between the models are depicted in Figure 3.
In Example 3 all equivalent system descriptions will be computed for a type-1 SMPL model.

Definition 3 ([51]) A type-2 SMPL system is defined as follows: Consider the system (1)-(2)
with nL possible modes. The mode ℓ(k) = m if

z(k) =
[

ℓ(k − 1) xT (k − 1) uT (k) vT (k) d(k)
]T

∈ Ωm ⊂ R
nz

for m = 1, . . . , nL, where d(k) ∈ [0, 1] is a uniformly distributed stochastic scalar signal, and where
Ωm is a union of polyhedra, so Ωm = ∪nm

j=1Ωm,j in which {Ωm,j}m = 1, . . . , nL

j = 1, . . . , nm

is a polyhedral

partition. ⋄
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Remark 5 The polyhedral partition {Ωm,j}m = 1, . . . , nL

j = 1, . . . , nm

can be parametrized by

Ωm,j = { z(k) | Rm,j z(k) �m,j rm,j } , for j = 1, . . . , nm

where �i is a vector where the entries stand for either ≤ or <.

A type-1 SMPL model is easy for modeling where we consider the probabilities of switching
from one mode to another. The model gives a lot of physical insight into the system and is usually
more intuitive for the user. A type-2 SMPL model is signal-based and the properties of probabilities
of switching are translated into the properties of a stochastic signal. The fact that type-2 SMPL
models are signal-based makes that this type of SMPL system can easily be translated into another
model in one of the other classes of hybrid systems (see Propositions 3 and 4).

✲
✛ ❳❳❳❳❳❳❳③

✘✘✘✘✘✘✘✿
Proposition 1.a

Proposition 1.b

Proposition 4

Proposition 3

type-1

SMPL

type-2

SMPL

type-d

piecewise affine

constrained

max-min-plus-scaling

Fig. 5 Transformations and model classes with the proposition that states the relation.

Proposition 1 The class of type-1 SMPL systems and the class of type-2 SMPL systems are
equivalent in the sense of input-state-output-mode behavior. ⋄

Proof
Type-1 SMPL → type-2 SMPL

Consider a type-1 SMPL system of the form (1)-(2) as given in Definition 2. The probability P is
given by

P [L(k) = ℓ(k)|w(k)] = αT
ℓ(k),i w(k) + βℓ(k),i , if w(k) ∈ Γi (6)

Now define the function η such that

η(m,w(k)) =











m
∑

ℓ(k)=1

P [L(k) = ℓ(k)|w(k)] for m = 1, . . . , nL

0 for m = 0

Furthermore we observe that η(nL, w(k)) =
∑nL

j=ℓ(k) P [L(k) = ℓ(k)|w(k)] = 1.

For w(k) ∈ Γi we find

η(m,w(k)) = ᾱT
m,i w(k) + β̄m,i (7)

where ᾱ0,i = 0 and β̄0,i = 0 and ᾱm,i =
∑m

j=1 αj,i and β̄m,i =
∑m

j=1 βj,i for m = 1, . . . , nL.
Now introduce a uniformly distributed stochastic scalar signal d(k) ∈ [0, 1]. Let

L(k) = m if η(m− 1, w(k)) < d(k) ≤ η(m,w(k)) (8)

Denote Pd[L(k) = m|w(k)] as the probability that L(k) = m according to (8). For a uniformly
distributed d(k) and scalars a, b with 0 ≤ a ≤ b ≤ 1 there holds P [a < d(k) < b] = b − a . Using
this we find that

Pd[L(k) = m|w(k)] = P
[

η(m− 1, w(k)) < d(k) ≤ η(m,w(k)]
)
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= η(m,w(k))− η(m− 1, w(k))

= P [L(k) = m|w(k))

which is equal to the probability (6) in the type-1 SMPL system. If we combine this result with
(8) we obtain

ℓ(k) = m if

[

η(m− 1, w(k))− d(k) < 0
−η(m,w(k)) + d(k) ≤ 0

]

(9)

Note that η : (m,w(k)) → η(m,w(k)) is an affine function if w(k) ∈ Γi (or equivalently Si w(k)−
si �

s
i 0), and so we can rewrite (9) as

ℓ(k) = m if ∃i such that





ᾱT
m−1,i w(k) + β̄m−1,i − d(k)
−ᾱT

m,i w(k)− β̄m,i + d(k)
Si w(k)− si



 � 0

Define

Rm,i =





ᾱT
m−1,i −1

−ᾱT
m,i 1
Si 0



 , rm,i =





β̄m−1,i

−β̄m,i

−si



 , �r
m,i=





<

≤
�s

i





then with zT (k) =
[

wT (k) dT (k)
]

we find that

ℓ(k) = m if Rm,i z(k) �
r
m,i rm,i , i = 1, . . . , ns,

which is equal to the switching mechanism of a type-2 SMPL system.

Type-2 SMPL → type-1 SMPL

Consider a type-2 SMPL system, so

L(k) = m if Rm,t z(k) �
r
m,t rm,t

for some index t. Define Rm,t,1 and Rm,t,2 such that

Rm,t z(k) = Rm,t

[

w(k)
d(k)

]

= Rm,t,1 w(k) +Rm,t,2 d(k) �
r
m,t rm,t (10)

Note that d(k) ∈ [0, 1] is a scalar. Let dm,t,max(w(k)) be the maximum value of d such that (10)
is satisfied, and let dm,t,min(w(k)) be the minimum value of d such that (10) is satisfied. If for
some w(k) there exists no d(k) ∈ [0, 1] such that (10) is satisfied, we define dm,t,max(w(k)) =
dm,t,min(w(k)) = 0. Finding dm,t,max(w(k)) and dm,t,min(w(k)) can be done using a linear pro-
gramming algorithm, which means that dm,t,max(w(k)) and dm,t,min(w(k)) are piecewise affine in
w(k) [7]. So there exist matrices Si,m,t, vectors si,m,t, pm,t,i,max, pm,t,i,min and scalars qm,t,i,max

and qm,t,i,min, such that

dm,t,max(w(k)) = pTm,t,i,max w(k) + qm,t,i,max

dm,t,min(w(k)) = pTm,t,i,min w(k) + qm,t,i,min

if Si,m,t w(k) �
s
i,m,t si,m,t for i = 1, . . . ,Mm,t, t = 1, . . . , nm and m = 1, . . . , nL.

The probability that ℓ(k) = m, given w(k) can be written as

P [L(k) = m|w(k)] = P [dm,t,min(w(k)) ≤ d(k) ≤ dm,t,max(w(k))]

= dm,t,max(w(k))− dm,t,min(w(k))

= (pTm,t,i,max − pTm,t,i,min)w(k) + (qm,t,i,max − qm,t,i,min)

for Si,m,t w(k) �
s
i,m,t si,m,t for i = 1, . . . ,Mm,t, t = 1, . . . , nm and m = 1, . . . , nL. This is equal to

the switching mechanism of a type-1 SMPL system.
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Proposition 2 A type-2 SMPL system can always be rewritten in the form:

x(k) = Ā(κ(k)) ⊗ x(k − 1)⊕ B̄(κ(k)) ⊗ u(k) (11)

y(k) = C̄(κ(k)) ⊗ x(k) (12)

such that the mode κ(k) = m if

z(k) =
[

κ(k − 1) xT (k − 1) uT (k) vT (k) d(k)
]T

∈ Ω̄m (13)

where d(k) ∈ [0, 1] is a uniformly distributed stochastic scalar signal, and where {Ω̄m}m=1,...,nκ
is

a polyhedral partition and Ω̄m can be written as

Ω̄m = { z(k) | Rm z(k) �r
m rm }

Proof Consider the type-2 SMPL system of Definition 3, and introduce a new numbering

κ(ℓ, j) = j +

ℓ−1
∑

i=1

ni, for ℓ = 1, . . . , nL and j = 1, . . . , nℓ

If we define
Ω̄κ(ℓ,j) = Ωℓ,j

and

Ā(κ(ℓ,j)) = A(ℓ)

B̄(κ(ℓ,j)) = B(ℓ)

C̄(κ(ℓ,j)) = C(ℓ)

for ℓ = 1, . . . , nL, j = 1, . . . , nℓ, then we obtain a system of the form (11)-(13).

Remark 6
For form of Definition 3 every region Ωℓ(k) for mode ℓ(k) is a union of polyhedra. For the form
of Proposition 2 every region Ω̄κ(k) for mode κ(k) is a polyhedron. The consequence is that we
usually need more modes for the latter form than for the original form.

Definition 4 An SMPL system is structurally finite if for any finite (x(k−1), u(k)) we have that
x(k) and y(k) are finite for all ℓ(k − 1) ∈ {1, . . . , nL} and any d(k) ∈ [0, 1]. ⋄

Lemma 1 A SMPL system is structurally finite if and only if the matrix

H(ℓ) =

[

A(ℓ) B(ℓ)
ε

ε ε C(ℓ)

]

(14)

is row-finite for all ℓ = 1, . . . , nL (i.e. for each ℓ every row of the matrix H(ℓ) has at least one
finite entry).

Proof Part 1: (if)
Let x(k − 1) and u(k) be finite. Now

xi(k) = max
j

(

[

A(ℓ) B(ℓ)
]

i,j
+

[

x(k − 1)
u(k)

]

j

)

ys(k) = max
t

(

[C(ℓ)]s,t + xt(k)
)
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If all elements of x(k−1) and u(k) are finite and every row of H(ℓ) has at least one finite elements,
we will find that the elements xi(k), i = 1, . . . , nx are finite as well. Similarly for finite x(k) we
find finite elements ys(k), s = 1, . . . , ny.

Part 2: (only if)
We will prove the second part of lemma by contradiction. First, define

ω(k) =

[

x(k)
y(k)

]

∈ R
nω = R

nx+ny , θ(k) =





x(k − 1)
u(k)
x(k)



 ∈ R
nθ = R

2nx+ny (15)

then system equations (1)–(2) can be written as

ω(k) = H(ℓ)(k)⊗ θ(k) for Rℓ z(k) �
r
ℓ rℓ

and finiteness of x(k) and u(k) implies finiteness of θ(k).
Now suppose that for a given ℓ the ith row of H(ℓ) has no finite entries, so [H(ℓ)]i,j = ε, ∀j.

Then ωi(k) = max
(

[H(ℓ)]i,j(k) + θj(k)
)

= ε, which means that the system is not structurally

finite. We may conclude that the system is structurally finite if and only if H(ℓ) is row-finite for
all ℓ = 1, . . . , nL .

Remark 7 ([50]) Note that physical systems are typically structurally finite.

Next we will show that SMPL systems can be rewritten as piecewise affine systems or max-
min-plus-scaling systems. The following definition is an extension of [45]:

Definition 5 Type-d piecewise affine systems are described by

x(k)=Aix(k − 1) +Biu(k) + fi
y(k)=Cix(k) +Diu(k) + gi

for





x(k − 1)
u(k)
d(k)



 ∈ Ωi, (16)

where fi ∈ R
nx×1, gi ∈ R

ny×1, Ai ∈ R
nx×nx , Bi ∈ R

nx×nu , Ci ∈ R
ny×nx , Di ∈ R

ny×nu , for
i = 1, . . . , N where the signal d(k) ∈ [0, 1] is a uniformly distributed stochastic scalar signal and
{Ωi}i=1,...,N is a polyhedral partition of Rnx+nu+1. ⋄

Proposition 3 Every structurally finite SMPL system of type-2 can be written as type-d piecewise
affine system. ⋄

Proof Consider a structurally finite SMPL system of type-2 with state and output equations (1)
and (2) where ℓ(k) = m if z(k) satisfies Rm z(k) �r

m rm. Let ω(k) and θ(k) be given by Equation
(15). The SMPL system is structurally finite, which means that if θ is finite, then ω(k) will be

finite. Let h
(ℓ)
i,p = [H(ℓ)]i,p and define the set

Φ =
{

(ℓt, p1,t, p2,t, . . . , pnω,t)
∣

∣

∣
ℓt ∈ {0, . . . , nL}, pi,t ∈ {1, . . . , nθ}, i = 1, . . . , nω, ∃ω(k),

such that ωi(k) = max
p

(h
(ℓt)
i,p + θp(k)) = h

(ℓt)
i,pi,t

+ θpi,t
(k)
}

Define3 ntot = #Φ, then ntot ≤ nL nnθ
ω . Note that ωi(k) = maxp(h

(ℓt)
i,p + θp(k)) = h

(ℓt)
i,pi,t

+ θpi,t
(k)

is equivalent to

h
(ℓt)
i,pi,t

+ θpi,t
(k) ≥ h

(ℓt)
i,p + θp(k) for p = 1, . . . , nω, p = 1, . . . , nθ

3 For a set S the set cardinality (i.e. the number of elements) is denoted by #S.
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By collecting all entries for p = 1, . . . , nω, j = 1, . . . , nθ we obtain that

ω(k) = H(t) θ(k) + h(t) if E(t) θ(k) ≤ e(t) and Rℓt z(k) �ℓt rℓt (17)

where, for i = 1, . . . , nω, j = 1, . . . , nθ, and t = 1, . . . , ntot, we have:

[H(t)]i,j =

{

1 for j = pi,t

0 otherwise

[h(t)]i = h
(ℓt)
i,pi,t

[E(t)](i−1)nθ+j,l =











1 for l = j and j 6= pi,t

−1 for l = pi,t and j 6= pi,t

0 otherwise

[e(t)](i−1)nθ+j = h
(ℓt)
i,pi,t

− h
(ℓt)
i,j

(Note that in fact the zero rows of [E(t) e(t)] can be removed.) It is clear that from (17) we can
derive the matrices Ai, Bi, Ci, Di and vectors fi and gi such that we obtain a description of the
form (16). The polyhedra are described by the inequalities E(t) θ(k) ≤ e(t) and Rℓt z(k) �

r
ℓt

rℓt .
The total number of different polyhedra is less than or equal to N = nL nnθ

ω .

Definition 6 A max-min-plus-scaling (MMPS) expression f of the variables x1, . . . , xn is defined
by the syntax4

f := xi|α|max(fk, fl)|min(fk, fl)|fk + fl|βfk (18)

with i ∈ {1, 2, . . . , n}, α, β ∈ R, and where fk, fl are again MMPS expressions. ⋄

Definition 7 Consider systems that can be described by

x(k) = fx(x(k − 1), u(k), d(k)) (19)

y(k) = fy(x(k − 1), u(k), d(k)), (20)

where the components of fx, fy are MMPS expressions in terms of the components of x(k), u(k),
and the auxiliary variables d(k), which are all real-valued. Such systems will be called max-min-
plus-scaling (MMPS) systems. If in addition, we have a condition of the form

fc(x(k − 1), u(k), d(k)) � c(k) ,

where the components of fc are MMPS expressions and �i is a vector where the entries stand for
either ≤ or <, we speak about constrained MMPS systems. ⋄

Proposition 4 Every structurally finite SMPL system of type-2 can be written as a constrained
MMPS system provided that the variables x(k − 1) and u(k) are bounded. ⋄

Note that this proposition is a direct consequence of the equivalence between the class of type-d
piecewise affine systems and MMPS systems (see [19]). However we will provide a direct proof here
that transfers SMPL systems directly into MMPS systems.

4 The symbol | stands for OR and the definition is recursive.
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Proof Consider a structurally finite SMPL system of type-2 with state and output equations (1)–
(2) where ℓ(k) = m if z(k) satisfies Rm z(k) �r

m rm. Define ω(k), θ(k) and H(ℓ(k)) as in (15) and
(14). Then

ω(k) = H(ℓ(k)) ⊗ θ(k) for Rℓ(k) z(k) �
r
ℓ rℓ(k)

so

ωi(k) = max
j

(

m
(ℓ(k))
i,j + θj(k)

)

for Rℓ(k) z(k) �
r
ℓ rℓ(k) .

Now define the (binary) variables δm(k) ∈ {0, 1}, for m = 1, . . . , nL such that

[δm(k) = 1] ⇔ [Rm z(k) �r
m rm] ⇔ [ℓ(k) = m] (21)

Since x(k) and u(k) are bounded, and d ∈ [0, 1] we find that there exist bounded sets E and Z
such that θ(k) ∈ E and z(k) ∈ Z. Let

ρ∗m = max
z(k)∈Z

Rm z(k)− rm

then following [5] (page 5) and using the fact that the sets {z(k)|Rm z(k) �r
m rm} are non-

overlapping, we can rewrite (21) as

Rm z(k)− rm �r
m ρ∗m

(

1− δm(k)
)

(22)

nL
∑

m=1

δm(k) = 1 (23)

Note that constraints (22) and (23) are linear (and thus also MMPS) constraints. Define

σ∗ =
[

max
m

max
i

max
θ(k)∈E

max
j

(h
(m)
i,j + θj(k))

]

−
[

min
m

min
i

min
θ(k)∈E

max
j

(h
(m)
i,j + θj(k))

]

(note that σ∗ is finite because the system is structurally finite and x(k−1) and u(k) are bounded),
then the system is described by the following equation

ωi(k) = max
m,j

(

h
(m)
i,j + θj(k)− (1− δm(k))σ∗

)

(24)

subject to (22) and (23).

Indeed, if the SMPL system is in mode ℓ(k) = m, then δm(k) = 1 and δq(k) = 0 for all q 6= m,
and so (24) reduces to

ωi(k) = max
j

(

h
(m)
i,j + θj(k)

)

Note that (24) is an MMPS function in the variables θ and δ. Hence, we have proven that a type-2
SMPL system, with bounded states and inputs, can be rewritten as a constrained MMPS system.

Remark 8 Recall that the state x(k) and input u(k) denote the time instant at which a state event
or an input event occurs for the kth time, respectively. This means that both state and input are
non-decreasing and grow unboundedly. In Section 4 we will introduce a shifted system, in which we
consider the deviations of the state and input signals with respect to a reference signal. Therefore
in a shifted system the shifted state and shifted input u(k) can be bounded and can thus easily be
transformed into a type-d MMPS system.

In the following example we will illustrate some of the equivalences.
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Example 3 Equivalent system descriptions

Consider a type-1 SMPL system

x(k) =
(

A(ℓ(k)) ⊗ x(k − 1)
)

⊕
(

B(ℓ(k)) ⊗ u(k)
)

for ℓ(k) = 1, 2

y(k) = x(k)
(25)

with x(k), u(k), y(k) ∈ Rε and5

A(1) = 1 B(1) = 0.2 C(1) = 0

A(2) = −0.1 B(2) = 0.1 C(2) = 0

and

P [L(k) = 1|1, x(k − 1), u(k)] = 0

P [L(k) = 2|1, x(k − 1), u(k)] = 1

P [L(k) = 1|2, x(k − 1), u(k)] =







1 for x(k − 1) < −1
−x(k − 1) for − 1 ≤ x(k − 1) ≤ 0
0 for x(k − 1) > 0

P [L(k) = 2|2, x(k − 1), u(k), v(k)] =







0 for x(k − 1) < −1
1 + x(k − 1) for − 1 ≤ x(k − 1) ≤ 0
1 for x(k − 1) > 0 .

Note that 0 ≤ P [L(k) = i|j, x(k − 1), u(k)] ≤ 1, for i, j = 1, 2, and

P [L(k) = 1|1, x(k − 1), u(k)] + P [L(k) = 2|1, x(k − 1), u(k)] = 1 ,

P [L(k) = 1|2, x(k − 1), u(k)] + P [L(k) = 2|2, x(k − 1), u(k)] = 1 .

Define the vector w(k) =
[

ℓ(k − 1) x(k − 1) u(k)
]T

. The probability P [L(k) = ℓ(k)|w(k)] can be
written as a piecewise function:

P [L(k) = ℓ(k)|w(k)] = αT
ℓ(k),i w(k) + βℓ(k),i , if Si w(k) �

s
i si , for i = 1, . . . , 4

where
i = 1 S1 =

[

1 0 0
]

s1 =
[

1.5
]

�s
1 =

[

≤
]

αT
1,1 =

[

0 0 0
]

β1,1 = 0

αT
2,1 =

[

0 0 0
]

β2,1 = 1

i = 2 S2 =

[

−1 0 0
0 −1 0

]

s2 =

[

−1.5
0

]

�s
2 =

[

<

<

]

αT
1,2 =

[

0 0 0
]

β1,2 = 0

αT
2,2 =

[

0 0 0
]

β2,2 = 1

i = 3 S3 =





−1 0 0
0 1 0
0 −1 0



 s3 =





−1.5
0
1



 �s
3 =





<

≤
≤





αT
1,3 =

[

0 −1 0
]

β1,3 = 0

αT
2,3 =

[

0 1 0
]

β2,3 = 1

i = 4 S4 =

[

−1 0 0
0 1 0

]

s4 =

[

−1.5
−1

]

�s
4 =

[

<

<

]

αT
1,4 =

[

0 0 0
]

β1,4 = 1

αT
2,4 =

[

0 0 0
]

β2,4 = 0

5 Note that the entry of A(2) is negative. This happens when x(k) represent the delay with respect to some
constantly increasing reference signal (cf. Remark 8 and also see the shifted system (39)-(40) in Section 4 or in [39])



16 Ton J. J. van den Boom, Bart De Schutter

Note that the inequality ℓ(k − 1) ≤ 1.5 represents the case ℓ(k − 1) = 1, and the inequality
−ℓ(k − 1) < −1.5 represents the case ℓ(k − 1) = 2.

The presented system is a type-1 SMPL system. We will now rewrite this system as a type-2
SMPL system. Consider a uniformly distributed stochastic scalar signal d(k) ∈ [0, 1], and define

z(k) =
[

wT (k) d(k)
]T

.
First we discuss the case ℓ(k − 1) = 2. Let ℓ(k) = 1 if x(k − 1) + d(k) < 0 and let ℓ(k) = 2 if
x(k − 1) + d(k) ≥ 0. This defines the regions

Ω1,1 = {z(k)|ℓ(k−1) > 1.5, x(k−1)+d(k) < 0} , Ω2,1 = {z(k)|ℓ(k−1) > 1.5, x(k−1)+d(k) ≥ 0}

For the case ℓ(k − 1) = 1, we always have ℓ(k) = 2, and so

Ω2,2 = {z(k) | ℓ(k − 1) ≤ 1.5}

Now we can compute the matrices for i = 1, 2:

R1,1 =

[

−1 0 0 0
0 1 0 1

]

r1,1 =

[

−1.5
0

]

�r
1,1 =

[

≤
<

]

R2,1 =

[

−1 0 0 0
0 −1 0 −1

]

r2,1 =

[

−1.5
0

]

�r
2,1 =

[

≤
≤

]

R2,2 =
[

1 0 0 0
]

r2,2 =
[

1.5
]

�r
2,2 =

[

<
]

To be able to recast the SMPL system as a type-d piecewise affine system using Proposition 3, we
will rewrite this type-2 SMPL system as follows. We introduce 3 modes κ = 1, 2, 3, with

x(k) = max
(

x(k − 1) + 1, u(k) + 0.2
)

for κ(k) = 1

x(k) = max
(

x(k − 1)− 0.1, u(k) + 0.1
)

for κ(k) = 2, 3

y(k) = x(k)

(26)

We define

R̄1 = R̄1,1 r̄1 = r̄1,1 �−
1 =�1,1

R̄2 = R̄2,1 r̄2 = r̄2,1 �−
2 =�2,1

R̄3 = R̄2,2 r̄3 = r̄2,2 �−
3 =�2,2

and we obtain that the now mode κ(k) = m if

z̄(k) =
[

κ(k − 1) xT (k − 1) uT (k) d(k)
]T

∈ Ω̄m

where

Ω̄m = { z̄(k) | R̄m z̄(k) �−
m r̄m }

Now it is straightforward to derive the type-d piecewise affine system: Note that

x(k) = x(k−1) + 1 if κ(k) ≤ 1.5, x(k−1) + 1 ≥ u(k) + 0.2

x(k) = u(k) + 0.2 if κ(k) ≤ 1.5, x(k−1) + 1 < u(k) + 0.2

x(k) = x(k−1)− 0.1 if κ(k) > 1.5, x(k−1)− 0.1 ≥ u(k) + 0.1

x(k) = u(k) + 0.1 if κ(k) > 1.5, x(k−1)− 0.1 < u(k) + 0.1
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This translates into the following type-d piecewise affine system:

i = 1 : x(k) = x(k − 1) + 1 if R̄1 z̄(k) ≤ r̄1, x(k−1) + 0.8 ≥ u(k)
i = 2 : x(k) = u(k) + 0.2 if R̄1 z̄(k) ≤ r̄1, x(k−1) + 0.8 < u(k)
i = 3 : x(k) = x(k − 1) + 1 if R̄2 z̄(k) ≤ r̄2, x(k−1)− 0.2 ≥ u(k)
i = 4 : x(k) = x(k − 1) + 1 if R̄3 z̄(k) ≤ r̄3, x(k−1)− 0.2 ≥ u(k)
i = 5 : x(k) = u(k) + 0.1 if R̄2 z̄(k) ≤ r̄2, x(k−1)− 0.2 < u(k)
i = 6 : x(k) = u(k) + 0.1 if R̄3 z̄(k) ≤ r̄3, x(k−1)− 0.2 < u(k)

We conclude that this system is a type-d piecewise affine system with 6 polyhedral regions.
Finally we rewrite the system as a constrained MMPS system. Assume the input is in the

bounded set −1 ≤ u(k) ≤ 2 and that the initial state is in the bounded set −1 ≤ x(0) ≤
1. Introduce the binary variables δm(k) ∈ {0, 1}, for m = 1, 2, 3 such that δm(k) = 1 ⇔
R̄m z̄(k) �−

m r̄m. It is easy to derive that in that case x(k) for k ≥ 0 will be bounded:

−1.1≤x(k)≤2.2 .

We compute
ρ∗m = max

¯z(k)∈Z
R̄m z̄(k)− r̄m = −3.5

and

σ∗ = [max
m

max
i

max
θ(k)∈E

max
j

(h
(m)
i,j + θj(k))]− [min

m
min
i

min
θ(k)∈E

max
j

(h
(m)
i,j + θj(k))]

= 3.2− (−1.2)

= 4.4

Now we obtain the following model:

x(k) = max
[(

max(x(k−1) + 1, u(k) + 0.2) + (1−δ1(k))σ
∗
)

,
(

max(x(k−1)− 0.1, u(k) + 0.1) + (1−δ2(k))σ
∗
)

,
(

max(x(k−1)− 0.1, u(k) + 0.1) + (1−δ3(k))σ
∗
)]

x(k) = max
[(

max(x(k−1) + 1, u(k) + 0.2) + (1−δ1(k))σ
∗
)

,
(

max(x(k−1)− 0.1, u(k) + 0.1) + (1−δ2(k)−δ3(k))σ
∗
)]

for δm(k) ∈ [0, 1] and subject to

R̄m z̄(k) ≤ r̄m + ρ∗m(1− δm(k)) for m = 1, 2, 3

3
∑

m=1

δm(k) = 1

This is a constrained MMPS system.

4 Conditions for Stability

In this section we will derive conditions for stability in Theorem 1. These conditions will be used
in Section 5 to derive a stabilizing model predictive controller for SMPL systems.

Just like in [46], we adopt the notion of stability for discrete-event systems from [42], in which
a discrete-event system is called stable if all its buffer levels remain bounded. In this paper we
consider discrete-event systems with a due-date signal. This due date signal is a reference for the
time that the output event should occur (e.g. in production systems the finished part has to be
removed from the output buffer before the due-dates). This means that if the output event occurs
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after the given due-date there is a delay in the system. For a proper operation of the system, the
delays have to remain bounded. In the remainder of the paper the due-date signal will be called
“reference signal”, as is usual in MPC literature.

All the buffer levels in a discrete-event system are bounded if the dwelling times of the parts
or batches in the system remain bounded. This implies for an MPL system with an asymptotically
increasing reference signal r(k) that stability is achieved if and only if there exist finite constants
k0, Myr, Myx and Mxu such that

| yi(k)− ri(k) | ≤ Myr, ∀i (27)

| yi(k)− xj(k) | ≤ Myx, ∀i, j (28)

|xj(k)− um(k) | ≤ Mxu, ∀j,m (29)

for all k > k0. Condition (27) means that the delay between the actual output date y(k) and
the reference r(k) has to remain bounded, and on the other hand, that the stock time has to
remain bounded . Conditions (28) and (29) mean that the throughput time (i.e. the time between
the starting date, u(k) and the output date, y(k)) is bounded. Consider a reference signal vector
defined as

r(k) = ρ k + ξ(k), where |ξi(k)| ≤ ξmax, ∀i (30)

where ξ is a vector describing the bounded variation of the reference around an average slope
k ρ with ρ a positive scalar. (If r(k) is strictly increasing we need the additional constraint
ξi(k) > ξi(k − 1) − ρ.) For the asymptotically increasing reference signal (30), the conditions
(27)–(29) imply finite buffer levels.

Similar to max-plus-linear systems, stability is not an intrinsic feature of the SMPL system,
but it also depends on the reference signal. In [46] we already observed that for max-plus-linear
systems, the max-plus-algebraic eigenvalue of the system matrix A gives an upper bound on the
asymptotic slope of the reference sequence. For a max-plus-linear system with a strongly connected
A-matrix6, this A-matrix only has one max-plus-algebraic eigenvalue λ and a corresponding max-
plus-algebraic eigenvector v 6= ε, such that A⊗ v = v ⊗ λ ([4]).For SMPL systems we cannot use
the max-plus-algebraic eigenvalue, but we use the concept of maximum autonomous growth rate:

Definition 8 Consider an SMPL system of the form (1)-(2) with system matrices A(ℓ), ℓ =

1, . . . , nL. Define the matrices A
(ℓ)
α with [A

(ℓ)
α ]i,j = [A(ℓ)]i,j−α. Define the set Sfin,n of all n×nmax-

plus diagonal matrices with finite diagonal entries, so Sfin,n = {S|S = diag⊕(s1, . . . , sn), si is finite}.
The maximum autonomous growth rate λ of the SMPL system is defined by

λ = min
{

α
∣

∣

∣
∃S ∈ Sfin,n such that [ S ⊗A(ℓ)

α ⊗ S⊗
−1

]i,j ≤ 0, ∀ i, j, ℓ
}

Remark 9
Note that for any SMPL system the maximum autonomous growth rate λ is finite, or more pre-
cisely:

λ ≤ max
i,j,ℓ

[A(ℓ)]i,j .

This fact is easily verified by noting that if we define λ′ = maxi,j,ℓ[A
(ℓ)]i,j and use the max-plus

identity matrix S = diag⊕(0, . . . , 0) we obtain

[ S ⊗A
(ℓ)
λ′ ⊗ S⊗

−1
]i,j = [A

(ℓ)
λ′ ]i,j = [A(ℓ)]i,j − λ′ ≤ 0, ∀ i, j, ℓ,

and so λ ≤ λ′. The maximum autonomous growth rate λ can be easily computed by solving a linear
programming problem:

min
α,s1,...,sn

α

6 A matrix A is called strongly connected if its graph is strongly connected. This means that for any two nodes
i, j of the graph, node j is reachable from node i [20].
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subject to

[A(ℓ)]i,j + si − sj − α ≤ 0, ∀ i, j, ℓ

The optimizer now gives the maximum autonomous growth rate λ = α∗.

Remark 10
For a max-plus-linear system (so nL = 1), the maximum autonomous growth rate λ is equivalent
to the largest max-plus-algebraic eigenvalue of the matrix A(1).

For a given integer N , let the set LN = { [ ℓ1 · · · ℓN ]T | ℓm ∈ {1, . . . , nL}, m = 1, . . . , N}
denote the set of all possible consecutive mode switching vectors.

Definition 9 [4] Let α ∈ R be given. Define the matrices A
(ℓ)
α with [A

(ℓ)
α ]i,j = [A(ℓ)]i,j − α. An

SMPL system is structurally controllable if there exists a finite positive integer N such that for

all ℓ̃ =
[

ℓ1 . . . ℓN
]T

∈ LN the matrices

ΓN
α (ℓ̃)=

[

A
(ℓN )
α ⊗· · ·⊗A

(ℓ2)
α ⊗B(ℓ1) . . . A

(ℓN )
α ⊗A

(ℓN−1)
α ⊗B(ℓN−2) A

(ℓN )
α ⊗B(ℓN−1) B(ℓN )

]

are row-finite, i.e. in each row there is at least one entry different from ε.

Definition 10 [4] Let α ∈ R be given. Define the matrices A
(ℓ)
α with [A

(ℓ)
α ]i,j = [A(ℓ)]i,j − α. An

SMPL system is structurally observable if there exists a finite positive integer M such that for all

ℓ̃ =
[

ℓ1 . . . ℓM
]T

∈ LM the matrices

OM
α (ℓ̃)=

















C
(ℓN )
α ⊗A

(ℓN )
α ⊗· · ·⊗A

(ℓ2)
α

...

C
(ℓN )
α ⊗A

(ℓN )
α ⊗A

(ℓN−1)
α

C
(ℓN )
α ⊗A

(ℓN )
α

C
(ℓN )
α

















are column-finite, i.e. in each column there is at least one entry different from ε.

Remark 11 Note that the structural controllability and structural observability are structural
properties and do not depend on the actual value of α. If a SMPL system is structurally con-
trollable (observable) for one finite value of α it is structurally controllable (observable) for any
finite value of α.

Theorem 1 Consider an SMPL system with maximum autonomous growth rate λ and consider

a reference signal (30) with growth rate ρ. Define the matrices A
(ℓ)
ρ with [A

(ℓ)
ρ ]i,j = [A(ℓ)]i,j − ρ.

Now if

1. ρ > λ, (31)

2. the system is structurally controllable, and (32)

3. the system is structurally observable, (33)

then any input signal

u(k) = ρ k + µ(k), where | µi(k) | ≤ µmax, ∀i, ∀k (34)

for a finite value µmax, will stabilize the SMPL system.



20 Ton J. J. van den Boom, Bart De Schutter

Proof : First note that the condition ρ > λ holds if and only if there exists a max-plus diagonal
matrix S such that

[ S ⊗A(ℓ)
ρ ⊗ S⊗

−1
]i,j < 0, ∀ i, j, ℓ . (35)

Let S be the max-plus diagonal matrix with finite diagonal elements such that (35) is satisfied,
and define the signals

z(k) = S ⊗ (x(k)− ρ k)

w(k) = y(k)− ρ k

µ(k) = u(k)− ρ k

and the matrices Ā
(ℓ)
ρ , B̄(ℓ), and C̄(ℓ) with

Ā(ℓ)
ρ = S ⊗A(ℓ)

ρ ⊗ S⊗
−1

(36)

B̄(ℓ) = S ⊗B(ℓ) (37)

C̄(ℓ) = C(ℓ) ⊗ S⊗
−1

. (38)

Just like we did in [39] for max-plus-linear systems we can associate to every ρ a shifted system

z(k) = Ā(ℓ)
ρ ⊗ z(k − 1)⊕ B̄(ℓ) ⊗ µ(k) (39)

w(k) = C̄(ℓ) ⊗ z(k). (40)

Stability means that all signals in this system should remain bounded. In other words, we are
looking for finite values zmax, wmax, such that

|z(k)| ≤ zmax , |w(k)| ≤ wmax.

Now consider the SMPL system (39)–(40) for the input signal |µi(k) | ≤ µmax, ∀i, k for a given
finite value µmax. Let z̄(k) = maxi zi(k) and b̄max = maxℓ,i,j([B̄

(ℓ)]i,j), then

zi(k) = max
(

max
j

([Ā(ℓ)
ρ ]i,j + zj(k − 1)),max

m
([B̄(ℓ)]i,m + µm(k))

)

≤ max
(

max
j

([Ā(ℓ)
ρ ]i,j) + z̄(k − 1),max

ℓ,i,m
([B̄(ℓ)]i,m) + µmax

)

≤ max
(

z̄(k − 1), b̄max + µmax

)

where we use the fact that [Ā
(ℓ)
ρ ]i,j < 0 because (35) and (36). We find

zi(k) ≤ z̄(k)

≤ max
(

z̄(k − 1), b̄max + µmax

)

≤ max
(

z̄(0), b̄max + µmax

)

= zmax

where we defined zmax = max
(

z̄(0), b̄max +µmax

)

. This means that all entries of the shifted state

z(k) have a finite upper bound zmax.
Now again consider the SMPL system (39)–(40) for the input signal µi(k) ≥ −µmax, ∀i, k,

and let N and M be such that γi,max(ℓ̃) = maxj([Γ
N
ρ (ℓ̃)]i,j) are finite for all i, ℓ̃, and ωi,max(ℓ̃) =

maxj([O
M
ρ (ℓ̃)]i,j) are finite for all i, ℓ̃. Note that a finite N and a finite M exist due to condition

2 and 3 of the theorem (see also Definitions 9 and 10.) Now define

ℓ̃(k)=











ℓ(k)
...

ℓ(k+N−2)
ℓ(k+N−1)











, µ̃N (k)=











µ(k)
...

µ(k+N−2)
µ(k+N−1)











, , z̃M (k)=











z(k)
...

z(k+M−2)
z(k+M−1)











,
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then by successive substitution we find that for any m ≥ N there holds

z(k +m) = Ā(ℓ(k+m))
ρ ⊗ Ā(ℓ(k+m−1))

ρ ⊗ . . .⊗ Ā(ℓ(k+m−N+1))
ρ ⊗ z(k+m−N)⊕

Ā(ℓ(k+m))
ρ ⊗ Ā(ℓ(k+m−1))

ρ ⊗ . . .⊗ B̄(ℓ(k+m−N+1)) ⊗ µ(k+m−N + 1)⊕

Ā(ℓ(k+m))
ρ ⊗ B̄(ℓ(k+m−1)) ⊗ µ(k+m− 1)⊕ . . .⊕ B̄(ℓ(k+m)) ⊗ µ(k+m)

= S ⊗A(ℓ(k+m))
ρ ⊗A(ℓ(k+m−1))

ρ ⊗ . . .⊗A(ℓ(k+m−N+1))
ρ ⊗ S⊗

−1
⊗ z(k+m−N)⊕

S ⊗A(ℓ(k+m))
ρ ⊗A(ℓ(k+m−1))

ρ ⊗ . . .⊗B(ℓ(k+m−N+1))
ρ ⊗ µ(k+m−N + 1)⊕

S ⊗A(ℓ(k+m))
ρ ⊗B(ℓ(k+m−1))

ρ ⊗ µ(k+m− 1)⊕ . . .⊕ S ⊗B(ℓ(k+m))
ρ ⊗ µ(k+m)

= S ⊗A(ℓ(k+m))
ρ ⊗A(ℓ(k+m−1))

ρ ⊗ . . .⊗A(ℓ(k+m−N+1))
ρ ⊗ S⊗

−1
⊗ z(k+m−N)⊕

S ⊗ ΓN
ρ (ℓ̃(k +m−N+1))⊗ µ̃N (k+m−N + 1) .

For every element of z(k +m), m ≥ N we derive:

[z(k +m)]i ≥ [S ⊗ ΓN
ρ (ℓ̃(k +m−N+1))⊗ µ̃N (k+m−N + 1)]i

= max
j

([S ⊗ ΓN
ρ (ℓ̃(k +m−N+1))]i,j + [µ̃N (k+m−N + 1)]i)

≥ min
p

([S]p,p) + max
j

([ΓN
ρ (ℓ̃(k +m−N+1))]i,j)− µmax

≥ min
p

(sp) + γi,max(ℓ̃(k +m−N+1))− µmax

≥ smin + γmin − µmax

where smin = minp(sp) and γmin = minℓ̃,i γi,max(ℓ̃). We conclude that after N event steps we have
a lower bound for the shifted state z(k).

By successive substitution we find that for any m ≥ N +M there holds

w(k +m) = C̄(ℓ(k+m))
ρ ⊗ Ā(ℓ(k+m))

ρ ⊗ Ā(ℓ(k+m−1))
ρ ⊗ · · · ⊗ Ā(ℓ(k+m−N+2))

ρ ⊗ z(k+m−N + 1)

⊕ . . .⊕ C̄(ℓ(k+m))
ρ ⊗ Ā(ℓ(k+m))

ρ ⊗ z(k+m− 1)⊕ C̄(ℓ(k+m))
ρ ⊗ z(k+m)

= C(ℓ(k+m))
ρ ⊗A(ℓ(k+m))

ρ ⊗A(ℓ(k+m−1))
ρ ⊗ · · · ⊗A(ℓ(k+m−N+2))

ρ ⊗ S⊗
−1

⊗ z(k+m−M + 1)⊕

C(ℓ(k+m))
ρ ⊗A(ℓ(k+m))

ρ ⊗A(ℓ(k+m−1))
ρ ⊗ S⊗

−1
⊗ z(k+m− 1)⊕ . . .⊕ C(ℓ(k+m))

ρ ⊗ S⊗
−1

⊗ z(k+m)

= OM
ρ (ℓ̃(k +m−M+1))⊗ S⊗

−1
⊗ z̃M (k+m−N + 1) .

For every element of w(k +m), m ≥ N +M we derive:

[w(k +m)]i ≥ [OM
ρ (ℓ̃(k +m−M+1))⊗ S⊗

−1
⊗ z̃M (k+m−M + 1)]i

= max
j

([OM
ρ (ℓ̃(k +m−M+1))⊗ S⊗

−1
]i,j + [z̃M (k+m−M + 1)]i)

≥ max
j

([OM
ρ (ℓ̃(k +m−M+1))]i,j)−max

p
([S]p,p)− µmax

≥ ωi,max(ℓ̃(k +m−M+1))−max
p

(sp) + smin + γmin − µmax

≥ ωmin − smax + smin + γmin − µmax

where smax = maxp(sp) and ωmin = minℓ̃,i ωi,max(ℓ̃). Now from (40) it follows that

[w(k +m)]i = [OM
ρ (ℓ̃(k +m−M+1))⊗ S⊗

−1
⊗ z̃M (k+m−M + 1)]i

≤ max
i,j,ℓ̃

(

OM
ρ (ℓ̃(k +m−M+1))

)

−min
p

([S]p,p) + zmax

≤ ωmax − smin + zmax
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where ωmax = maxi,j,ℓ̃

(

OM
ρ (ℓ̃(k + m − M+1))

)

, and so after N + M event steps wi(k) will be

bounded by

ωmin − smax + smin + γmin − µmax ≤ wi(k) ≤ ωmax − smin + zmax

Now for any k > N +M , there holds

yi(k)− ri(k) = [w(k) + ρ k]i − [ζ(k) + ρ k]i

= wi(k)− ξi(k)

≤ ωmax − smin + zmax + ξmax

= Myr1 (is finite),

ri(k)− yi(k) = ξi(k)− wi(k)

≤ ξmax − ωmin + smax − smin − γmin + µmax

= Myr2 (is finite),

|yi(k)− ri(k)| = |wi(k)− ζi(k)|

≤ max(Myr1,Myr2)

= Myr (is finite),

yi(k)− xj(k) = [(S⊗
−1

⊗ w(k)) + ρ k]i − [(S⊗
−1

⊗ z(k)) + ρ k]j

= (−si + wi(k) + ρ k)− (−sj + zj(k) + ρ k)

= wi(k) + sj − zj(k)

≤ ωmax − smin + zmax + smax − smin − γmin + µmax

= Myx (is finite),

xj(k)− um(k) = [(S⊗
−1

⊗ z(k)) + ρ k]j − [µ(k) + ρ k]m

= (−sj + zj(k) + ρ k)− (µm(k) + ρ k)

= zj(k)− µm(k)− sj

≤ zmax + µmax − smin

= Mxu (is finite) ,

In a similar way as yi(k)−xj(k) and xj(k)−um(k) we can prove that xj(k)−yi(k) and um(k)−xj(k)
are bounded. This proves stability for the SMPL system (1)–(2).

Remark 12
For a max-plus-linear system (so nL = 1), condition (31) is equivalent to the condition that the
growth rate ρ of the reference signal should be larger than the largest max-plus-linear eigenvalue λ

of the matrix A(1) (cf. [46]).

Remark 13
Note that the conditions of structural controllability and structural observability for stability have
already been mentioned in [4] and [9] for the case with one mode.

5 A Stabilizing Model Predictive Controller

In this section we develop a stabilizing model predictive controller for SMPL systems with both
deterministic and stochastic switching. Model predictive control (MPC) [30] is a model-based con-
trol approach that has its origins in the process industry and that has mainly been developed
for linear or nonlinear time-driven systems. Its main ingredients are: a prediction model, a per-
formance criterion to be optimized over a given horizon, constraints on inputs and outputs, and
a receding horizon approach. Just as for time-driven systems (where more than 80% of the ad-
vanced controllers are model predictive controllers), we like to use the advantages of the model
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predictive control strategy for SMPL discrete-event systems. The main advantage of using MPC
is that it is the only closed-loop control method that can handle constraints in an adequate way.
Feedback is incorporated into MPC by repeating the state measurement and control input cal-
culation at regular time instants. Furthermore, MPC features an simple tuning process and can
easily adapt to model changes. The algorithms to compute the optimal input signal are mostly
linear programming algorithms, with means that the computational effort is usually very low. In
more complicated situations where we deal with different modes and the switching mechanism
has stochastic properties, MPC gives a framework to deal with these issues and the controller
computes an optimal control input.

A Model Predictive Control (MPC) approach for MPL systems has been introduced in [13]. In
[13,46] it has been shown that for a broad range of performance criteria and constraints, max-plus
linear MPC results in a linear programming problem, which can be solved very efficiently. In [48,
49,50] we have extended this approach to SMPL systems with both stochastic and deterministic
switching. In this paper we review these results and discuss the algorithms to solve the MPC
problem for different types of switching (stochastic and/or deterministic).

Consider a type-1 SMPL system. In MPC we use predictions of future signals based on this
model. Define the prediction vectors

ỹ(k)=











ŷ(k|k)
...

ŷ(k+Np−2|k)
ŷ(k+Np−1|k)











, ũ(k)=











u(k)
...

u(k+Np−2)
u(k+Np−1)











,

ℓ̃(k)=











ℓ(k|k)
...

ℓ(k+Np−2|k)
ℓ(k+Np−1|k)











, r̃(k)=











r(k)
...

r(k+Np−2)
r(k+Np−1)











,

where ŷ(k+j|k) denotes the prediction of y(k+j) based on knowledge at event step k, u(k+j)
denotes the (future) input at event step k+j, ℓ(k+j) denotes the (future) mode at event step k+j,
r(k+j) denote the (future) reference at event step k+j, and Np is the prediction horizon (so it
determines how many event steps we look ahead in our control law design).

Define

Ãm(ℓ̃(k)) = A(ℓ(k+m−1|k)) ⊗ . . .⊗A(ℓ(k|k)),

B̃m,n(ℓ̃(k)) =



















A(ℓ(k+m−1|k)) ⊗ . . .⊗A(ℓ(k+n|k)) ⊗B(ℓ(k+n−1|k)) if m>n

B(ℓ(k+m−1|k)) if m=n

ε if m<n

,

and

C̃m(ℓ̃(k)) = C(ℓ(k+m−1|k)) ⊗ Ãm(ℓ̃(k)),

D̃m,n(ℓ̃(k)) = C(ℓ(k+m−1|k)) ⊗ B̃m,n(ℓ̃(k)).

For any mode sequence ℓ̃(k) the prediction model for (1)–(2) is now given by:

ỹ(k) = C̃(ℓ̃(k))⊗ x(k − 1)⊕ D̃(ℓ̃(k))⊗ ũ(k) (41)

in which C̃(ℓ̃(k)) and D̃(ℓ̃(k)) are given by

C̃(ℓ̃(k)) =







C̃1(ℓ̃(k))
...

C̃Np
(ℓ̃(k))






, D̃(ℓ̃(k)) =







D̃1,1(ℓ̃(k)) · · · D̃1,Np
(ℓ̃(k))

...
. . .

...

D̃Np,1(ℓ̃(k))· · ·D̃Np,Np
(ℓ̃(k))






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Furthermore we can write

x(k+j) = Ãj(ℓ̃(k))⊗ x(k−1)⊕ B̄j(ℓ̃(k))⊗ ũ(k), (42)

where

B̄j(ℓ̃(k)) =
[

B̃j,1(ℓ̃(k)) · · · B̃j,Np(ℓ̃(k))
]

.

With (42) the probability of switching to mode L(k+j) = ℓ(k+j) given ℓ(k+j−1), x(k+j−1),
u(k+j), v(k+j)) can be written as

P [L(k + j) = ℓ(k+j|k)|ℓ(k+j−1|k), x(k+j−1), u(k+j), v(k+j)]

= P [L(k + j) = ℓ(k+j|k)|ℓ(k+j−1|k), Ãj(ℓ̃(k))⊗ x(k−1)⊕ B̄j(ℓ̃(k))⊗ ũ(k), u(k+j), v(k+j)]

where P denotes the switching probability (see Section 2.2). Note that from (42) we find that for
a fixed ℓ̃(k) the state x(k+j) is piecewise affine on polyhedral sets in the variables x(k−1) and
ũ(k). From that we can conclude that for a fixed ℓ̃(k), x(k − 1) and ℓ(k − 1) the probability P is
piecewise affine on polyhedral sets in the variables ũ(k) and ṽ(k). The probability for the switching
sequence ℓ̃(k) ∈ LNp

, given ℓ(k−1), x(k−1), ũ(k), ṽ(k) is computed as

P̃ [L̃(k) = ℓ̃(k)|ℓ(k−1), x(k−1), ũ(k), ṽ(k)] =

= P [L(k) = ℓ(k)|ℓ(k−1), x(k−1), u(k), v(k)] · P [L(k+1) = ℓ(k+1)|ℓ(k), x(k), u(k+1), v(k+1)] · . . . ·

P [L(k+Np−1) = ℓ(k+Np−1)|ℓ(k+Np−2), x(k+Np−2), u(k+Np−1), v(k+Np−1)]

The probability function P̃ is a product of piecewise affine functions P , and will therefore be a
piecewise polynomial function on polyhedral sets in the variables ũ(k), ṽ(k)) (for a given ℓ̃(k),
x(k − 1), and ℓ(k − 1)).

In MPC we aim at computing the optimal ũ(k), ṽ(k) that minimize the expectation of a cost
criterion J(k), subject to linear constraints on the inputs. The cost criterion reflects the input and
output cost functions (Jin and Jout, respectively) in the event period k, . . . , k +Np − 1:

J(k) = Jout(k) + βJin(k) , (43)

where β ≥ 0 is a tuning parameter, chosen by the user. The output cost function is defined by

Jout(k) = IE







Np−1
∑

j=0

ny
∑

i=1

max(yi(k + j)− ri(k + j), 0)







= IE







nyNp
∑

i=1

max(ỹi(k)− r̃i(k), 0)







= IE







nyNp
∑

i=1

[(ỹ(k)− r̃(k))⊕ 0̄]i







= IE







nyNp
∑

i=1

[(

(C̃(ℓ̃(k))⊗ x(k − 1)⊕ D̃(ℓ̃(k))⊗ ũ(k))− r̃(k)
)

⊕ 0̄
]

i







=
∑

ℓ̃∈LN







nyNp
∑

i=1

[(

C̃(ℓ̃)⊗ x(k−1)⊕ D̃(ℓ̃)⊗ ũ(k))−r̃(k)
)

⊕0̄
]

i

· P̃ [L̃(k) = ℓ̃|ℓ(k−1), x(k−1), ũ(k), ṽ(k)]







(44)
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where IE stands for the expectation over all possible switching sequences, and 0̄ is a column vector
consisting of zeros. The output cost function Jout measures the tardiness of the system, which is
equal to the delay between the output dates ỹi(k) and reference dates r̃i(k) if ỹi(k) − r̃i(k) > 0,
and zero otherwise.

The input cost function is chosen as

Jin,u(k) = −

Np−1
∑

j=0

nu
∑

i=1

ui(k + j) +

Np−1
∑

j=0

nv
∑

i=1

αi,jvi(k + j)

= −

nuNp
∑

i=1

[ũ(k)]i +

nvNp
∑

i=1

α̃i[ṽ(k)]i . (45)

where α̃ =
[

α1,1 α2,1 . . . αnv,(Np−1)

]T
≥ 0 is a weighting vector. The first term in the input cost

function Jin maximizes the input dates ũi(k) for just-in-time production, the second term can be
used to (possibly) penalize specific actions of the variable ṽi(k).
Note that the input cost function is linear in ũ(k) and ṽ(k).

The MPC problem for structurally controllable and structurally observable SMPL systems
with reference signal (30), satisfying (31) can be defined at event step k as

min
ũ(k),ṽ(k)

J(k) (46)

subject to

ỹ(k) = C̃(ℓ̃(k))⊗ x(k − 1)⊕ D̃(ℓ̃(k))⊗ ũ(k) (47)

u(k + j)− u(k + j − 1) ≥ 0, j=0, . . . , Np−1 (48)

| ui(k + j)− ρ · (k + j) | ≤ µmax, for i = 1, . . . , nu, j=0, . . . , Np−1 (49)

Qṽ(k) ≤ q (50)

R ũ(k) ≤ s, (51)

where (47) describes the system dynamics, (48) guarantees a non-decreasing input sequence, (49)
guarantees stability (cf. Theorem 1), and (50) defines the admissible set for the auxiliary input
variables ṽ(k). Finally (51) gives the possibility to include linear constraints on ũ.

So the optimization in the MPC algorithm boils down to a nonlinear optimization problem,
where the cost criterion is piecewise polynomial and the inequality constraints are linear. This
problem can be solved in several ways. Let P = {P1, . . . ,PK} be the set of polyhedral regions
formed by the intersection of linear constraints (47)–(51) and the regions on which the piecewise
polynomial functions expressing J are defined. If the number K of polyhedral regions in P is
small, one could apply for each region Pi a multi-start optimization method for smooth, linearly
constrained functions such as steepest descent with gradient projection or sequential quadratic
programming [41], and afterwards take the minimum over all regions Pi. If K is larger, global
optimization methods like tabu search [17], genetic algorithms [12], simulated annealing [15], or
(multi-start) pattern search [3] could be applied7.

Note that in the special case where each probability P is a piecewise constant function, J will
be a piecewise affine function, and then it can be shown (using an approach similar to the one used
in [5]) that the optimization problem reduces to a mixed-integer linear programming problem, for
which reliable and efficient algorithms are available [2,16]. If some of the control variables are
integer-valued, we get a mixed-integer nonlinear programming problem, which could be solved
using branch-and-bound methods [28].

We can rewrite the SMPL system with both deterministic and stochastic switching as a stochas-
tic MMPS system or as a stochastic PWA system using the algorithms given in Section 3. [38]

7 Note that often these global optimization algorithms will not give satisfactory results within an acceptable
computation time, even for small problems.
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solves the model predictive control problem using a stochastic MMPS system description. In [24],
[27] and [44] the model predictive control problem using a stochastic PWA system description is
solved.

MPC for SMPL systems with deterministic switching

In some applications the mode switching is deterministic, which means that the switching proba-
bility is either zero or one (so P [L(k) = ℓ(k)|ℓ(k − 1), x(k − 1), u(k), v(k)] ∈ {0, 1}). If we rewrite
such an SMPL system into the type-2 form, the stochastic signal d(k) will not be needed. We
can then use the transformation formulas of Section 3 to rewrite the system as a deterministic
PWA system or a deterministic MMPS system. For PWA systems there are many MPC algorithms
available (see e.g. [1], [22]) and for MMPS systems we can use the MPC algorithm of [14].

Sometimes the mode switching only depends on the auxiliary variable v(k). In that case the
MPC problem can be directly recast into a Mixed Integer Linear Program (MILP).

MPC for SMPL systems with mode-dependent stochastic switching

We will now study the MPC algorithm in the special case of a mode-dependent stochastic switch-
ing. We will show that for this subclass of SMPL systems the optimization that arises from
the MPC problem boils down to a linear programming problem. For SMPL systems with mode-
dependent stochastic switching the probability of switching to mode ℓ(k) depends entirely on the
previous mode ℓ(k − 1) (and not on the previous state or input signals), so we now define a new
probability function Ps such that

P [L(k) = ℓ(k)|ℓ(k − 1), x(k − 1), u(k), v(k)] = Ps[L(k) = ℓ(k)|ℓ(k − 1)] (52)

P̃ [L̃(k) = ℓ̃(k)|ℓ(k − 1), x(k − 1), ũ(k), ṽ(k)] = P̃s[L̃(k) = ℓ̃(k)|ℓ(k − 1)] (53)

The performance index (44) then becomes:

Jout(k) =
∑

ℓ̃∈LN







nyNp
∑

i=1

[(

C̃(ℓ̃)⊗ x(k − 1)⊕ D̃(ℓ̃)⊗ ũ(k))− r̃(k)
)

⊕ 0̄
]

i







P̃s[L̃(k) = ℓ̃|ℓ(k − 1)]

(54)

Theorem 2 Consider a type-1 SMPL systems with mode-dependent stochastic switching, so the
switching probability is given by (52) and (53). Assume that LNp

can be rewritten as LNp
=

{ℓ̃1, ℓ̃2, . . . , ℓ̃M} for M = nL
Np . The MPC problem (46)-(49) can be recast as a linear programming

problem:

min
ũ(k),ti,m

nyNp
∑

i=1

M
∑

m=1

ti,mP̃s[L̃(k) = ℓ̃m|ℓ(k − 1)]− β

nuNp
∑

i=1

ũi(k) (55)

subject to

ti,m ≥ [C̃(ℓ̃m)]i,l + xl(k − 1)− r̃i(k) , ∀i,m, l (56)

ti,m ≥ [D̃(ℓ̃m)]i,l + ũl(k)− r̃i(k) , ∀i,m, l (57)

ti,m ≥ 0 , ∀i,m (58)

ui(k + j)− ui(k + j − 1) ≥ 0, ∀i, j (59)

| ui(k + j)− ρ · (k + j) | ≤ µmax, ∀i, j (60)

R ũ(k) ≤ s, (61)

(62)
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Proof From (44) we obtain:

Jout(k) =

nyNp
∑

i=1

M
∑

m=1

max{
[

C̃(ℓ̃m(k))⊗ x(k − 1)⊕ D̃(ℓ̃m(k))⊗ ũ(k)]i − r̃i(k), 0
}

P̃s[L̃(k) = ℓ̃m|ℓ(k − 1)]

=

nyNp
∑

i=1

M
∑

m=1

max
{

max
l

(

[C̃(ℓ̃m(k))]i,l + xl(k − 1)− r̃i(k)
)

,

max
j

(

[D̃(ℓ̃m(k))]i,j + ũj(k)− r̃i(k)
)

, 0
}

P̃s[L̃(k) = ℓ̃m|ℓ(k − 1)]

=

nyNp
∑

i=1

M
∑

m=1

ti,mP̃s[L̃(k) = ℓ̃m|ℓ(k − 1)]

where

ti,m = max
(

max
l

([C̃(ℓ̃m(k))]i,l + xl(k − 1)− r̃i(k)),

max
j

([D̃(ℓ̃m(k))]i,j + ũj(k))− r̃i(k), 0
)

(63)

If we would minimize Jout(k)+βJin(k) subject to (56)-(61) then, given the fact that the values
of P̃s[L̃(k) = ℓ̃m|ℓ(k−1)] are nonnegative, and that the variables ti,m only appear on the left-hand
side of the inequalities (56)-(58), one of the inequalities indeed becomes an equality for at least
one of the indices and so ti,m will be equal to the maximum (63).

This implies that the MPC problem (46)-(49) can indeed be written as the linear programming
problem (55)-(61).

So the optimization in the MPC algorithm boils down to a linear programming problem, which
is polynomially solvable [25]. Usually we will find that M ≪ nL

Np (as not all mode transitions
are possible and so the corresponding probabilities will be zero) and we can efficiently solve the
optimization.

Timing Issues

Switching max-plus-linear systems are different from conventional time-driven systems in the sense
that the event counter k is not directly related to a specific time. So far we have assumed that at
event step k the state x(k) is available (recall that x(k) contains the time instants at which the
internal activities or processes of the system start for the kth cycle). Therefore, we will present
a method to address the availability issue of the state at a certain time instant t. Since the
components of x(k) correspond to event times, they are in general easy to measure. So we consider
the case of full state information. Also note that measurements of occurrence times of events are
in general not as susceptible to noise and measurement errors as measurements of continuous-time
signals involving variables such as temperature, speed, pressure, etc. Let t be the time instant
when an MPC problem has to be solved. We can define the initial cycle k as follows:

k = argmax
{

l|xi(l) ≤ t , ∀i ∈ {1, 2, . . . , nx}
}

Hence, the state x(k) is completely known at time t and thus u(k − 1) is also available (due to
the fact that in practical applications the entries of the system matrices are nonnegative or take
the value ε). Note that at time t some components of the future8 states and of the forthcoming
inputs might be known (so xi(k + l) ≤ t and uj(k + l − 1) ≤ t for some i, j and some l > 0). Due
to causality, these states are completely determined by the known forthcoming inputs. During
the optimization at time instant t the known values of the input have to be fixed by equality

8 Future in the event counter sense.
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constraints, which fits perfectly in the framework of a (mixed-integer) linear programming prob-
lem. Due to the information at time t it might be possible to conclude that certain future modes
(ℓ(k + l) for l > 0) are not feasible any more. In that case we can set the switching probabilities
for this mode at zero, and normalize the switching probabilities of the other modes. With these
new probabilities we can perform the MPC optimization at time t.

Examples

The production systems of Example 1 and Example 2 are used to demonstrate the design proce-
dure for stabilizing model predictive controllers for SMPL systems with both types of switching
procedures. In the first example the switching is purely stochastic, while in the second example
the switching is both deterministic and stochastic.

Example: Production System I
Consider the production system of Example 1. Note that the matrices Γ 1

ρ (ℓ̃) = B(ℓ), ℓ ∈ {1, 2, 3}

are all row-finite, and the matrices O1
ρ(ℓ̃) = C(ℓ), ℓ ∈ {1, 2, 3} are all column-finite. This means

that the SMPL system is structurally controllable and structurally observable. The maximum
growth rate of the system is equal to λ = 6.5. We choose a reference signal given by r(k) = ρ · k ,

where ρ = 7.15 > λ. The initial state is taken equal to x(0) =
[

5 5 5
]T

, and J is given by (43)
for Np = 4, and β = 10−4. In the experiment, the true switching sequence is simulated for a
random sequence with the switching probability (4). We apply the presented MPC algorithm to
this system. The optimization is done using a linear programming algorithm. Figure 6-a gives the
tracking error between the reference signal and the output signal y(k), for the switching sequence
given in Figure 6-c, when the system is in closed loop with the receding horizon model predictive
controller. It can be observed that y(k)−r(k) is initially larger than zero, which is due to the initial
state. The error decreases rapidly and for k ≥ 13 the error is always equal to zero, which means
that the product is delivered in time for all k ≥ 13. Figure 7-b gives the difference between the
input signal u(k) and the reference signal r(k).

Example: Production System II
Consider the production system of Example 2. Note that also this SMPL system is structurally
controllable and structurally observable. The maximum growth rate of the system is equal to
λ = 6.5. We choose a reference signal given by r(k) = ρ · k , where ρ = 7.15 > λ. The initial state

is equal to x(0) =
[

5 5 5
]T

, and J is given by (43) for Np = 4, and β = 10−4. In the experiment,
the true switching sequence is simulated for a random sequence with the switching probability (5).
We apply the MPC algorithm as presented in Section 5 to this system. The optimization turns out
to be a mixed-integer linear programming problem. Figure 7-a gives the reference error between
the reference signal r(k) and the output signal y(k), for a switching sequence given in Figure 7-c,
when the system is in closed loop with the receding horizon model predictive controller. It can be
observed that y(k)−r(k) is initially larger than zero, which is due to the initial state. The error
decreases rapidly and for k ≥ 9 the error is always equal to zero, which means that the the product
is delivered in time for all k ≥ 9. Note that for v(k) = 0 we choose recipe B1 (so ℓ(k) = 2) and
for v(k) = 1 we choose recipe B2 (so ℓ(k) = 3). For ℓ(k) = 1, the value v(k) is indefinite (which
means that for mode 1 the value of signal v(k) has no influence). Figure 7-b gives the difference
between the input signal u(k) and the reference signal r(k).

6 Discussion

We have considered the control of switching max-plus-linear (SMPL) systems, a subclass of the
discrete-event systems, in which the system can switch between different modes of operation. The
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Fig. 6 (a) Tracking error y(k)−r(k), (b) control variable wrt. reference u(k)−r(k), and (c) switch-
ing sequence ℓ(k)

switching between the modes can be deterministic or stochastic, and in each mode the discrete-
event system is described by a max-plus-linear state space model with different system matrices
for each mode.

In this paper we have revisited type-1 SMPL and type-2 SMPL systems, and we have shown
that these two classes of SMPL systems are equivalent. Furthermore we have proven that every
structurally finite SMPL system of these two types can be written as a type-d piecewise affine
system or as a constrained max-min-plus-scaling system (provided that the output and state vari-
ables are bounded). An advantage of the equivalency is that we can use many tools, derived for
piecewise affine system and max-min-plus-scaling systems, to analyze our SMPL systems.

We have also derived a stabilizing model predictive controller for SMPL systems. The resulting
optimization problem is nonlinear with a piecewise polynomial cost criterion and linear inequality
constraints. In the case of stochastic switching depending only on the previous mode, the resulting
optimization problem can be solved using linear programming.

In future research we will continue our study on the relation between the various classes of
SMPL systems. Further we will extend the SMPL system by the introduction of stochasticity in
the system parameters, as was done in [47] for MPL systems. In this way we will be able to capture
more stochastic issues in SMPL systems.
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