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Traffic Management for Automated Highway

Systems using Model-Based Predictive Control
L.D. Baskar, B. De Schutter, and H. Hellendoorn

Abstract—We present an integrated traffic management

and control approach for Automated Highway Systems

(AHS). The AHS consist of interacting roadside controllers

and intelligent vehicles that are organized in platoons

with short intraplatoon distances, and larger distances

between platoons. All vehicles are assumed to be fully

automated, i.e., throttle, braking, and steering commands

are determined by an automated on-board controller. The

proposed control approach is based on a hierarchical

traffic control architecture for AHS, and it also takes

the connection and transition between the non-automated

part of the road network and the AHS into account. In

particular, we combine dynamic speed limits and lane

allocation for the platoons on the AHS highways with

access control for the on-ramps using ramp metering, and

we propose a model-based predictive control approach to

determine optimal speed limits and lane allocations as well

as optimal release times for the platoons at the on-ramps.

In order to illustrate the potential of the proposed traffic

control method, we apply it to a simple simulation example.

Index Terms—automated highway systems, traffic con-

trol, intelligent vehicles, intelligent vehicle highway sys-

tems, automated platooning.

I. INTRODUCTION

O
N the short term one of the most promising ap-

proaches to reduce the frequency and impact of

traffic jams is the use of advanced traffic management

and control methods in which control measures such as

traffic signals, dynamic route information panels, ramp

metering installations, dynamic speed limits, etc. are

used to control the traffic flows and to prevent or to

reduce traffic jams, or more generally to improve the

performance of the traffic system. As a next step in this

direction, advanced control methods and advanced com-

munication and information technologies are currently

being combined with the existing transportation infras-

tructure and equipment. This will result in integrated
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traffic management and control systems that incorporate

intelligence in both the roadside infrastructure and in the

vehicles, such as Intelligent Vehicle Highway Systems

(IVHS) [1], Intelligent Transportation Systems [2], Au-

tomated Highway Systems [3], or Cooperative Vehicle

Infrastructure Systems [4].

In AHS every vehicle contains an automated system

that can take over the driver’s responsibilities in steering,

braking, and throttle control. This complete automation

of driving tasks allows to arrange the vehicles in closely

spaced groups called platoons. In the platooning ap-

proach cars travel on the highway in platoons with small

distances (e.g., 2 m) between vehicles within the pla-

toon, and much larger distances (e.g., 30–60 m) between

different platoons. High speeds and short intraplatoon

spacings allow more vehicles to be accommodated on

the network, which substantially increases the maximal

traffic flows [5]. Moreover, compared to the situation

with human drivers, the full automation present in AHS

also has a positive effect on delays and reaction times. In

practice, traffic congestion results in capacity drop [6],

which causes the expected maximum outflow from the

jammed region to be less than in the case of free-flow

traffic. This is mainly due to the delay in reaction time

and increased intervehicle distance when vehicles start to

exit from a traffic jam. For human drivers the capacity

drop is typically of the order of 2–7 % [7]. With fully

automated vehicles the capacity drop can be reduced to

almost 0 %, which results in an even more efficient use

of the available infrastructure.

In this paper, we consider a variant of AHS in which

the monitoring and control capabilities offered by auto-

mated intelligent vehicles (IVs) are combined with those

of the roadside infrastructure. In the proposed approach

platooning is integrated with conventional traffic control

measures such as dynamic speed limits, route guidance,

ramp metering, lane closures, etc. The overall control

framework we use is a hierarchical framework. We focus

on the control layer that manages the different platoons

in the fully automated AHS as well as at the access

points to the AHS from the non-automated part of the

traffic network. More specifically, we consider a model-

based predictive control (MPC) approach to determine
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appropriate speed limits and lane allocations for the

platoons within the AHS, and appropriate release times

of vehicles or platoons that enter the AHS through on-

ramps so as to optimize the performance of the traffic

system. Possible performance measures in this context

are throughput, travel times, fuel consumption, etc.

The paper is organized as follows. In Section II we

propose the new hierarchical IV-based traffic control

framework. Section III briefly describes the general

principles of MPC. Next, we explain in Section IV how

MPC can be adapted for traffic management and control

in AHS. In Section V we apply the proposed approach

to a case study based on simulations and we illustrate

the potential effects of the proposed approach on the

performance of an AHS. We want to mention that the

case study is an illustration and primarily serves as an

explanation for our control approach.

II. A HIERARCHICAL FRAMEWORK FOR IV-BASED

TRAFFIC MANAGEMENT

We now briefly present the hierarchical control frame-

work for AHS we have proposed in [8], [9], and which

is closely related to the PATH framework [1], [5]. An

Intelligent Vehicle (IV) system senses the environment

around the vehicle using sensors (such as radar, laser)

and strives to achieve more efficient vehicle operation ei-

ther by assisting the driver (advisory/warning) or by tak-

ing complete control of the vehicle [10]. The framework

[8], [9] distributes the intelligence between roadside

infrastructure and vehicles, and uses IV-based control

measures to prevent congestion and/or to improve the

performance of the traffic network. We consider various

IV technologies that support both roadside traffic control

measures and automated platoons of IVs including:

• Intelligent Speed Adaptation (ISA) influences the

traffic flow by externally controlling the speed of the

vehicles by limiting the maximum speed depending

on the current traffic conditions [11], [12].

• Adaptive Cruise Control (ACC) extends conven-

tional cruise control and is designed to automati-

cally adjust the speed of the equipped vehicle to that

of the preceding one [13], [14]. Cooperative ACC is

a further enhancement of ACC that utilizes existing

communication technologies (e.g., ad hoc wireless

networks) to maintain a safe but small headway, and

to ensure smooth driving [15].

The control architecture is based on the platoon con-

cept and consists of a multi-level control structure with

local controllers at the lowest level and one or more

higher supervisory control levels, as shown in Fig. 1. The

layers of the framework can be characterized as follows:

Platoon controller

Supraregional controller

Regional controllerRegional controller

Area controller Area controller

Roadside controller Roadside controller

Platoon controller

Vehicle controllerVehicle controller

Figure 1. IV-based framework.

• Higher-level controllers (such as area, regional, and

supraregional controllers) provide network-wide co-

ordination of the lower-level and middle-level con-

trollers as well as long-distance route assignment

and route planning. E.g., the activities of a group of

roadside controllers (see below) could be supervised

by an area controller. In turn, a group of area

controllers could be supervised or controlled by

regional controllers, and so on.

• Roadside controllers may control a part of a high-

way, an entire highway, or a collection of highways.

The main tasks of the roadside controllers are to

assign desired speeds and lanes for each platoon,

safe distances to avoid collisions between platoons,

and desired platoon sizes depending on the traffic

conditions, to provide dynamic route guidance for

the platoons (within the region controlled by the

roadside controller), and to instruct for merges,

splits, and lane changes of platoons.

• Platoon controllers receive commands from the

roadside controllers and are responsible for control

and coordination of each vehicle inside the platoon.

The platoon controllers are concerned with actually

executing the interplatoon maneuvers (e.g., merges,

splits, lane changes) and with intraplatoon activities

(e.g., maintaining safe intervehicle distances).

• Vehicle controllers present in each vehicle receive

commands from the platoon controllers (e.g., set-

points or reference trajectories for speeds, head-

ways, and paths) and they translate these commands

into control signals for the vehicle actuators (e.g.,

throttle, braking, and steering actions).

Time scales involved

The time scales involved in our framework vary from

milliseconds to hours as one traverses from the dynamics

of the vehicle up to the roadside infrastructure levels.

The time scale and update frequency typically ranges

from milliseconds to seconds for vehicle controllers,

from seconds to minutes for platoon controllers, from
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Figure 2. Schematic representation of MPC.

minutes to quarters of an hour for roadside controllers,

and hours for area controllers.

In the remainder of the paper we will focus on the

roadside controllers and on their interaction with the

platoons and the platoon controllers. Note that the road-

side controller considers each platoon in the highway

network as a one single entity. This significantly reduces

the complexity of the control problem compared to the

case where each individual vehicle would be controlled

by the roadside controller. As a consequence, the whole

traffic network can be managed more efficiently.

We also consider the interface between the fully

automated AHS network and the non-automated road

network, where drivers still have full manual control

over their vehicle. The interface consists of on-ramps,

at which the AHS control architecture will take over

control of the vehicles and arrange them in platoons.

To the authors’ best knowledge, there are no strict rules

available in the literature on how to form platoons and

on how many vehicles to include in a platoon. There are

a few articles that deal with vehicle sorting with respect

to platoon sizes and platoon formation time, and with the

design of platoon maneuver protocols [16], [17]. Once

the platoons are formed, the roadside controllers of the

AHS control structure then determine the release times

of these platoons into the AHS network.

III. MODEL PREDICTIVE CONTROL (MPC)

Model Predictive Control (MPC) is an on-line,

sampling-based, discrete-time receding horizon control

approach that uses (numerical) optimization and an ex-

plicit prediction model to determine the optimal values

for the control measures over a given prediction period

[18], [19]. One of the main advantages of MPC is that

it can handle various hard constraints on the inputs and

states of the system. In addition, MPC has a built-in

feedback mechanism due to the use of a receding horizon

approach, and it is easy to tune.

MPC works as follows (see Fig. 2). Let Tctrl be the

control time step, i.e., the time interval between two

updates of the control signal settings. At each control

step k (corresponding to the time instant t = kTctrl),

the roadside controller first measures or determines the

current state x(k) of the system. Next, the controller uses

optimization in combination with a model of the system

to determine the control sequence u(k), . . . , u(k+Np−
1) that optimizes a given performance criterion Jperf(k)
over a time interval [kTctrl, (k + Np)Tctrl] subject to

the operational constraints. Here, Np denotes the pre-

diction horizon. In order to reduce the computational

complexity, one often introduces a constraint of the form

u(k+ j) = u(k+ j − 1) for j = Nc, . . . , Np − 1, where

Nc (< Np) is called the control horizon.

The optimal control inputs are then applied to the

system in a receding horizon approach as follows. At

each control step k only the first control sample u∗(k)
of the optimal control sequence u∗(k), . . . , u∗(k+Nc−1)
is applied to the system. Next, the prediction horizon is

shifted one step forward, and the prediction/optimization

procedure over the shifted horizon is repeated using new

system measurements. This receding horizon approach

introduces feedback, which allows to reduce the effects

of possible disturbances and mismatch errors.

IV. MPC FOR AHS

In this section we explain in detail how MPC can be

used for traffic management and control of AHS. We

focus on the roadside controller, and in particular on how

MPC can be applied for speed control, lane allocation,

and on-ramp control in AHS.

A. States and control inputs

Recall that at every control step the MPC controller

measures or estimates the current state of the traffic net-

work. Since the roadside controllers work with platoons

as basic entities, in our case the state of the system

includes the positions, lanes, and speeds of the platoon

leaders and the lengths of the platoons, as well as the

number of platoons waiting at the mainstream origins

and at the on-ramps of the AHS network.

The control signal consists of the speed limits for

the platoon leaders, lane allocations for the platoons,

on-ramp release times, etc. Note that in principle the

platoon size could also be a decision variable. However,

to reduce the computational complexity, we may update

the platoon sizes at a slower rate than the other con-

trol variables. Alternatively, we could assume that the

platoon sizes can only change at the boundaries of the
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region controlled by a roadside controller and are thus

fixed for platoons already in the network.

So, the control signal u for the MPC problem of

control step k includes speed limits and lane allocations

for all platoons that are or will be present in the network

during the control horizon period as well as the on-ramp

release times for the platoons at the on-ramp during the

control horizon period.

To keep the number of optimization variables fixed

during the optimization process and to take the future de-

mand of platoons into account, we can use autonomous

control for vehicles entering between t = (k +Nc)Tctrl

and t = (k+Np)Tctrl. By autonomous control, we mean

that the platoons on the highways would be assigned

with the speed of its immediate predecessor platoon. If

no predecessor platoon exists then the free-flow speed

will be assigned to the uncontrolled autonomous platoon.

Moreover, each autonomous platoon will be assigned the

same lane in which it originated, unless it is forced

to perform a lane change due to e.g., any incident

blockages. The autonomous platoons from on-ramps are

allowed to enter the highway once the highway–on-ramp

merging location can accommodate the entire platoon.

B. Performance criterion and constraints

Possible performance criteria Jperf(k) for MPC for

AHS are the total time spent in a traffic network, the

total throughput, the total fuel consumption, safety, or a

combination of these, all evaluated over the time period

[kTctrl, (k + Np)Tctrl]. Moreover, in order to prevent

oscillations and frequent shifting in the control signals,

one often adds a penalty on variations in the control

signal u, which results in the total performance function

Jtot(k) = Jperf(k)+α

Nc−1
∑

j=0

‖u(k+ j)−u(k+ j− 1)‖22,

(1)

at control step k, where α > 0 is a weighting factor.

MPC can also explicitly take into account operational

constraints such as minimum separation between the

platoons, minimum and maximum speeds, minimum

headways, or in case a vehicle or a platoon has to take

an exit, a constraint that it should have moved into the

rightmost lane X km before the exit, etc.

C. Optimization methods

Solving the MPC optimization problem (i.e., comput-

ing the optimal control actions) is the most demanding

operation in the MPC approach. In our case the MPC

approach gives rise to nonlinear non-convex optimization

problems that have to be solved on-line. Moreover,

in general there will be continuous variables (dynamic

speed limits, metering rates, release times, etc.) as well

as integer variables (lane allocations, platoon sizes, etc.).

Hence, a proper choice of optimization techniques that

suit the nature of the problem has to be made. In our case

global or multi-start local optimization methods are re-

quired such as multi-start sequential quadratic program-

ming [20, Chapter 5] or multi-start pattern search [21]

in the continuous case, or branch-and-bound algorithms

[22], genetic algorithms [23], or simulated annealing [24]

in the mixed integer case.

D. Prediction models for AHS

An important factor that determines the choice of the

model to be used in MPC is the trade-off between accu-

racy and computational complexity since at each control

step k the model will be simulated repeatedly within

the on-line optimization algorithm. As a consequence,

very detailed microscopic traffic simulation models are

usually not suited as MPC prediction model. Instead,

simplified or more aggregate models are used.

Remark 1: It is important to note that the proposed

MPC approach is generic and modular, so that in case

a given prediction model does not perform well, it can

easily be replaced by another, more complex prediction

model. ⋄

Since in the case study of Section V we will compare

the platoon-based approach with the case of human

drivers, we will discuss models both for human drivers

and for intelligent vehicles and platoons.

1) Vehicle models: We use general kinematic equa-

tions to describe the behavior of the vehicles, which,

after discretization leads to:

xi(ℓ+ 1) = xi(ℓ) + vi(ℓ)Tsim + 0.5ai(ℓ)T
2
sim (2)

vi(ℓ+ 1) = vi(ℓ) + ai(ℓ)Tsim (3)

where ℓ is the simulation step counter1, Tsim the simula-

tion time step, xi(ℓ) the longitudinal position of the rear

of vehicle i at time t = ℓTsim, vi(ℓ) the speed of vehicle

i at time t = ℓTsim, and ai(ℓ) the acceleration for vehicle

i at time t = ℓTsim. The acceleration used in (2)–(3) is

calculated according to the current driving situation as

will be explained below. In addition, the acceleration is

limited between a maximum acceleration aacc,max and a

maximum (in absolute value) comfortable deceleration

adec,max. So

ai(ℓ) = sat(atarget,i(ℓ), adec,max, aacc,max) (4)

1In general, Tsim 6= Tctrl and that is why we use different counters

ℓ and k for the simulation step and the control step respectively.
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where sat is the saturation function2 and atarget,i(ℓ) is

the reference acceleration computed via the formulas

given in the next subsections.

We will also use the concept of time and space

headway, which are defined as follows. The distance

between the front of the following vehicle and the rear of

the vehicle in front is called the following distance ∆i.

The time headway hi of a vehicle is defined as the time

difference between the passing of the rear ends of the

vehicle’s predecessor and the vehicle itself at a certain

location. When the speeds of the vehicles are considered

to be constant, then the time headway is the amount of

time necessary for vehicle i to reach the current position

of vehicle i+1. The distance headway of a vehicle si is

defined as the distance between the rear of the vehicle

and the rear of its predecessor vehicle at a specific instant

of time. The distance headway si is thus equal to the sum

of the vehicle length Li and its following distance ∆i.

2) Longitudinal models for human drivers: We dis-

tinguish between free-flow and car-following behavior:

• Free-flow model: The acceleration for free-flow

driving conditions is determined by the delayed dif-

ference between the current speed and the reference

speed:

atarget,i(ℓ) = K(vref,i(ℓ− σ)− vi(ℓ− σ)) , (5)

where K is a model parameter, vref,i is the reference

speed, and σ is the reaction delay. The reference

speed vref,i can either be issued by the roadside

controller or it can be the driver’s desired speed or

the legal maximum speed for the road the vehicle is

currently on. In connection with the reaction delay

σ we assume that the corresponding reaction time

Treact, which typically has a value of 1–1.2 s, is an

integer multiple of the simulation time step Tsim.

As a result, σ =
Treact

Tsim
is an integer.

• Car-following model: As described in [25] there

exist various types of car-following models such as

stimulus response models [26], collision avoidance

models [27], psychophysical models [28], and cel-

lular automata models [29].

As an example, we use a stimulus response model

to describe the behavior of human drivers. We have

selected this model for our research mainly due

to the simple formulation used by the model to

describe the car-following behavior (see however

also Remark 1). Stimulus response models are based

on the hypothesis that each vehicle accelerates or

decelerates as a function of the relative speed and

2The saturation function sat is defined as follows: sat(x, U, L) =

x if L < x < U , = U if x ≥ U , and = L if x ≤ L.

distance between the vehicle and its predecessor. In

particular, the Gazis-Herman-Rothery (GHR) model

[30] states that after a reaction delay, the follower

vehicle i accelerates or decelerates in proportion to

the speed of the vehicle itself, to the relative speed

with respect to its predecessor (vehicle i + 1), and

to the inverse of distance headway between them.

The acceleration is thus given by

atarget,i(ℓ) = Cv
β
i (ℓ)

(vi+1(ℓ− d)− vi(ℓ− d))

(xi+1(ℓ− d)− xi(ℓ− d))γ
,

(6)

where C, β, and γ are the model parameters (possi-

bly with different values depending on whether the

vehicle is accelerating or decelerating), and d is the

driver delay. Here we assume again that the driver

delay time Tdelay, which typically has a value of 1–

1.2 s, is an integer multiple of Tsim. So, d =
Tdelay

Tsim
is an integer.

3) Longitudinal models for platoons in AHS: In our

approach, the intelligent vehicles within the platoons use

cooperative adaptive cruise control (CACC) and intelli-

gent speed adaptation (ISA) and are arranged in platoons

[31]–[33]. We now discuss how the accelerations for the

platoon leaders and for the follower vehicles within a

platoon are calculated:

• Platoon leader model: Platoon leaders have an

enforced-ISA system and the calculation of the

acceleration for the platoon leader is based on a

simple proportional controller:

ai(ℓ) = K1(vISA(ℓ)− vi(ℓ)) , (7)

where K1 is the proportional constant and vISA is

the reference ISA speed provided by the roadside

controller.

• Follower vehicle model: The follower vehicles in

a platoon will use their on-board CACC system

to maintain short intraplatoon distances [15]. The

CACC algorithm consists of a combined speed and

distance controller:

ai(ℓ) = K2(dref,i(ℓ)− (xi+1(ℓ)− xi(ℓ))) (8)

+K3(vplatoonleader(ℓ)− vi(ℓ))) ,

where K2 and K3 are constants, and dref,i is the ref-

erence distance headway for vehicle i. The distance

controller calculates the safe distance headway [26]

as follows:

dref,i(ℓ) = S0 + vi(ℓ)Thead,i , (9)

where S0 is the minimum safe distance that is to

be maintained at zero speed, Thead,i is the desired

time headway for vehicle i.
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4) Platoon-based prediction model: At a more aggre-

gate level, we can also consider a platoon of vehicles as

a single entity without taking the detailed interactions

among the individual vehicles within a platoon into

account. So, essentially we consider a platoon as one

vehicle with a length that is a function of the speed of

the platoon (due to the dependence of the intervehicle

spacing managed by CACC on the speed (cf. (9)), and

of the number and lengths of the vehicles in the platoon.

The dynamics equations for the speed and position of

the platoon are the same as those of a platoon leader

presented above. Now consider platoon p and assume

for the sake of simplicity that the vehicles in the platoon

are numbered 1 (last vehicle), 2 (one but last vehicle),

. . . , np (platoon leader). The speed dependent length

Lplatoon,p(ℓ) of platoon p is then given by

Lplatoon,p = (np − 1)S0 +

np−1
∑

i=1

Thead,ivnp
(ℓ) +

np
∑

i=1

Li ,

(10)

where S0 the minimum safe distance that is to be

maintained at zero speed, Thead,i is the desired time

headway for vehicle i, vnp
is the speed of the platoon

(leader), and Li is the length of vehicle i.

5) Merging and lane changing: In order to model

the merging and lane changing behavior of vehicles,

we could — in the interest of simulation speed and

efficiency — use the following simplified models.

a) Merging at on-ramps and lane changing for

human drivers: For individual human-driven vehicles

(cf. the case study of Section V below) we assume

that a vehicle on an on-ramp can join the mainstream

lane provided that there is a sufficient large gap and

that no collision is imminent. The vehicle then joins the

mainstream line with a speed that is equal to that of the

immediate predecessor if present or equal to the (ISA or

legal) speed limit otherwise.

Lane changes can be modeled similarly: if there is a

slower vehicle ahead and if the speed of the vehicles

in an adjacent lane is higher than that of the vehicle’s

predecessor in the current lane, the vehicle can join the

other lane provided that there is a sufficient large gap and

that no collision is imminent. In this case the vehicle’s

speed should not be modified.

b) Merging at on-ramps and lane changing for

platoons: In order to model the merging behavior of

platoons at on-ramps and the lane changing behavior of

platoons, we could use a similar simplified model that

operates at the platoon level.

We consider each platoon at an on-ramp as one entity

that will join the mainstream lane as soon as there is a

sufficient large gap (including safety distances) available

between the platoons on the mainstream lane and pro-

vided that the merging will not result in a collision in

the next time steps. If both conditions are satisfied, then

the platoon joins the mainstream line (with a speed that

is imposed by the roadside controller).

Likewise, if a lane change is imposed on a platoon

by the roadside controller, we assume that the platoon

moves to the assigned lane as one entity. Note that in

this case the roadside controller is responsible for taking

care that there is a sufficiently large gap (including safety

distances) available between the platoons on the other

lane and that the lane change will not result in a collision

in the next time steps.

V. CASE STUDY

Now we present a simple case study in which the

MPC control strategy for the roadside controller layer

that has been described in Section III is applied. We

want to reiterate that the case study is an illustration and

primarily serves as an explanation for our approach.

A. Set-up

To illustrate the proposed MPC approach for the

roadside controller we use a basic set-up consisting of

a 7 km two-lane highway stretch with one mainstream

origin, two on-ramps (located at position x = 2000 m

and x = 4000 m), and one destination (see Fig. 3). We

compare three different situations:

• uncontrolled traffic with human drivers,

• controlled traffic with human drivers and with ISA

and (conventional) ramp metering as control mea-

sures,

• IV-based traffic control with platoons and with

dynamic speeds, on-ramp release times, and lane

allocations for the platoons as control measures.

In both controlled case, MPC is used. For the sake of

simplicity all vehicles are assumed to be of the same

length (Li = 4 m for i=1, 2, . . . , n).

For the controlled situation with human drivers we

assume that ISA limits the speed in a hard way and that

human drivers cannot surpass the imposed speed limit.

Similarly, we assume that the imposed ramp metering

rate is adhered to.

In the IV-based case with platoons we assume that all

the vehicles are fully automated IVs equipped with ad-

vanced communication and detection technologies such

as in-vehicle computers and sensors, and with on-board

ACC and ISA controllers.
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4 km0 km 5 km2 km 6 km 7 km

incident at tstart

lane 1

lane 2

Figure 3. Set-up of the case study.

B. Scenario

We simulate a period starting at tstart = 7:00 A.M and

ending at tend = 7:09 A.M. The demand of vehicles is

taken to be constant during the simulation period, and

equals 1365 veh/h/lane (lane 1) and 1512 veh/h/lane (lane

2) for the mainstream origin and 404 veh/h (on-ramp 1)

and 422 veh/h (on-ramp 2) for the on-ramps.

For the proposed scenario the initial state of the

network is as follows. We assume that before time tstart
an incident has occurred at position x = 5 km in lane

1, resulting in a blockage in lane 1 from position x =
5 km up to position x = 7 km at time tstart. This incident

blockage will serve as the main bottleneck in our set-up.

In the upstream sections 3 and 4 of lane 2 (i.e., from

position x = 2 km up to x = 4 km) the initial density

is 50 veh/km/lane, and in the other sections there are no

vehicles. Similarly, in the upstream section 4 of lane 1,

the initial density is 25 veh/km/lane. Moreover, at time

tstart the on-ramp and mainstream origin queues are

empty. The incident situation continues for the entire

simulation period [tstart, tend]. During this interval, there

is no outflow from the incident on the right-most lane

(marked as lane 1 in Figure 3).

The demand profile considered for this particular lay-

out is as follows: The demand profiles are linear and at

time tstart start at 480 veh/h for lane 1 of the mainstream

origin, at 660 veh/h for lane 2 of the mainstream origin,

at 780 veh/h for on-ramp 1, and at 660 veh/h for on-

ramp 2. The final demand at tend is 1020 veh/h for lane

1, 1200 veh/h for lane 2, 580 veh/h and 530 veh/h for on-

ramps 1 and 2 respectively. The highway has a capacity

of 1600 veh/h/lane.

C. Models

In order to compare the simulation results obtained for

the given scenario using human driving (both without

and with control) and using our platoon-based hierar-

chical approach. We have developed simulation models

in Matlab for human driving and platoon driving. For

the sake of simplicity and to avoid calibration, we have

used the same models for both simulation and prediction

purposes in this simulation study.

For the vehicle models we have used the models

of Section IV-D. In particular, we have used (2)–(3)

with the accelerations given by respectively (5)–(6) (with

vref,i(ℓ) equal to the legal speed limit of 120 km/h) for

uncontrolled human drivers, (5)–(6) (with vref,i(ℓ) equal

to the ISA speed limit) for human drivers with ISA, and

(7)–(9) for platoons of intelligent vehicles. The headway

used for manual car following is 1 s. If we express

distances in m, times in s, speeds in m/s, accelerations in

m/s2, etc., then the various parameters in these models

have the following values (inspired by the MITSIM

model [34]): For the car-following model (6) we have

C = 1.55, β = 1.08, and γ = 1.65 for deceleration, and

C = 2.55, β = −1.67, and γ = −0.89 for acceleration.

Furthermore, we have selected d = 1, σ = 1, K = 0.01,

and K1 = 0.4. For the follower vehicle model of the

AHS approach (8)–(9) we have K2 = 0.6, K3 = 1.2,

K4 = 1, S0 = 3, and Thead = 0.5 s for all vehicles.

For the platoon model (10) we have selected S1 = 0.5.

Moreover, aacc,max = 3 and adec,max = −3 for all

models.

If there is a congestion in a segment of the highway,

then the maximum outflow from this congested segment

will become less when compared to free-flow traffic due

to the capacity drop. The value of the capacity drop due

to congestion in our case is around 7 % for human drivers

(both in the controlled and the uncontrolled case) and

almost 0 % for platoons (due to the full automation). For

human drivers the capacity drop is included by setting

the reaction delay d in the car-following model (6) equal

to d = 4 for the first vehicle that leaves the situation,

and by reducing this reaction delay every simulation step

with 1, until it gets back to the regular value of d = 1.

The threshold speeds for determining whether or not a

given vehicle is in a congested or uncongested situation

are 30 km/h and 50 km/h respectively (in between the

previous congestion state is preserved; so the capacity

drop model contains hysteresis). The time step Tsim for

the simulations is set to 1 s.

D. Control problem

Objective function: The objective that we consider is

minimization of the total time spent (TTS) by all the

vehicles in the network using dynamic speed limits, lane

allocations (for the platoons), and on-ramp metering as

the control handles. The TTS for the entire simulation

period can be expressed as

JTTS,sim =

Nsim
∑

ℓ=0

(

nveh(ℓ) + qmain(ℓ) + qon(ℓ)
)

Tsim ,

(11)

where Nsim = 540 is the total number of simulation steps

(of length Tsim = 1 s) within the entire simulation period,

nveh(ℓ) is the number of vehicles that are present within
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the network at time t = ℓTsim, qmain(ℓ) is the number

of vehicles in the queue at the mainstream origin at time

t = ℓTsim, and qon(ℓ) is the number of vehicles present

in the on-ramp queues at time t = ℓTsim.

The corresponding performance function Jperf(k)
used in the MPC approach is then given by

Jperf(k) =

(k+Np)K−1
∑

ℓ=kM

(

nveh(ℓ)+qmain(ℓ)+qon(ℓ)
)

Tsim ,

with M =
Tctrl

Tsim
(note that as we will select the control

time step Tctrl to be an integer multiple of the simulation

time step Tsim, M will be an integer). In the total MPC

objective function we also include a penalty term with

α = 0.01 (cf. Section IV-B).

Control inputs: For the controlled human situation,

the control signal u for the MPC problem of control step

k includes the ISA speed limits for the first 5 sections

and the ramp metering rates for two on-ramps (expressed

as a number between 0 and 1) at control steps k up to

k +Nc − 1, i.e., we have 7Nc variables in total.3

For the platoon-based approach, we focus on dynamic

speed limits and lane allocations for each platoon and

on on-ramp metering. Although the platoon size can be

considered to be a control variable, we have kept the

platoon size fixed at 254. The choice for this platoon

size involved a trade-off between the requirements for

practical implementation (which require relatively small

platoon sizes) and the need for reducing the number

of variables to be optimized by the roadside traffic

controller (which requires relatively large platoon sizes).

Constraints: In the platoon-based approach the road-

side controller has to take care of maintaining safe

interplatoon distances. This condition is included as a

constraint in the MPC optimization problem. In particu-

lar, the minimal safe distance between the front end of a

platoon p1 and the rear end of its immediate predecessor

platoon p2 in the same lane is given by:

S0,platoon + Thead,platoon vplatoon,p1(ℓ) ,

where vplatoon,p1
is the speed of platoon p1. For the

case study we have selected S0,platoon = 20m and

Thead,platoon = 1.2 s. Moreover, we consider a maximum

speed of 120 km/h for both the human drivers and the

platoon leaders.

3Considering speed limits in the remaining sections is not neces-

sary in the given scenario as for these sections setting the speed limits

equal to the legal speed limit of 120 km/h yields an optimal solution.
4This platoon length was set after considering the traffic demand

for the whole simulation period, the traffic demand and control inputs

that the MPC controller can handle within the specified Np steps, and

the size of the network itself.

Table I

RESULTS FOR THE THREE APPROACHES

Case TTS (veh.h) Relative

improvement

uncontrolled case 27.44 0 %

controlled (human drivers) 24.72 9.91 %

controlled (platoon-based) 20.67 24.67 %

Horizons: The control time step Tctrl is set at 1 min.

The prediction horizon Np is assumed to be the average

time required for a vehicle to travel the entire network

using the average speed. So for our case study we have

taken a value that corresponds to 7 min (Np = 7 km/60

km/h = 0.1 h = 7 min). For the control horizon Nc we

have selected a value that corresponds to 3 min so as to

limit the number of optimization variables.

Optimization algorithms: As we consider dynamic

speed limits, on-ramp metering, and lane allocation as

control measures there will be both continuous and

integer variables in the MPC optimization problem. For

the optimization we have used the pattern search method

[21] implemented through patternsearch command

incorporated in the Genetic Algorithm and Direct Search

Toolbox of Matlab for the continuous optimization prob-

lems (i.e., the determination of the speeds and on-ramp

metering rates for the controlled human case) and a bi-

level optimization approach based on binary optimization

and pattern search for the mixed integer optimization

problems (i.e., the determination of the speeds, on-ramp

release times, and lane allocation for the platoon case).

We have opted to use these particular optimization algo-

rithms because our simulation experiments have shown

that they provide a good trade-off between optimality and

speed. Both methods have been executed multiple times

with different initial starting points so as to get a good

approximation of the optimal solution. In particular, we

have used 30 multiple initial points.

E. Results and analysis

For the scenario presented above, closed-loop MPC

simulations have been carried out. The results of the

simulations are reported in Table I. In particular, we

indicate the total time spent by all vehicles in the network

during the entire simulation period.

We will analyze the scenario for the reference case

(uncontrolled case) as follows. The total capacity of

the considered network highway equals 3200 veh/h (2

lanes × 1600 veh/h). In the actual simulation, the total

demand equals 3703 veh/h (1365 veh/h+1512 veh/h+404

veh/h+422 veh/h), which is higher than the total capacity.
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In the uncontrolled case, the congestion will mainly

occur on the mainstream, as the vehicles from on-ramps

will always try to enter the mainstream. The capacity

available for the mainstream demands will be 3200-422

= 2778 veh/h (allowed capacity - demand on on-ramp 2),

which is less than for the original demand (3281 veh/h,

i.e., the demand from the mainstream origin and from

on-ramp 1). This exceeding demand situation, when not

controlled properly, will lead to traffic jams.

The considered set-up and scenario can be analyzed

in three categories as follows: segments upstream the

bottleneck, the bottleneck segment, and segments down-

stream the bottleneck. The segments far upstream the

bottleneck i.e., segments from 1 to 4 allow vehicles to

travel at their free-flow speed. However, segment 3 may

get congested if the demand from on-ramp 1 exceeds

the allowed capacity. Due to the constant, high demand

from on-ramp 2 and from the mainstream origin, and

due to the bottleneck caused by the incident, congestion

is expected to occur on segment 5. In the bottleneck

segment 6, the available capacity can be utilized fully

by the vehicles, but at the price of low mean speeds.

The outflow capacity from segment 6 cannot reach the

maximum flow, as vehicles cannot travel fastly through

the bottleneck.

Fig. 4 shows the simulation result for the uncontrolled

case. The traffic flow direction is from the bottom to

the top, and since all segments have the same length,

the y axis should be interpreted as the distance traveled

by the vehicles. During the entire simulation for the

uncontrolled case, the speed limits for all the segments

are set to 120 km/h. The first plot in Fig. 4 shows

the mean speeds at the segments. Light colors represent

high mean speeds. The dark area starting at the 5th

segment after 1 min indicates low speeds; the reason for

these decreased speeds (i.e., increased densities) can be

interpreted as follows. When a driver is confronted with

an incident on segment 6 on the same lane (lane 1),

he starts to decelerate in order to avoid a collision. In

case there is no space in lane 2 or in case the speed on

lane 2 is almost the same as on lane 1, the driver waits

and stays on lane 1 until the incident eventually gets

cleared. However, once there is a possibility to perform

a safe lane change maneuver, the driver moves to lane

2. In the uncontrolled case there is no ramp metering

action that can prevent or delay an extra flow of vehicles

from entering the mainstream highway. However, the

increasing density in lane 2 due to the effects of the

incident in lane 1 causes congestion, which in its turn

leads to a capacity drop for vehicles leaving the traffic

jam. Next, the flow plot also shows the traffic jam, which

is visible as the dark area in segment 5, indicating a
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Figure 4. Simulations for the uncontrolled case with human drivers.

lower flow. Once the traffic congestion sets in, both the

mainstream vehicles and the on-ramp vehicles drive on

and have to wait in a queue until the traffic jam dissolves.

All this results in a large time spent in the network for

the vehicles, and thus also in a higher value of the TTS

for the entire simulation period.

In the controlled case with humans, the segments

where the speed limits can influence the traffic flow

are segments 1 to 5. The speed limits become active

and reduce the inflow from the mainstream, and ramp

metering gradually switches on and keeps the total

outflow high as shown in Fig. 5. For this case, the MPC

approach can predict the presence of an incident and

prevent it or diminish its negative impact by slowing

down vehicles (using speed limits) or delaying vehicles

(via on-ramp metering) before they reach the incident.

In Fig. 5, we can see that the speed limit control in

segments 4 and 5 delays the vehicles from reaching the

bottleneck area as fast as possible (since the congestion

will then be dissolved or at least less severe by the time

the vehicles reach the congested area) and provides entry

space for the on-ramp vehicles. This controlled approach

with human drivers, ISA control, and ramp metering

yields an improvement in TTS over the uncontrolled case

of about 10 % (cf. Table I).

The result for platoon-based controlled case are shown

in Fig. 6. Averaging effects in combination with the facts

that the number of platoons in the traffic network is

much smaller than the number of vehicles and that a

given platoon may once in a while be present in two

consecutive segments at the same time might explain the

oscillation effect shown in the speed plot of Fig. 6. From

the speed plot in Fig. 6, we can see that the platoons are

allowed to travel at higher speeds through the segments.
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Figure 5. Simulations for the controlled case with human drivers.
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Figure 6. Simulations for the platoon-based controlled case.

The main idea behind speed limit control and on-ramp

release time control for platoons is the same as for human

controlled approach. Moreover, the full automation for

AHS allows to maintain small intervehicle distances (so

that more cars are allowed to traverse the network more

quickly), even in the case of possible congestion in

segment 5 (due to the incident and the demand at on-

ramp 2) and it results in an almost 0 % capacity drop.

The additional performance improvement obtained by

our approach is caused by the optimal lane allocation and

the full automation in addition to speed limits and ramp

metering. Lane allocation control also helps to better

react to the incident and to allow for lane changes for

platoons that would otherwise be blocked in front of the

congested region. IV-based traffic with platoons results

in the best performance with an improvement of about

25 % with respect to the uncontrolled case and of about

16 % with respect to the controlled human case.

VI. CONCLUSIONS AND FUTURE RESEARCH

We have presented how model predictive control

(MPC) can be used to determine optimal platoons

speeds, lane allocations, platoon sizes, platoon release

times at on-ramps, etc. in Automated Highway Systems

(AHS). The proposed approach has been illustrated using

a case study with dynamic speed limits, lane allocation,

and on-ramp metering as control measures. The results

of the case study highlight the potential benefits and

improvements that can be obtained by using MPC for

intelligent speed adaptation in AHS.

Future research topics include: more extensive case

studies and comparisons, inclusion of additional control

measures, development of efficient algorithms, extension

to larger networks, assessment of scalability of the

control approach, and further working out the presorting

and access control mechanism.
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