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Control of a String of Identical Pools Using

Non-Identical Feedback Controllers
Yuping Li and Bart De Schutter

Abstract—In the distant-downstream control of irrigation
channels, the interactions between pools and the internal time-
delay for water to travel from upstream to downstream, impose
limitations on global performance, i.e. there exists propagation
of water-level errors and amplification of flows over gates in
the upstream direction. This paper analyzes these coupling
properties for a string of identical pools, both with identical
feedback controllers and with non-identical feedback controllers.
A definition of string stability in terms of bounded water-level
errors and bounded flows is given. It is shown that for a string of
an infinite number of pools, string stability cannot be achieved by
decentralized distant-downstream feedback control mainly due
to the internal time-delay for water to travel from upstream
to downstream. Applying the analysis results on string stability
to a string of a finite number of pools, i.e. using non-identical
feedback controllers in a distant-downstream control structure
such that the closed-loop bandwidths of the subsystems increase
from downstream to upstream, a much better global performance
can be achieved than in the case of using identical feedback
controllers.

Index Terms—Decentralized control, string stability, irrigation
channels, performance trade-off.

I. INTRODUCTION

In large-scale irrigation networks, water is often distributed

via open water channels under the power of gravity (i.e. there

is no pumping). The flow of water through the network is then

regulated by automated gates positioned along the channels

[3], [8], [22]. The stretch of a channel between two gates is

commonly called a pool. Hence the open water channels in an

irrigation network can each be thought of in terms of a string

of pools linked by gates. Water offtake points to farms and

secondary channels are distributed along the pools. Typically,

most farms are situated at the downstream end of each pool.

As such, an important control objective is setpoint regulation

of the water-levels immediately upstream of each gate, which

enables flow demand at the (often gravity-powered) offtake

points to be met without over-supplying. When the number

of pools to be controlled is large and the gates are widely

dispersed, it is natural to employ a decentralized control

structure. In practice, a distant-downstream control structure

(i.e. using the upstream gate to control the downstream water-

level of a pool) is implemented for a good management of
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water service [11]. Such a control strategy does not demand

water storage at the end of the channels and hence attains an

efficient water distribution.

Fig. 1 shows the sideview of a channel under decentralized

distant-downstream control. For such a control structure, when

water offtakes to farms occur in the downstream pools, the

interactions between pools put requirements on managing the

water-level error propagation and attenuating the amplification

of flows over gates in the upstream direction. This is due

to the fact that the flow into one pool equals to the flow

supplied by its upstream pool, and the internal time-delay for

the transportation of water from upstream to downstream.1

The coupling effects between pools, and several ways of

reducing them have already been studied in the past, see [3],

[4], [13], [16], [18]. In particular, when a distant-downstream

control structure is chosen, the decoupling measures proposed

in [18] are actually a feedforward compensation. In fact,

a decentralized feedback control with such a feedforward

compensation is a special realization of the distributed control

scheme proposed in [3], [10]. It is shown in [3] that there

exists a trade-off between local performance of water-level

setpoint regulation in each pool and global performance of

decoupling the interactions between pools. However, when

designing purely decentralized feedback controllers for irriga-

tion networks,2 one usually only takes local performance into

account, i.e. regulating the water-level in a pool at its setpoint

while rejecting offtake disturbances (i.e. water fed to farms).

Such a design might present very bad global performance, e.g.

in response to offtake disturbances in the downstream pools,

the gates in the upstream pools may go beyond saturation or

the water-levels in the upstream pools may drop too low to

satisfy the water demands.

Therefore, this paper studies decentralized distant-

downstream feedback control of a string of identical pools

from the perspective of global performance, for which we

suggest a control strategy involving the use of non-identical

feedback controllers. A definition of string stability in terms

of bounded water-level errors and bounded flows is given.

1The geometry of canal pools is rather simple compared with those of
rivers and other natural water infrastructures. Based on both the simulation
results on St. Venant equations and field test results [15], one can anticipate
that the movements of gates and the control actions involved will dominate
the interconnections between pools. Hence, this paper will not focus on the
effects of the geometry of the pools on the flows in the pools.

2Although a centralized scheme is popular in higher-level supervisory con-
trol, many irrigation networks still implement purely a decentralized scheme to
guarantee robustness of the lower-level control (e.g. the Murray Irrigation’s
2 000 kilometers of open channel system in Australia, the Transvase Tajo-
Segura irrigation system in southeastern Spain, etc.).
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It is shown that string stability cannot be achieved for a

string of an infinite number of pools with decentralized

distant-downstream feedback control. We also show that

for a string of a finite number of pools (which is true in

practice), by designing the non-identical feedback controllers

such that the closed-loop bandwidths of the subsystems

increase from downstream to upstream, a much better global

performance than that with identical feedback controllers

can be achieved. Furthermore, we extend the analysis result

to a string of heterogeneous pools and give guidelines for

designing feedback controllers based on global performance.

This paper builds upon the results in [9]. It extends the

sufficient conditions for bounded water-level errors and

bounded flows (i.e. Lemmas 2.4 and 2.5 in [9] respectively)

to necessary and sufficient conditions (see Lemmas 2.7 and

2.8 of Section II). Discussions on other decoupling strategies

for decentralized feedback controller design are added in

Section II-C. Moreover, the case study results given in

this paper are based on an identified third-order nonlinear

simulation model that gives very accurate predictions of

water-levels [21].

In particular, this paper considers (a) temporal stability for

a string of a finite number of pools, for which the related test

is based on the stability concept that has been standing in the

literature for long, see [20]; and (b) string stability for a string

of an infinite number of pools. In reality, the number of pools

in a channel is always finite. It is worthwhile to highlight that

the reason we propose a string stability analysis is to improve

global performance of a string of a finite number of pools with

decentralized distant-downstream feedback control in terms of

decoupling between subsystems. This paper has the following

contributions: 1. A novel definition of string stability in terms

of bounded water-level errors and bounded flows is given. 2.

We show that for a string of an infinite number of pools with

decentralized distant-downstream feedback control, the closed-

loop bandwidth limitation of each subsystem, imposed by

the internal time-delay, makes it impossible to achieve string

stability. 3. Based on string stability analysis, we show that for

a string of a finite number of pools, by selecting non-identical

feedback controllers such that the closed-loop bandwidths of

the subsystems increase from downstream to upstream, a much

better global performance than that with identical feedback

controllers can be achieved. 4. A case study is supplied that

demonstrates the proposed guidelines to design decentralized

distant-downstream feedback controllers from the perspective

of global performance.

The paper is organized as follows. Section II gives the

definition of string stability in terms of bounded water-level

errors and bounded flows. Both the case of a string of

identical pools (represented by an integrator with time-delay

model) with identical feedback controllers and the case with

non-identical feedback controllers are discussed. Section III

presents simulation results on an identified (3rd-order non-

linear) model that captures the dominant wave dynamics. A

summary is finally given in Section IV.

II. BOUNDED WATER-LEVEL ERRORS AND BOUNDED

FLOWS

Consider n+1 pools. Denote the first downstream pool by

G0, the second downstream pool by G1, and so on, till the

most upstream pool, Gn. The sideview of the interconnected

closed-loop system is shown in Fig. 1, where yi is the water-

level in pooli and hi is the head over gatei. Note that the head

over a gate is closely connected to the flow over the gate. In

the figure, di represents the water offtakes from pooli to farms,

which are typically load disturbances.

−
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hi
ui−1
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Ki

Ki−1

yi−1
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di−1

di

pooli
pooli−1

DATUM

gatei

gatei−1

Fig. 1. Decentralized control of an open water channel

Based on mass balance, a simple model of the water-level in

pooli that captures the dynamics at low frequencies is obtained

(see [21]):

Gi : yi(s) =
cie

−τis

s
ui(s)−

ci−1

s
ui−1(s) +

1

s
di(s), (1)

where the scalars ci and ci−1 are discharge coefficients that

depend on the pool surface area and the width of the upstream

and the downstream gates respectively, and τi is the internal

time-delay that the water takes to travel from the upstream

end to the downstream end of the pool, ui(t) := h
3/2
i (t) is

proportional to the flow over gatei.
3 Denote the water-level

error as ei(t) := ri(t) − yi(t), where ri(t) is the water-level

setpoint. Essentially, for setpoint regulation, a decentralized

controller Ki is selected as a PI compensator:

Ki : ui(s) =

(

κi +
φi

s

)

ei(s), (2)

with κi > 0 and φi > 0; the integrator is included for zero

steady-state water-level error in rejection to load disturbance

di(t), while the phase-lead term helps for closed-loop stability.

As mentioned previously, the interaction between pools (i.e.

the flow out of pooli equals to the flow into pooli−1) influences

the global performance of the closed-loop system. This is

represented by the propagation of water-level errors and the

amplification of control actions in the upstream direction. To

analyze the above coupling properties between pools, we study

a string of identical pools with decentralized feedback control.

3We consider here open water channels with overshot gates, for which

the flow over gatei can be approximated by cih
3/2
i (t) [2]. Note that the

discussions on string stability in this paper also hold for channels with
undershot gates. With an overshot gate, the water flow or level is controlled
by lowering the top of the gate so water flows over the structure (head).
With an undershot gate, the water flow or level is controlled by lifting the
gate vertically in such a way that the water flows through the opening at the
bottom of the structure.
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In this case, in (1), ci = c and τi = τ for i = 0, . . . , n. One

then has the following plant model:

Gi : yi(s) =
ce−τs

s
ui(s)−

c

s
(ui−1 + di) (s), (3)

−−

−−

−

−

ri−1 ei−1 ui−1

ui−2 di−1

yi−1

ri ei ui

di
yi

Ki

Ki−1

e−τs

e−τs

c
s

c
s

Fig. 2. Identical pools with decentralized feedback control

Fig. 2 shows the configuration of a string of identical pools

with decentralized feedback control. From (3) and (2), the

coupling transfer function from one closed-loop subsystem to

the next one can be obtained as follows:

Tee,i(s) :=
ei(s)

ei−1(s)
=

c(κi−1s+φi−1)
s2

1 + c(κis+φi)
s2 e−sτ

(4)

Tuu,i(s) :=
ui(s)

ui−1(s)
=

c(κis+φi)
s2

1 + c(κis+φi)
s2 e−sτ

(5)

Denote the coupling transfer functions from the first down-

stream pool to the most upstream pool as En(s) :=
en(s)
e0(s)

and

Fn(s) :=
un(s)
u0(s)

.

Definition 2.1: Given a string of n + 1 pools under

centralized or decentralized control, if limn→∞ |En(jω)| < ∞
and limn→∞ |Fn(jω)| < ∞ for all ω ≥ 0, the system is said

to be string-stable in terms of bounded water-level errors and

bounded flows.

For a string of pools with decentralized control one has

En(s) =

n
∏

i=1

Tee,i(s) =

n
∏

i=1

c (κi−1s+ φi−1)

s2 + c (κis+ φi) e−sτ
(6)

Fn(s) =

n
∏

i=1

Tuu,i(s) =

n
∏

i=1

c (κis+ φi)

s2 + c (κis+ φi) e−sτ
. (7)

A. Coupling of pools with identical feedback controllers

If one designs the decentralized controller based on local

performance, in particular, if one takes the interaction between

pools as an unknown disturbance, then for identical pools, it

is natural to select Ki in (2) the same for i = 0, . . . , n, i.e.

ui(s) =

(

κ0 +
φ0

s

)

ei(s), (8)

where κ0 and φ0 are selected by just considering the local

closed-loop system: regulating the water-level in a pool to its

setpoint while rejecting the offtake disturbances in the pool.

Then the couplings between neighboring pools are:

Tee(s) = Tuu(s) =
c(κ0s+φ0)

s2

1 + c(κ0s+φ0)
s2 e−sτ

(9)

Similar as Lemma 1 of [3], we have the following result.

Lemma 2.2: For a string of identical pools with identical

feedback controllers, there exists an ω > 0 such that

|Tee(jω)| > 1 and |Tuu(jω)| > 1.

Proof: The proof follows the lines of the proof for Lemma

9.3 of [6].

We first prove that
∫∞

0
ln |Tee(jω)|

dω
ω2 ≥ 0. Denote L(s) :=

c(κ0s+φ)
s2 , then Tee(s) =

L(s)e−sτ

1+L(s)e−sτ e
sτ . Correspondingly,

|Tee(jω)| =

∣

∣

∣

∣

L(jω) exp(−jτω)

1 + L(jω) exp(−jτω)

∣

∣

∣

∣

(10)

for all ω ∈ R. Applying Cauchy’s Theorem to the integral

of the function F (s) := 1
s2 ln

(

L(s) exp(−τs)
1+L(s) exp(−τs)

)

along the

standard Nyquist contour C with infinitesimal indentation Cǫ

around the origin, we have
∮

C

F (s)ds = 0 =

∫

Ci−

F (s)ds+

∫

Cǫ

F (s)ds+

∫

C∞

F (s)ds,

where Ci− is the imaginary axis minus the indentation Cǫ and

C∞ the semicircle arc with radius → ∞ that starts at 0+ j∞
and travels clock-wise to 0 − j∞. Since L(s) has two poles

at the origin, the integral along Cǫ is 0. By straightforward

calculation, the integral along C∞ is equal to jπτ . Using the

conjugate symmetry of the integrand and rearranging terms,

yields
∫ ∞

0

ln

∣

∣

∣

∣

L(jω) exp(−jτω)

1 + L(jω) exp(−jτω)

∣

∣

∣

∣

dω

ω2
=

πτ

2
> 0. (11)

Indeed, L(s) is strictly proper; hence ln |Tee(jω)| < 0 at high

frequencies. It follows from (11) that there exists an ω0 ∈
(0,∞), such that |Tee(jω0)| > 1. From (9), |Tuu(jω0)| > 1.

Note that for the string of pools with identical feedback

controllers, En(s) = (Tee(s))
n

. Hence there exists an ω > 0
such that limn→∞ |En(jω)| is unbounded. Similarly, there

exists an ω > 0 such that limn→∞ |Fn(jω)| is unbounded.

Following Definition 2.1, we have

Theorem 2.3: For a string of infinite number of pools (3)

controlled by identical decentralized feedback controllers (8),

the closed-loop system is not string-stable.

Let us consider a numerical example for a string of 101

identical pools. The model of the pools is given in (3) with

the coefficient c = 0.68m3/2

min
and the transportation time delay

τ = 20 min. For local performance, select κ0 = 0.31 and φ0 =
8.2×10−4 for the feedback controller (8). The magnitudes of

the coupling transfer functions Tee(s) and Tuu(s) are shown

in Fig. 3. It is observed that maxω |Tee(jω)| ≈ 2.28. The

maximum occurs around 0.14 rad/min. Hence maxω
|e100|
|e0|

=

2.28100 (and maxω
|u100|
|u0|

= 2.28100), which is intolerable in

practice.

B. Coupling of pools with non-identical feedback controllers

In fact, a string of n + 1 identical pools with identical

feedback controllers involves the strongest coupling between
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Fig. 3. Closed-loop coupling (with identical feedback controllers applied)

pools, e.g. maxω |Tee,i(jω)|(> 1) occurs at the same ω for

all i, which makes bounded water-level errors impossible.

To decouple the interaction and hence for a better global

closed-loop performance, we consider non-identical feedback

controllers as follows:

K0 : u0(s) =

(

κ0 +
φ0

s

)

e0(s), (12)

Ki : ui(s) =

(

(κ0 + αi) +
φ0

s

)

ei(s) for i = 1, . . . , n

(13)

with α > 0. Using a first-order Padé approximation [1] to

represent the transportation time-delay τ and substituting (12-

13) into (6-7) results in

|En(jω)|
2 =

n
∏

i=1

|Tee,i(jω)|
2

≈

n
∏

i=1

i2 +Aei+Be

i2 + Ci+D
=: |Ea

n(jω)|
2 (14)

|Fn(jω)|
2 =

n
∏

i=1

|Tuu,i(jω)|
2

≈

n
∏

i=1

i2 +Af i+Bf

i2 + Ci+D
=: |F a

n (jω)|
2 (15)

for all ω > 0, where

Ae =
2αc2(κ0 − α)ω4 + 8αc2(κ0−α)

τ2 ω2

α2c2ω4 + 4α2c2

τ2 ω2

Be =
(κ0 − α)2c2ω4 +

(

φ2
0 +

4(κ0−α)2

τ2

)

c2ω2 +
4φ2

0c
2

τ2

α2c2ω4 + 4α2c2

τ2 ω2

Af =
2κ0αc

2ω4 + 8κ0αc
2

τ2 ω2

α2c2ω4 + 4α2c2

τ2 ω2

Bf =
κ2
0c

2ω4 +
(

φ2
0 +

4κ2
0

τ2

)

c2ω2 +
4φ2

0c
2

τ2

α2c2ω4 + 4α2c2

τ2 ω2

C =

(

2κ0αc
2 − 8αc

τ

)

ω4 + 8κ0αc
2

τ2 ω2

α2c2ω4 + 4α2c2

τ2 ω2

D =
ω6 +

(

κ2
0c

2 − 8κ0c
τ + 4

τ2 + 2φ0c
)

ω4

α2c2ω4 + 4α2c2

τ2 ω2

+

(

4κ2
0c

2−8φ0c
τ2 + φ2

0c
2
)

ω2 +
4φ2

0c2
τ2

α2c2ω4 + 4α2c2

τ2 ω2
.

Remark 1: In practice, such an approximation does not

change the analysis result for the delayed system given that the

offtake disturbance that induces e0 is significant in the low-

frequency range, while the high-frequency resonances caused

by time-delay are dampened by the feedback controller with an

extra low-pass filter, as illustrated by the simulation in Section

III. ◦

The following conditions for bounded water-level errors (in

Lemma 2.7) and bounded flows (in Lemma 2.8) use properties

2.4 – 2.6 of the Gamma function defined in (16) (see Chapter

5 of [14]).

Property 2.4: If the real part of the complex number z is

positive (i.e. Re[z] > 0), then the integral

Γ(z) :=

∫ ∞

0

e−ttz−1dt (16)

converges absolutely.

Property 2.5: For x > 0, Γ(x) > 0.

Property 2.6: |Γ(x+ yj)| ≥
(

cosh−1 (πy)
)1/2

Γ(x) for

x ≥ 1
2 .

Lemma 2.7: Assume that for a fixed ω > 0, Ae(ω) > 0,

C(ω) > 0, D(ω) > 0. Then lim
n→∞

|Ea
n(jω)| exists if and only

if Ae(ω) ≤ C(ω).

Proof: We consider three cases: 1) Ae(ω) = C(ω), 2)

Ae(ω) < C(ω), and 3) Ae(ω) > C(ω).

For the case of Ae(ω) = C(ω), one has

|Ea
n(jω)|

2 =

n
∏

i=1

[

1 +
Be −D

(i− z1)(i− z2)

]

, (17)

where z1, z2 are the roots of z2+Cz+D = 0. When n → ∞,

expression (17) corresponds to equation (89.5.7) of [7], which

gives

lim
n→∞

|Ea
n(jω)|

2 =
Γ(1− z1)Γ(1− z2)

Γ(1− z3)Γ(1− z4)
, (18)

where z3, z4 are the roots of z2 + Cz + Be = 0. Note that

Be(ω) > 0 for all ω > 0 and by assumption, for the ω

under consideration, Ae(ω) > 0 (equivalently C(ω) > 0)

and D(ω) > 0. It follows that Re[z1] < 0, Re[z2] < 0,

Re[z3] < 0, Re[z4] < 0. Based on the Properties 2.4 – 2.6

of the Gamma function, one has that Γ(1− z1)Γ(1− z2) and

Γ(1 − z3)Γ(1 − z4) are finite and Γ(1 − z3)Γ(1 − z4) 6= 0.

Therefore,
Γ(1−z1)Γ(1−z2)
Γ(1−z3)Γ(1−z4)

is finite and lim
n→∞

|Ea
n(jω)| exists.

For Ae(ω) < C(ω), one has

n
∏

i=1

i2 +Ae(ω)i+Be(ω)

i2 + C(ω)i+D(ω)
<

n
∏

i=1

i2 + C(ω)i+Be(ω)

i2 + C(ω)i+D(ω)
(19)
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for Ae(ω) > 0, C(ω) > 0 and D(ω) > 0.4 Taking the limit

of both sides of (19),

lim
n→∞

|Ea
n(jω)|

2 ≤ lim
n→∞

n
∏

i=1

i2 + C(ω)i+Be(ω)

i2 + C(ω)i+D(ω)
. (20)

As proved previously, the right-hand side of (20) is finite (i.e.

= Γ(1−z1)Γ(1−z2)
Γ(1−z3)Γ(1−z4)

). Therefore, lim
n→∞

|Ea
n(jω)| exists.

For Ae(ω) > C(ω), since Be(ω) > 0 for all ω > 0 and

by assumption, Ae(ω) > 0, C(ω) > 0 and D(ω) > 0 for a

fixed ω > 0, it is easy to verify that

n
∏

i=1

i2 +Ae(ω)i+Be(ω)

i2 + C(ω)i+D(ω)

increases monotonously with n when n >
D(ω)−Be(ω)
Ae(ω)−C(ω) . Hence,

lim
n→∞

|Ea
n(jω)| is unbounded. The lemma is thus proved.

Remark 2: a) For all ω > 0, the condition Ae(ω) > 0 holds

if and only if κ0 > α.

b) For all ω > 0, the condition Ae(ω) ≤ C(ω) holds if and

only if −2α2c2ω4 − 8α2c2

τ2 ω2 ≤ − 8αc
τ ω4, which is equivalent

to

αc−
4

τ
≥ −

4αc

τ2
ω−2. (21)

Since α > 0, c > 0 and ω > 0, (21) thus holds if αc− 4
τ ≥ 0.

c) Note that the denominator of D(ω) is positive for ω > 0.

The numerator of D(ω) can be written as

(

ω3 −
2κ0c

τ
ω

)2

+

(

2

τ
ω2 −

2φ0c

τ

)2

+
(

2φ0cω
2 + φ2

0c
2
)

ω2 +

(

κ2
0c

2 −
4κ0c

τ

)

ω4.

For all ω > 0, the condition D(ω) > 0 holds if κ0 ≥ 4
cτ .

From the above points a), b) and c), if κ0 > α ≥ 4
cτ , then

the conditions for the existence of lim
n→∞

|Ea
n(jω)| hold for all

ω > 0. ◦
Similarly, one has the following result for bounded flows.

Lemma 2.8: Assume that for a fixed ω > 0, C(ω) > 0,

D(ω) > 0. Then lim
n→∞

|F a
n (jω)| exists if and only if

Af (ω) ≤ C(ω).

Proof: The proof follows the same lines as the proof of

Lemma 2.7.

Remark 3: For ω > 0, the condition Af (ω) ≤ C(ω) holds

if and only if 0 ≤ − 8αc
τ ω4, which is impossible given the

assumption that α > 0. So |F a
n (jω)| always grows unbounded

as n → ∞. ◦
In fact, under distant-downstream control, to compensate

the influence of the internal time-delay, the amplification of

the control actions in the upstream direction is unavoidable.

This is shown in Fig. 4. Initially, the system is at steady-state.

At time ts, the flow out of pooli increases, see the change

of ui−1 (the dashed line in Fig. 4(a)). To compensate for

the influence of ui−1 on yi, the flow into the pool, ui, also

increases (the solid line in Fig. 4(a)). However, the influence of

ui on the downstream water-level yi will be τi later than that

of ui−1 on yi (see Fig. 4(b)). For a zero steady-state error of yi

4Again, note that Be(ω) > 0 for all ω > 0.

0 Time

0 Time

0 Time

ri

yi

ui
ui−1

ts

ts

ts

ts + τi

Aui
Aui−1

(a)

(b)

(c)

Fig. 4. Control actions for zero steady-state water-level error

with respect to ri (see Fig. 4(c))), ui should be greater than

ui−1 for some time such that the area of Aui
(as indicated

in Fig. 4) is equal to the area of Aui−1
. Correspondingly

in the frequency domain, we have that for a small enough

ω > 0, |Tuu,i(jω)| > 1.5 Hence, there exists an ω > 0 such

that limn→∞ |Fn(jω)| is unbounded. Then to have bounded

water-level errors for an infinite number of identical pools

with decentralized control, the energy of the control actions

in the upstream pools goes to infinity, which is impossible in

practice. Indeed, for robust stability of the closed-loop, one

has the condition on the closed-loop bandwidth that ωb < 1
τ

(see [19]). However, with the condition that α ≥ 4
cτ , the

bandwidths of the string of pools increase from downstream

to upstream. Hence, for a string of an infinite number of

pools, there exists an N < ∞, such that the temporal stability

condition for the subsystems i > N is not satisfied.

From the above discussions and Definition 2.1, the follow-

ing conclusion is obtained.

Theorem 2.9: For a string of infinite number of pools (3)

controlled by the decentralized feedback controller (12-13),

the closed-loop system is not string-stable.

Consider the numerical example given in Section II-A for

a string of 101 identical pools. Select κ0 = 0.31, φ0 =
8.2×10−4 and α = 0.29 for the feedback controller in (12-13).

The magnitudes of the coupling transfer functions Tee,i(s) and

Tuu,i(s), for i = 1, . . . , 100, are shown in Fig. 5. The decou-

pling function of applying non-identical feedback controller

is observed. Indeed, for all i = 1, . . . , 100, |Tee,i(jω)| ≤ 1
for all ω ≥ 0. Hence, we can expect a decreasing propagation

of the water-level errors in the upstream direction, which is

confirmed by the top graph of |En(jω)| in Fig. 6. Furthermore,

an attenuation of the amplification of the control action (i.e.

flows over gates) is also achieved, see in the bottom graph

in Fig. 6 that maxω
|u100|
|u0|

= 17.3, while as analyzed in

Section II-A, maxω
|u100|
|u0|

= 2.28100 for the case with identical

feedback controllers.

5Note that |Tuu,i(j0)| = 1 for all i = 1, . . . , n.
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applied)
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feedback controllers

C. Further Remarks

In reality, the number of the pools in a channel is finite.

When designing decentralized feedback control for a string

of n + 1 (< ∞) similar pools (in terms of e.g. pool lengths,

gate properties, etc.), one can first select κ0, φ0 such that the

local performance in terms of setpoint regulation is guaranteed.

Then we select an α > 0 such that the tradeoff between local

and global performance is managed, i.e. with the selected α,

the bandwidth of the most upstream closed-loop ωb,n should

satisfy ωb,n < 1
τ .6 Indeed, by including an α > 0 in the non-

identical feedback controllers, the bandwidths of the closed-

loop subsystems increase in the upstream direction; hence, one

can expect a faster response of the interconnected system to

the offtake disturbance in the downstream pools than the case

with identical feedback controllers. Note that in the distributed

control strategy discussed in [3], [10], such a speed-up of

the closed-loop response is achieved by involving the known

interaction between neighboring pools in the input signals to

be rejected and by solving an optimization problem to manage

the tradeoff between local and global performance.

One can extend the above analysis results to channels with

heterogeneous pools: For a channel with distant-downstream

control, given that the temporal stability is ensured for each

subsystem, one can guarantee good global performance, i.e.

management of the water-level error propagation and attenu-

ation of the amplification of flows over gates in the upstream

direction, by ensuring that the closed-loop bandwidths increase

from downstream to upstream.

Remark 4: For a channel in which the pool lengths increase

from upstream to downstream, the above condition that the

closed-loop bandwidths increase from downstream to upstream

can be satisfied even by simply designing the decentralized

feedback controllers just based on local performance. In reality

however, based on the consideration of storing water to satisfy

demands from farms, civil engineers design irrigation networks

such that the pool lengths, in general, tend to decrease from

upstream to downstream. However, the previous guidelines for

decentralized feedback control design (i.e. 1) the temporal sta-

bility of each subsystem should be attained; 2) the bandwidths

of the closed-loop subsystems should increase in the upstream

direction) should still be kept in mind for a good tradeoff

between local and global performance. ◦

Designing non-identical feedback controllers for a string

of identical pools based on other decoupling strategies might

work in improving global performance. For example, based

on the analysis of the interactions between subsystems with

identical feedback controllers (see Section II-A), one might

directly think of setting the closed-loop bandwidths of the

subsystems such that the string of the controlled pools alternate

between a fast subsystem and a slow subsystem. In this way,

the maximum of the magnitudes of the coupling transfer

functions Tee,i(s) will not occur at the same frequency for

different i. However, it is not easy to design such non-identical

feedback controllers. For example, one simple design scheme

6As discussed in [20], a string of finite number of pools with decentralized
feedback control is stable if and only if each closed-loop (i.e. each single pool
with its feedback controller) is stable, which is guaranteed by ωb,i <

1

τi
for

all i = 0, . . . , n [19].
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could be:

Ki : (ei 7→ ui) =

{

κ0 +
φ0

s for i = 0, 2, . . . , n,

κ1 +
φ0

s for i = 1, 3, . . . , n− 1;

where κ1 > κ0 > 0 and without loss of generality, we assume

n to be even. However, it can be proved that with such a

design scheme, the water-level error goes unbounded when n

approximates infinity. Indeed, from (4) one has

Tee,i(s) =











c(κ0s+φ0)

s2

1+
c(κ1s+φ0)

s2
e−sτ

for i = 1, 3, . . . , n− 1,

c(κ1s+φ0)

s2

1+
c(κ0s+φ0)

s2
e−sτ

for i = 2, 4, . . . , n.

Then from (6),

En(s) =

(

c(κ0s+φ0)
s2

1 + c(κ1s+φ0)
s2 e−sτ

)
n
2
(

c(κ1s+φ0)
s2

1 + c(κ0s+φ0)
s2 e−sτ

)
n
2

=

(

c(κ0s+φ0)
s2

1 + c(κ0s+φ0)
s2 e−sτ

)
n
2
(

c(κ1s+φ0)
s2

1 + c(κ1s+φ0)
s2 e−sτ

)
n
2

.

Similar as the proof of Lemma 2.2, using Cauchy’s integral

formula, one can prove that there exists an ω > 0 such that

En(jω) > 1. Hence limn→∞ |En(jω)| is unbounded.

III. SIMULATION RESULTS

In this section, simulation results are shown for the case of a
string of five identical pools with identical feedback controllers
and for the case with non-identical feedback controllers.
The following third-order nonlinear model that captures the
dominant wave-frequency dynamics in the pools is used as
the simulation model (see [21]):

yi(t+ 1) =b1h
3
2
i (t− τ) + b3h

3
2
i (t− τ − 1) + b5h

3
2
i (t− τ − 2)

+ b2 (yi − pi−1)
3
2 (t) + b4 (yi − pi−1)

3
2 (t− 1)

+ b6 (yi − pi−1)
3
2 (t− 2) + yi(t)

+ (1− a1) (yi(t)− 2yi(t− 1) + yi(t− 2))

+ (1− a2) (yi(t)− yi(t− 1)) ,

where pi−1 is the position of gatei−1. The parameters of the

pool are given in Table I. Saturations are set for gate positions

and flows over gates to simulate the operation of the real water

infrastructure system.7 The parameters of the pool are the same

as those identified for pool10 of the Haughton Main Channel.

As shown in Section 7.2 of [21], such a third-order nonlinear

model gives very accurate predictions.

Different from the feedback controller (2) given in Sec-

tion II, to guarantee no excitement of the dominant waves

(which are captured by the above third-order nonlinear model),

here the feedback controllers involve an extra low-pass filter
1

s+0.125 , i.e. to make sure that we have a very low loop-gain

around the wave frequency.8 Hence, a) the identical feedback

7In the real-life running of an irrigation channel, saturation limits of gate
positions are always hard criteria for water-level (or flow) control. Further, the
minimum flow is always 0 (i.e. it cannot be negative); while the maximum
flow is set by the water management authorities based on the calculation of
water capacity.

8With such a low-pass filter, the influence of the velocity of gate movement
on the interconnections between pools, i.e. the resonance in the flows over
gates and the water-levels around the dominant wave-frequency, is dampened,
see [17], [22]. Hence the analysis results in Section II still work.

controllers are set as

Ki(s) =

(

0.1050 +
0.0008

s

)

1

s+ 0.125
for i = 0, 1, . . . , 4;

while b) the non-identical feedback controllers are set as

K0(s) =

(

0.1050 +
0.0008

s

)

1

s+ 0.125
, and

Ki(s) =

(

(0.1050 + 0.1i) +
0.0008

s

)

1

s+ 0.125

for i = 1, . . . , 4. Note that in the above design of non-identical

feedback controllers α = 0.1 (m−3/2) > 4
cτ (= 0.0904).9

Fig. 7 and 8 give the closed-loop responses to an offtake

disturbance in the downstream pool. Clearly, a much better

decoupling performance is obtained by the strategy with the

non-identical feedback controllers.
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Fig. 7. Water-level error propagation, with identical feedback controllers
(top graph) and with non-identical feedback controllers (bottom graph)

9Increasing α will improve the global performance. However, as discussed
in Section II-C, considering (robust) stability of the upstream subsystems, a
value of α ≫ 4

cτ
is undesirable.

TABLE I
PARAMETERS OF THE POOL AND SATURATION VALUES SET

Pool length
(m)

Wave frequency
(rad/min)

τ (min) c
(

m3/2

min

)

3129 0.20 16 2.767
(

m−1/2
)

(p.u.)

b1 b2 b3 b4 b5 b6 a1 a2
0.13 −0.13 −0.24 0.24 0.11 −0.11 0.70 0.19

Saturations of gate positions Saturations of flows

max (m) 1.487 max (Ml/day) 300
min (m) 0 min (Ml/day) 0
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Fig. 7 shows the water-level errors in the five pools when

an offtake of 75 Ml/day at the downstream pool begins at

time 200 min. The water-level setpoints for the pools are set

the same: r = 1.15 m. Note that the local water-level error

in the first downstream pool (i.e. r − y0) is the same for

identical and non-identical feedback controllers. With identical

feedback controllers (the top graph), the water-level errors in

the pools increase in the upstream direction. In the upstream

pool, the maximum water-level error caused by the offtake is

0.28 m. In contrast, with the non-identical feedback controllers

(the bottom graph), the water-level errors in the pools decrease

in the upstream direction. In the upstream pool, the maximum

water-level error caused by the offtake is then 0.06 m.
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Fig. 8. Flow amplification, with identical feedback controllers (top graph)
and with non-identical feedback controllers (bottom graph)

Fig. 8 shows the amplification of flows to compensate the

influence of the offtake of 75 Ml/day at the downstream

pool begins at time 200 min. With identical feedback con-

trollers (top graph), the amplification of flows is significant,

e.g. the maximum flow over the most upstream gate is 240

Ml/day around 600 min; more seriously, the flow over the

most upstream gate goes below the minimum limit from 870

min to 1170 min.10 In the simulation, On the other hand,

with non-identical feedback controllers (bottom graph), the

amplification of flows over gates is well attenuated, e.g. the

10No anti-windup augmentation of the linear control system is considered
in the simulation. To mitigate the degradation in performance when saturation
limits are reached, an anti-windup compensation [12] can be included.

maximum flow over the most upstream gate is 130 Ml/day

around 450 min. Note that, as expected, the control actions in

the upstream pools, i.e. flow over gatei for i = 1, . . . , 4, in

response to the offtake disturbance are faster than those in the

case with identical controllers.

IV. CONCLUSIONS

This paper has discussed the design of decentralized feed-

back controllers for a string of identical pools based on the

global performance of managing water-level error propagation

and attenuating the amplification of flows over gates in the

upstream direction. A definition of string stability in terms

of bounded water-level errors and bounded flows has been

given. It has been shown that for a string of an infinite number

of pools with decentralized distant-downstream feedback con-

trol, the closed-loop bandwidth limitation of each subsystem,

imposed by the internal time-delay, makes it impossible to

achieve string stability. For a string of a finite number of pools,

temporal stability is guaranteed if and only if each closed-loop

(i.e. each single pool with its feedback controller) is stable.

Moreover, by selecting non-identical feedback controllers such

that the closed-loop bandwidths of the subsystems increase

from downstream to upstream, a better global performance

than that with identical feedback controllers is achieved.

Further research will compare the management of the trade-

off between the global and local performance attained by the

decentralized feedback control strategy given in this paper

and that by the distributed control approach introduced in [3],

[10], which involves the interaction between pools as a known

disturbance of the closed-loop system in the synthesis of the

distributed controller. Moreover, it is also of interest to explore

the coupling properties of other interconnection topologies of

a water network, e.g. the influence of the discharge through

side gates on the interactions between pools.
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