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Abstract

Traffic control approaches based on on-line optimization require fast and accu-
rate integrated models for traffic flow, emission, and fuel consumption. In this
context, one may want to integrate macroscopic traffic flow models with micro-
scopic emission and fuel consumption models, which can result in shorter simula-
tion times with fairly accurate estimates of the emissions and fuel consumption.
In general, however, macroscopic traffic flow models and microscopic emission
and fuel consumption models cannot be integrated with each other. We provide
a general framework to integrate these two kinds of models. We illustrate the
approach by considering the macroscopic traffic flow model METANET1 and
the microscopic emission and fuel consumption model VT-micro2, resulting in
the so called the “VT-macro” model. Moreover, we characterize analytically
the error introduced by the VT-macro model relative to the original VT-micro
model. We further present an empirical analysis of the error and the computa-
tion time based on calibrated models of the Dutch A12 freeway.

1. Introduction

One of the reasons that makes traffic control a challenging discipline is the
nature of the system. Traffic systems are very complex, nonlinear, and are
affected by many external and internal factors. In addition to the vehicle dy-
namics with respect to the infrastructure, the human driver is the main element
of traffic systems. This augments the complexity and stochasticity of the sys-
tems. It is, therefore, challenging to capture all the traffic phenomena with a
single model of the system. Based on the intended application, a variety of ap-
proaches can be used to model traffic systems (Hoogendoorn and Bovy, 2001).
Some models consider the dynamics of individual vehicles (or the response of
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1METANET (Messmer and Papageorgiou, 1990) stands for “Modèle d’Ecoulement du
Trafic Autoroutier: NETwork”.
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individual drivers) (Brackstone and McDonald, 2000; Gazis et al., 1961; Pipes,
1953). Such traffic models are classified as microscopic traffic flow models.
Other models are based on the average behavior of the traffic flow without
describing the dynamics of individual vehicles in the traffic network; and are
called macroscopic traffic flow models (Chen et al., 2004; Daganzo, 1994, 1995;
Messmer and Papageorgiou, 1990). There are also developments that combine
some of the characteristics of macroscopic models and some characteristics of
microscopic models (Hoogendoorn and Bovy, 2000). In general, the main differ-
ence between the models is the trade-off between optimizing simulation speeds
and estimating the traffic states (or traffic phenomena) as accurately as possible.
As a result there is a large variety of traffic flow models. A detailed literature
survey on traffic flow models can be found in (Hoogendoorn and Bovy, 2001).
In the sequel we will present a short introduction to traffic emission and fuel
consumption models and the way they are used with traffic flow models.

Traffic emission and fuel consumption models provide the estimate or predic-
tion of emission and fuel consumption of vehicles in a traffic flow based on the op-
erating conditions of the vehicles. Similar to traffic flow models, traffic emission
and fuel consumption models also differ based on the modeling approaches used.
Just like traffic flow models, emission and fuel consumption models can be either
macroscopic (such as average-speed-based models) (Chang and Herman, 1981;
Evans and Herman, 1978; Ntziachristos and Samaras, 2000) or microscopic (also
called dynamic models) (Ahn et al., 1999; An et al., 1997). Average-speed-
based models estimate the emission and fuel consumption of a traffic flow based
on the trip-based average speed (Evans and Herman, 1978; Boulter et al., 2002;
Ntziachristos and Samaras, 2000). On the other hand, dynamic emission or
fuel consumption models estimate the emission or fuel consumption based on
the instantaneous traffic variables of individual vehicles (Boulter et al., 2002;
Ahn et al., 1999; Ahn and Rakha, 2008). Average-speed-based models are more
coarse than dynamic emission models, and compared to the dynamic emission
models they are simpler to use and allow to compute faster the estimates of emis-
sions. However, average-speed-based models do not capture the emissions or fuel
consumption due to the variation of the speed of the traffic (Ahn and Rakha,
2008; Boulter et al., 2002). Since the input for microscopic emission and fuel
consumption models is the operating condition of individual vehicles the com-
putation time required is proportional to the number of vehicles. But the input
for macroscopic emission and fuel consumption models is the average operating
condition of a group of vehicles. Hence, the computation time of the macroscopic
models is reduced as compared to the microscopic models.

Macroscopic emission and fuel consumption models are in principle used
with macroscopic traffic flow models, and the microscopic emission and fuel
consumption models are used with microscopic traffic flow models. For exam-
ple in (Rakha and Ahn, 2004), an integrated microscopic traffic flow model and
emission model has been used for quantifying the environmental impacts of ITS
alternatives. Moreover, a study in (Huang and Ma, 2009) shows the integration
of a microscopic emission and fuel consumption model with a microscopic traffic
flow model using a distributed framework to tackle computation time. In both
(Rakha and Ahn, 2004) and (Huang and Ma, 2009) the integration is based on
microscopic traffic flow and microscopic emission and fuel consumption models.
In general, the output of the macroscopic traffic flow models can be easily fed
to macroscopic emission and fuel consumption models and the output of mi-
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croscopic traffic flow models can be easily fed to microscopic emission and fuel
consumption models. This means that the choice we make on the traffic flow
models also affects our choice on the emission and fuel consumption models.
Hence, the accuracy of the estimates of the emission and fuel consumed cannot
be enhanced if one uses macroscopic models unless the macroscopic emission
and fuel consumption models are themselves accurate. But as studies show the
available macroscopic emission and fuel consumption models do not provide ac-
curate estimations relative to microscopic emission and fuel consumption models
(Ahn and Rakha, 2008; Boulter et al., 2002).

So, to get a balanced trade-off between computational complexity and accu-
racy, one may want to combine macroscopic traffic flow modes with microscopic
emission and fuel consumption models. However, this is not straightforward.
The macroscopic outputs of the macroscopic traffic models should be trans-
formed into microscopic variables. Moreover, the error that can be introduced
due to such approximations is not known. Therefore, in this paper we present
an approach to integrate these two types of models so that the macroscopic
variables can be used to produce relatively accurate estimates of the emissions
and the fuel consumption. We also show the improvement in the simulation
time as compared to the microscopic models.

We illustrate the integration approach by considering the macroscopic traf-
fic flow model METANET (Messmer and Papageorgiou, 1990) and the micro-
scopic emission and fuel consumption model VT-micro (Ahn et al., 1999). The
integration results in an integrated macroscopic traffic flow, emission, and fuel
consumption model. We designate the new macroscopic-variable-based dynamic
emission and fuel consumption model as the VT-macro model. We provide an
analytic solution to the maximum error that can be introduced due to the ap-
proximation in the transformation of the macroscopic variables into microscopic
ones. Moreover, the error is further empirically assessed using models calibrated
to part of the Dutch A12 freeway for different demand scenarios. We have also
conducted computation time comparisons for these different demand scenarios.

The remainder of the paper is organized as follows. The traffic flow model
and emission and fuel consumption model used are discussed in Section 2. Sec-
tion 3 elaborates the integration of macroscopic traffic flow models with mi-
croscopic emission and fuel consumption models. In Section 4 and Section 5,
we provide and discuss the relative error of the newly developed macroscopic
emission and fuel consumption model analytically and empirically respectively.
Finally, the paper is concluded in Section 6.

2. Models

Although the integration approach to be presented in Section 3 is generic (i.e.
the approach can also be applied to other macroscopic traffic flow models and
microscopic emission and fuel consumption models), we present it by considering
two specific models: METANET (Messmer and Papageorgiou, 1990) from the
class of macroscopic traffic flow models and VT-micro (Ahn et al., 1999) from
the class of microscopic emission and fuel consumption models. In this section
we therefore briefly present METANET and VT-micro.
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2.1. METANET

METANET (Messmer and Papageorgiou, 1990) is a macroscopic second-
order traffic flow model. The model describes the evolution of the traffic vari-
ables — average density ρ [veh/km/lane], average flow q [veh/h], and average
space-mean speed v [km/h] — as nonlinear difference equations. The METANET
model is both temporally and spatially discretized. In the model, a node is
placed wherever there is a change in the geometry of a freeway (such as a lane
drop, on-ramp, off-ramp, or a bifurcation). A homogeneous freeway stretch that
connects such nodes is called a link. Links are further divided into equal seg-
ments of length 300-500m (Messmer and Papageorgiou, 1990). The equations
that describe the traffic dynamics in a segment i of a link m are given by

qm,i(k) = λmρm,i(k)vm,i(k) (1)

ρm,i(k + 1) = ρm,i(k) +
Ts

Lmλm

[qm,i−1(k)− qm,i(k)] (2)

vm,i(k + 1) = vm,i(k) +
Ts

τ
[V [ρm,i(k)]− vm,i(k)]

+
Tsvm,i(k) [vm,i−1(k)− vm,i(k)]

Lm

−
Tsη [ρm,i+1(k)− ρm,i(k)]

τLm (ρm,i(k) + κ)
(3)

V [ρm,i(k)] = vfree,m exp

[

−
1

bm

(

ρm,i(k)

ρcr,m

)bm
]

(4)

where qm,i(k) denotes the outflow of segment i of link m during the time period
[kTs, (k+ 1)Ts], ρm,i(k) and vm,i(k), denote respectively the density and space-
mean speed of segment i of link m at simulation time step k, Lm denotes the
length of the segments of link m, λm denotes the number of lanes of link m, and
Ts denotes the simulation time step (a typical value for Ts is 10 s). Furthermore,
ρcr,m is the critical density, τ a time constant, η the anticipation constant, bm
the parameter3 of the fundamental diagram, and κ is a model parameter.

For origins (such as on-ramps and mainstream entry points) a queue model
is used. The dynamics of the queue length wo at the origin o are modeled as

wo(k + 1) = wo(k) + Ts(do(k)− qo(k)) (5)

where do(k) and qo(k) denote respectively the demand and outflow of the origin
o at simulation time step k with

qo(k) = min

[

do(k) +
wo(k)

Ts

, Co, Co

(

ρjam,m − ρm,1(k)

ρjam,m − ρcr,m

)]

, (6)

for a mainstream origin or an unmetered on-ramp, and

qo(k) = min

[

do(k)+
wo(k)

Ts

, ro(k)Co, Co

(

ρjam,m − ρm,1(k)

ρjam,m − ρcr,m

)]

(7)

3In the original METANET model the parameter bm is denoted by am. However, in order
to avoid confusion with the acceleration (which will be indicated with am in this paper) we
chose to use bm.
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for a metered on-ramp, wherem is the index of the link to which the main-stream
origin or on-ramp is connected, ρjam,m and ρcr,m are respectively the maximum
and critical densities of link m, ro(k) ∈ [0, 1] denotes the ramp metering rate
for on-ramp o for simulation step k, and Co denotes the capacity of on-ramp or
mainstream origin o.

If m is the link out of a node to which an on-ramp o is connected, then for
the first segment of link m the term

−
δTsqo(k)vm,1(k)

Lmλm(ρm,1(k) + κ)
(8)

is added to (3) in order to account for the speed drop caused by the merging
phenomena, where δ is model parameter.

In case the number of lanes changes, a node n is placed. Let m and m + 1
be the indices of respectively the ingoing and outgoing links of node n. Then,
the space-mean speed of the last segment Nm of link m is either reduced or
increased by adding the weaving phenomena term

−
φTs∆λmρm,Nm

(k)v2m,Nm
(k)

Lmλmρcr,m
(9)

where φ is a model parameter and ∆λm = λm − λm+1 denotes the number of
lanes dropped or increased.

A node provides a (virtual) downstream density to incoming links, and a
(virtual) upstream speed to leaving links. The flow that enters node n is dis-
tributed among the leaving links according to

Qn(k) =
∑

µ∈In

qµ,Nµ
(k) (10)

qm,0(k) = βn,m(k)Qn(k) (11)

where Qn(k) is the total flow that enters the node at simulation step k, In is the
set of links that enter node n, βn,m(k) are the turning rates (i.e., the fraction
of the total flow through node n that leaves via link m), and qm,0(k) is the flow
that leaves node n via link m.

When node n has more than one leaving link, the virtual downstream density
ρm,Nm+1(k) of entering link m is given by

ρm,Nm+1(k) =

∑

µ∈On
ρ2µ,1(k)

∑

µ∈On
ρµ,1(k)

(12)

where On is the set of links leaving node n.
When node n has more than one entering link, the virtual upstream speed

vm,0(k) of leaving link m is given by

vm,0(k) =

∑

µ∈In
vµ,Nµ

(k)qµ,Nµ
(k)

∑

µ∈In
qµ,Nµ

(k)
. (13)

2.2. VT-micro

VT-micro (Ahn et al., 1999) is a microscopic dynamic emission and fuel
consumption model that yields the emission and fuel consumption rate of an
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individual vehicle α using the second-by-second speed and acceleration of the
vehicle. We introduce a separate microscopic simulation time step Tm such that
Tm ≪ Ts (typical value of Tm = 1 s). Hence, we also define the microscopic
simulation step counter ℓ. Consider a vehicle indexed by α. Now, the VT-micro
model is mathematically expressed in the form

Jα,y(ℓ) = exp
(

ṽ⊤α (ℓ)Pyãα(ℓ)
)

(14)

where Jα,y(ℓ) is the estimate or prediction of the variable y ∈ {CO emission,
NOx emission, HC emission, fuel consumption} at every microscopic simulation
time step ℓ, the operator ·̃ defines the vectors of the speed vα and the acceleration
aα as ṽα(ℓ) = [1 vα(ℓ) vα(ℓ)

2 vα(ℓ)
3]⊤ and ãα(ℓ) = [1 aα(ℓ) aα(ℓ)

2 aα(ℓ)
3]⊤ for

time step ℓ, and Py denotes the model parameter matrix for the variable y. The
values of the entries of Py are given in Appendix A. Moreover, the emission and
fuel consumption rates are respectively given in kg/s and l/s for the speed vα
in m/s and the acceleration aα in m/s2.

The VT-micro emission model does not yield estimates of the CO2 emission
rate. However, in (Oliver-Hoyo and Pinto, 2008) it is shown that there is almost
an affine relationship between fuel consumption and CO2 emission. Then the
CO2 emission can be computed using the relation

Jα,CO2
(ℓ) = δ1vα(ℓ) + δ2Jα,fuel(ℓ) (15)

where Jα,CO2
(ℓ) denotes the CO2 [kg/s] emission rate of vehicle α for time step

ℓ, Jα,fuel(ℓ) denotes the fuel consumption rate in l/s for time step ℓ, with the
model parameters (δ1, δ2) = (1.17 · 10−6 kg/m, 2.65 kg/l) for a diesel car and
(δ1, δ2) = (3.5 · 10−8 kg/m, 2.39 kg/l) for a gasoline car.

3. Integration of the Models

In the sequel we present a general approach to integrate macroscopic traffic
flow models with microscopic emission and fuel consumption models. This ap-
proach is generic and it can be adopted to most combinations of a macroscopic
traffic flow model and a microscopic emission and fuel consumption model such
as POLY (Qi et al., 2004), CMEM (Barth et al., 2000), and the microscopic
models in (Joumard et al., 1995; Panis et al., 2006).

In order to integrate macroscopic traffic flow models with microscopic emis-
sion and fuel consumption models, we need to generate the average acceleration,
average speed, and the number of vehicles subject to these variables at each sim-
ulation time step from the macroscopic traffic variables. This idea is illustrated
in Fig. A.1. The macroscopic traffic variables (the average density, average
space-mean speed, and average flow) are fed to the interface block. The inter-
face block transforms these variables into variables that describe the average
behavior of individual vehicles, i.e. it produces average speed, average accel-
eration, and the number of vehicles that are subject to the average speed and
average acceleration.4 Note that the macroscopic speed does not contain enough
information to fully reconstruct the individual vehicle trajectories that would

4Based on statistical data one can also add a noise term to the average speed and average
acceleration of the vehicles to capture the possible variation of the individual vehicles.
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be needed to exactly calculate the microscopic emissions and fuel consumptions.
The error that can be introduced by considering the average speed over a group
of vehicles will be analyzed in Section 4.

Now we will illustrate the general integration approach using the METANET
traffic flow model and VT-micro emission and fuel consumption model, which
will result in a new dynamic macroscopic emission and fuel consumption model
VT-macro, specifically derived for the METANET traffic flow model.

Since the METANET model is discrete both in space and in time there are
two acceleration components involved in the model. The first is the “tempo-
ral” acceleration of the vehicles moving within a given segment. The second
component is the “spatial-temporal” acceleration of the vehicles going from one
segment to another from time step k to time step k + 1 (see Fig. A.2). The
temporal and spatial-temporal accelerations describe the average dynamics of a
group of vehicles. We will therefore also determine the number of vehicles that
are subject to the corresponding accelerations. Hence, we generate triples of
the form (a, v, n), where a represents the acceleration, v the speed, and n the
number of vehicles involved.

3.1. Temporal Acceleration

By temporal acceleration we mean the acceleration of vehicles due to the
change in space-mean speed within a segment from one time step to the next.
This acceleration is only experienced by the vehicles that stay within the seg-
ment from one time step to the next. The temporal acceleration of the vehicles
in the segment i of link m at time step k is thus given by

atemp
m,i (k) =

vm,i(k + 1)− vm,i(k)

Ts

(16)

where the term ‘temp’ is a shorthand representation of ‘temporal’.
Now let us determine the number of vehicles that are subject to this temporal

acceleration from time step k to k+1. At time step k the number of vehicles in
segment i is equal to Lmλmρm,i(k) and from time step k to k + 1 the number
of vehicles leaving segment i is Tsqm,i(k) (see Fig. A.2). Hence,

ntemp
m,i (k) = Lmλmρm,i(k)− Tsqm,i(k) (17)

is the number of vehicles that stayed in segment i and that are subject to the
temporal acceleration given in (16).

3.2. Spatial-Temporal Acceleration

The spatial-temporal acceleration is the change in speed experienced by
vehicles moving from one segment of a link to another segment of the same
link or of a different link. Depending on the geometry of the traffic network,
there are several possible cases/scenarios for vehicles moving from one segment
to another. In particular, the spatial-temporal acceleration from one segment
to another segment is different for vehicles in a link and for vehicles crossing
a node (an on-ramp, an off-ramp, merging links, and splitting links). In the
sequel we discuss the spatial-temporal acceleration for each case.
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3.2.1. Vehicles moving between consecutive segments within the same link

At the time step k the space-mean speed of the vehicles in segment i of link
m is vm,i(k). In the next time step k+1 and in the next segment i+1, the speed
will be vm,i+1(k+1). Thus, for time step k the spatial-temporal acceleration of
the vehicles leaving segment i to segment i+ 1 of a link m is

aspatm,i,i+1(k) =
vm,i+1(k + 1)− vm,i(k)

Ts

(18)

where the term ‘spat’ is a shorthand representation of ‘spatial-temporal’.
The number of vehicles that are subject to the spatial-temporal acceleration

in (18) is obtained as

nspat
m,i,i+1(k) = Tsqm,i(k). (19)

3.2.2. Vehicles crossing a node

General case

Let us consider the general case, where several incoming and outgoing links are
connected to a node n as in Fig. A.3. In the figure, there are n1 merging links
and n2 splitting links. The spatial-temporal acceleration of vehicles moving
from ingoing link mi to outgoing link µj is given by

aspatmi,µj
(k) =

v1,µj
(k + 1)− vmi,Nmi

(k)

Ts

(20)

The corresponding number of vehicles subject to the spatial-temporal accel-
eration in (20) is given by

nspat
mi,µj

(k) = Tsβmi,µj
(k)qmi,Nmi

(k) (21)

where βmi,µj
(k) is the splitting rate of the flow from link mi to the link µj .

Specific cases

• On-ramp: In METANET the speed of an on-ramp is not used. But, to
determine the spatial-temporal acceleration of the vehicles moving from
the on-ramp to the freeway, we need to assign the speed of the on-ramp.
The speed is assumed to be based on measured or historic data in case
no on-line measurements are available. Hence, we use the on-ramp speed
von,o(k). In particular, for a situation like the one sketched in Fig. 4(a),
the spatial-temporal acceleration and the number of vehicles subject to
the acceleration are respectively

aspaton,o(k) =
vm,1(k + 1)− von,o(k)

Ts

(22)

nspat
on,o(k) = Tsqon,o(k). (23)

where qon,o(k) is the on-ramp flow given by the equations of the form (6) or (7).

• Off-ramp: In general, the vehicles in the freeway can leave to the off-ramp
o with an off-ramp speed voff,o(k), where voff,o(k) can be determined in a
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similar way as von,o(k). In particular in Fig. 4(b), the flow of the vehicles
from segment Nm of link m (the freeway) to the off-ramp is given by

qoff,o(k) = βm,o(k)qm,Nm
(k) (24)

where βm,o(k) is the turning rate (i.e., the fraction of the flow of segment
Nm of link m that flows to the off-ramp in the time period [kTs, (k+1)Ts]).

Now we can compute the spatial-temporal acceleration and the number of
vehicles flowing from the segment Nm of link m to the off-ramp as

aspatoff,o(k) =
voff,o(k + 1)− vm,Nm

(k)

Ts

(25)

nspat
off,o(k) = Tsqoff,o(k). (26)

• Lane drop/increase: The spatial-temporal acceleration of vehicles moving
from the last segment (with index Nm) of the first link m with λm lanes
to the first segment of the second link m+1 with λm+1 lanes is computed
using the relation

aspatm,m+1(k) =
vm+1,1(k + 1)− vm,Nm

(k)

Ts

. (27)

Moreover, the number of vehicles experiencing the acceleration is com-
puted as

nspat
m,m+1(k) = Tsqm,Nm

(k). (28)

3.3. VT-macro

Unlike in the microscopic case where the speed-acceleration pair is for a
single vehicle, the speed-acceleration pair generated in Sections 3.1 and 3.2
holds for a group of vehicles. Therefore, the emissions and fuel consumption
obtained for the given speed-acceleration pair have to be multiplied by the
corresponding number of vehicles in order to obtain the total emissions and
fuel consumption. For example in Section 3.1 we have derived the temporal
acceleration and the corresponding number of vehicles within a segment of a
link at simulation step k. Using these variables as an input to the VT-micro
model in (14), a new macroscopic emission and fuel consumption model for the
vehicles moving within a segment is obtained as

J̄ temp
y,m,i(k) = Tsn

temp
m,i (k) exp

(

ṽm,i(k)Pyã
temp
m,i (k)

)

(29)

where J̄ temp
y,m,i(k) denotes the emission or fuel consumption y ∈{CO, HC, NOx,

CO2, Fuel consumption} at simulation step k, the average acceleration vector
ãtemp
m,i (k) and the average space-mean speed vector ṽm,i(k) are respectively ob-

tained from atemp
m,i (k) and vm,i(k) by using the operator ·̃ defined in (14), while

atemp
m,i (k) and ntemp

m,i (k) are respectively given by (16) and (17), and vm,i(k) is the
average space-mean speed of the vehicles in segment i of link m at simulation
step k.

Similarly, using the corresponding speeds, accelerations, and number of ve-
hicles, one can get the emissions or fuel consumption of vehicles moving from
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segment to segment within a link and vehicles crossing a node. Finally, the
total emissions or fuel consumption of the vehicles in the traffic network at a
simulation time step k is obtained by adding all together.

Thus, the interface block and the VT-micro block in Fig. A.1 forms a new
macroscopic emission and fuel consumption model. We call this new model the
“VT-macro” emission and fuel consumption model.

4. Analysis of VT-macro

In the previous section we have proposed the integration of the macroscopic
traffic flow model METANET with the microscopic emission and fuel consump-
tion model VT-micro, which resulted in a macroscopic emission and fuel con-
sumption model VT-macro. Due to the approximation of the speed and accelera-
tion of the individual vehicles by the average speed and the average acceleration
over the number of vehicles, the model may introduce errors. Moreover, the
motive of the development of the model is to gain computational speed while
keeping the estimation error as small as possible. Therefore, we now analyze
the maximum error that can be introduced by this model.

In this section we want to examine the effect of going from one individual
vehicle (VT-micro) to a group of vehicles (VT-macro). In general, we also
could consider Ts 6= Tm. However, this problem is mainly related to traffic flow
models (e.g. METANET vs. car-following). Here the focus of the analysis is
only on the VT-macro model. Since the METANET model is not directly based
on microscopic modeling approaches, we will not delve into the analysis of the
approximation errors induced by the METANET traffic flow model. Hence, we
assume here that Ts = Tm.

Let the speed of an individual vehicle α and the average speed over a group
of vehicles be respectively vα(ℓ) and v̄(ℓ). If the relative deviation of the speed
v of an individual vehicle α from the average speed is δv,α(ℓ), then the speed of
an individual vehicle can be expressed as

vα(ℓ) = v̄(ℓ)(1 + δv,α(ℓ)). (30)

Similarly, let the acceleration of vehicle α be

aα(ℓ) = ā(ℓ)(1 + δa,α(ℓ)) (31)

where δa,α(ℓ) is the relative deviation of the acceleration of vehicle α from the
average acceleration ā(ℓ).

In Section 3.3, the speed and acceleration inputs are transformed into a
vector through the operator ·̃ defined in (14). Using the approximation relation
(1 + δ)n ≈ (1 + nδ) for small δ, and the ·̃ operation, we get

ṽα(ℓ) = (I + Eδv,α(ℓ))˜̄v(ℓ), ãα(ℓ) = (I + Eδa,α(ℓ))˜̄a(ℓ)

where E = diag(0, 1, 2, 3), ˜̄v(ℓ) = [1 v̄(ℓ) v̄2(ℓ) v̄3(ℓ)]⊤, and ˜̄a(ℓ) = [1 ā(ℓ) ā2(ℓ)
ā3(ℓ)]⊤.

Hence, the emission Jα,y(ℓ) of vehicle α with the speed vα(ℓ) and the ac-
celeration aα(ℓ) can be expressed in terms of the average speed v̄(ℓ), average
acceleration ā(ℓ), speed deviation δv,α(ℓ), and acceleration deviation δa,α(ℓ) as

Jα,y(ℓ) = exp
[

˜̄v⊤(ℓ)Py ˜̄a(ℓ) + δv,α(ℓ)˜̄v
⊤(ℓ)EPy ˜̄a(ℓ)

+δa,α(ℓ)˜̄v
⊤(ℓ)PyE˜̄a(ℓ) + δv,α(ℓ)δa,α(ℓ)˜̄v

⊤(ℓ)EPyE˜̄a(ℓ)
]

(32)
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Using the Taylor series expansion and neglecting higher-order terms of the
deviations δv,α and δa,α, the emission of vehicle α in (32) can be approximated
to

Jα,y(ℓ) ≈ exp(˜̄v⊤(ℓ)Py ˜̄a(ℓ))
[

1 + δv,α(ℓ)˜̄v
⊤(ℓ)EPy ˜̄a(ℓ)

+ δa,α(ℓ)˜̄v
⊤(ℓ)PyE˜̄a(ℓ)

]

. (33)

Therefore, the relative error of the estimation of emissions and fuel consumption
of individual vehicles due to the averaging of the speed and the acceleration is

ǫapprox,α,y(ℓ) ≈ δv,α(ℓ)˜̄v
⊤(ℓ)EPy ˜̄a(ℓ) + δa,α(ℓ)˜̄v

⊤(ℓ)PyE˜̄a(ℓ). (34)

The operating region of the VT-micro emission model is described in (Rakha and Ahn,
2004) to be from 0 km/h to 120 km/h for the speed and from 0m/s2 to 2.75m/s2

for the acceleration. The maximum value of the acceleration range decreases
linearly to zero as the speed increases from 35 km/h to 120 km/h. We simulate
the model in its operating region to determine the maximum bound of the error
in (34) for several possible combinations of the acceleration and speed ranges.

Fig. A.5 presents the maximum values of the approximate relative error (34)
for all the possible speed and acceleration combinations within the operating
region of the model when the deviations of the speed and acceleration are within
±5%. The colorbars on the right side of the plots show the maximum values
of the approximate relative errors introduced by the model for combinations of
the deviations δv,α and δa,α.

5. Empirical Verification of VT-macro

In this section we evaluate the macroscopic VT-macro emission model by
comparing it with the microscopic VT-micro emission model (14). To do so, we
calibrate the microscopic car-following “intelligent driver model” (Treiber et al.,
2000) to a calibrated macroscopic traffic flow METANET model for a Dutch
highway. In the sequel we provide the description of the freeway, its modeling,
and the results of the simulation based on the calibrated models.

5.1. Freeway and Scenario Description

The freeway stretch that we consider for the analysis of the VT-macro model
is a part of the Dutch A12 freeway going from the connection with the N11 at
Bodegraven up to Harmelen, and is shown in Fig. A.6. The freeway has three
lanes in each direction. The part that we consider is approximately 14 km and it
has two on-ramps and three off-ramps. The stretch is equipped with double-loop
detectors at a typical distance of 500 to 600m, measuring the average speed and
flow every minute.

The data of the freeway has been used to calibrate the METANET model
in (Hegyi et al., 2008). We use the same parameters that have been obtained
in the study (Hegyi et al., 2008) to calibrate a microscopic car-following intel-
ligent driver model (IDM) (Treiber et al., 2000). The IDM model was selected
because in (Treiber et al., 2000) it was shown that this model improves the de-
ficiencies of the well-known microscopic models GHR (Gazis et al., 1961) and
OVM (Bando et al., 1995). The calibrated IDM car-following model will subse-
quently be coupled with the microscopic VT-micro emission and fuel consump-
tion model.

11



In order to compare the performance of the integrated macroscopic flow
and emission model with the microscopic flow and emission models, we use
four different traffic demand scenarios. In this way we can also show to some
extent the robustness of the modeling approach presented in this paper. To
provide a glimpse of the nature of the demand profiles, we provide the calibrating
demand d3,cal in Fig. A.7, where the other demand profiles are related to the
calibrating demand profile as d1(k) = 0.8d3,cal(k), d2(k) = 0.9d3,cal(k), and
d4(k) = 1.1d3,cal(k). The two integrated models (microscopic and macroscopic
approaches) are then simulated for the four scenarios and the corresponding
emissions, fuel consumption, and CPU time are collected. The results of the
simulation are presented and discussed in the following section.

Moreover, to compare the newly developed dynamic-macroscopic emission
and fuel consumption model, VT-macro, with average-speed-based macroscopic
emission and fuel consumption model, we consider the COPERT (Ntziachristos and Samaras,
2000) model. We first integrate the COPERT model to the METANET model
and next we calibrate the COPERT model in such a way that the error between
the emission and fuel consumption estimates of the COPERT model and that of
the VT-micro model is minimal. For the calibration process we use the demand
profile d3,cal. Since, it is suggested that the accuracy of average-speed-based
emission and fuel consumption models can be improved if the speeds are aver-
aged at shorter time intervals (Boulter et al., 2002), we follow the same strategy.
Finally, we simulate the COPERT model as integrated with the METANET
model and the VT-micro model as integrated to the IDM model for the four
demand profiles aforementioned.

For the macroscopic simulation case the simulation time step is set to be
10 s, while for the microscopic the simulation time step is set to be 1 s.

5.2. Validation and Discussion

Recall that the VT-micro emission model estimates the emissions of each ve-
hicle at specific times (every 1 s) and places. Therefore, to compare the results
of the VT-macro model and COPERT with the VT-micro model, we have ag-
gregated the emission estimates of the VT-micro model (or individual vehicles)
over the 10 s time period in order to determine the total emission in a specific
segment of the freeway. These integrated emission values during each 10 s of
the VT-micro model are compared with the corresponding emission estimates
of the VT-macro and the COPERT models.

Fig. A.8 provides plots of the estimates of the CO, HC, and NOx emissions,
and fuel consumption (FC) of the freeway for the demand scenario d1(k) =
0.8d3,cal(k) that are estimated using the VT-micro, VT-macro, and COPERT
models. The figure shows the evolution of the emissions and fuel consumption
during the simulation period of about 1 h. Fig. A.8 clearly shows a very good
fit of the estimates of the VT-macro model to the estimates of the VT-micro
model, whereas the estimates of the COPERT show bad fit. The corresponding
relative error of the macroscopic approaches with respect to the VT-micro is also
presented in Fig. A.9. The figure clearly indicates that the estimation error5 of

5The error in Fig. A.9 is not only due to the error introduced by the VT-macro model as
given in (34) and the COPERTmodel. The error is introduced both due the mismatch between
the METANET and IDM traffic flow models and due to the mismatch between the VT-micro
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the VT-macro model is small for the this particular scenario, while that of the
COPERT model is large.

We also computed the average of the absolute-relative-estimation error of
the emissions and fuel consumption over the whole simulation time and the
whole freeway. The results are presented in Table A.1 and Table A.2. Table A.1
indicates that the maximum average-absolute-relative error of the VT-macro
model for these particular simulations is not more than 9.5%. So, although
the model has been calibrated for a different demand profile, for the demand
profiles d1, d2, and d4 the estimates of the macroscopic approach are not far
from the estimates of the microscopic approach. From Table A.2, one sees that
the error that is introduced by the COPERT is more than three times the error
introduced by the VT-macro for most of the cases.

In addition to the improvement of the emission estimation that can be ob-
tained when microscopic emission models are integrated with macroscopic traffic
flow models, the second motivation for the integration of the microscopic emis-
sion model with macroscopic traffic flow model is the need for reduced simulation
time. In this regard we also compared the simulation time for the four different
scenarios. In Table A.1 we provide the CPU time of the VT-micro (microscopic)
and VT-macro (macroscopic) simulations versus the scenarios. It can be seen
that the CPU time of the VT-macro simulation is independent of the demand
(or number of vehicles) in the traffic network and is almost constant for all the
four scenarios. On the other hand, the CPU time required for the simulation
of the VT-micro model increases as the demand increases. Moreover, the CPU
time required for the simulation of the VT-micro model is very large relative
to the CPU time required by the VT-macro model to simulate the same traffic
scenario.

6. Conclusions and Future Work

In this paper we have presented a general framework that can be used to
integrate macroscopic traffic flow models with microscopic emission and fuel
consumption models. We made a distinction between temporal and spatial-
temporal variables in order to capture the discrete temporal and spatial nature
of macroscopic traffic flow models. We further demonstrated the approach using
the METANET traffic flow model and VT-micro emission and fuel consumption
model that resulted in the VT-macro model.

Moreover, we have presented an analysis of the maximum approximate er-
ror that can be introduced by the use of macroscopic variables to determine
the emissions and fuel consumption of individual vehicles. Both the analytic
and empirical results show that the errors introduced by using VT-macro are
small. A comparison of the errors of the VT-macro model to the established
average-speed-based macroscopic model, COPERT, also shows that the VT-
macro model provides better estimates of the emissions and fuel consumption
than the COPERT for the cases considered. Furthermore, the simulation results
indicate that the simulation time (CPU time) can be tremendously decreased if

and VT-macro and between VT-micro and COPERT emission and fuel consumption models.
Therefore, it is not possible to relate the errors in Fig. A.9 and with the approximate error in
(34) nor between VT-micro and COPERT.
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one uses the macroscopically integrated emission model (VT-macro), while this
only introduces errors less than 10% over the whole estimation for the particular
scenarios.

In our future work, we will use the integrated models in model-based traffic
control approaches to reduce emissions and fuel consumption. We will further
compare and assess the performance of the VT-macro model for other traffic
scenarios and network layouts.

Appendix A. VT-micro/macro parameters

The values of the model parameter Py for the emission variables y ∈ {CO, HC,
NOx} and the fuel consumption (y = FC) are given by:

PCO = 0.01









−1292.81 48.8324 32.8837 −4.7675
23.2920 4.1656 −3.2843 0
−0.8503 0.3291 0.5700 −0.0532
0.0163 −0.0082 −0.0118 0









, (A.1)

PHC = 0.01









−1454.4 0 25.1563 −0.3284
8.1857 10.9200 −1.9423 −1.2745
−0.2260 −0.3531 0.4356 0.1258
0.0069 0.0072 −0.0080 −0.0021









, (A.2)

PNOx
= 0.01









−1488.32 83.4524 9.5433 −3.3549
15.2306 16.6647 10.1565 −3.7076
−0.1830 −0.4591 −0.6836 0.0737
0.0020 0.0038 0.0091 −0.0016









, (A.3)

and

PFC = 0.01









−753.7 44.3809 17.1641 −4.2024
9.7326 5.1753 0.2942 −0.7068
−0.3014 −0.0742 0.0109 0.0116
0.0053 0.0006 −0.0010 −0.0006









, (A.4)

when the inputs of the emission and fuel consumption model are in SI-units and
the outputs are in kg/s for emissions and l/s for fuel consumption.
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Figure A.1: Model integration block diagram. The output variables of the macroscopic traffic
model are the average flow q, the average density ρ, and the average space-mean speed v.
These variables are fed to the interface block. The interface block generates the acceleration
a, the speed v, and the number of vehicles n that are inputs to the microscopic emission and
fuel consumption model. Then, the macroscopic emission and fuel consumption model yields
the emissions and the fuel consumption Jy of the traffic flow.
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Figure A.2: Illustration of temporal and spatial traffic flow in METANET.
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Figure A.6: A part of the Dutch A12 highway considered for the empirical verification of the
VT-macro emission and fuel consumption model.
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Figure A.7: Traffic demands scenarios used for the calibrating of the IDM model to the
METANET model.
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Table A.1: The average of the absolute-relative error of VT-macro with respect to the VT-
micro. The demand profiles are related as d1(k) = 0.8d3,cal(k), d2(k) = 0.9d3,cal(k), and
d4(k) = 1.1d3,cal(k).

Average-absolute-relative
Scenarios error (%) CPU time (s)

CO HC NOx FC VT-micro VT-macro
d1 2.4 2.5 2.5 3.2 112 1.70
d2 2.3 1.9 2.7 2.6 124 1.52
d3,cal 3.4 2.9 4.5 3.7 142 1.65
d4 9.4 7.0 9.2 6.6 162 1.61

Table A.2: The average of absolute-relative error of COPERT with respect to the VT-micro.
The demand profiles are related as d1(k) = 0.8d3,cal(k), d2(k) = 0.9d3,cal(k), and d4(k) =
1.1d3,cal(k).

Average-absolute-relative
Scenarios error (%)

CO HC NOx FC
d1 17.9 20.0 17.1 18.2
d2 12.0 14.2 11.8 13.2
d3,cal 6.7 9.3 7.9 9.0
d4 7.5 10.0 8.0 7.0
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