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Abstract

We propose a distributed optimization algorithm for mixed L1/L2-norm optimiza-

tion based on accelerated gradient methods using dual decomposition. The algo-

rithm achieves convergence rate O( 1
k2
), where k is the iteration number, which

significantly improves the convergence rates of existing duality-based distributed

optimization algorithms that achieve O( 1
k
). The performance of the developed

algorithm is evaluated on randomly generated optimization problems arising in

distributed Model Predictive Control (MPC). The evaluation shows that, when the

problem data is sparse and large-scale, our algorithm outperforms state-of-the-art

optimization software CPLEX and MOSEK.

Keywords: Distributed optimization, Accelerated gradient algorithm, Model

predictive control
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1. Introduction

Gradient-based optimization methods are known for their simplicity and low

complexity within each iteration. A limitation of classical gradient-based methods

is the slow rate of convergence. It can be shown [1, 2] that for functions with

a Lipschitz-continuous gradient, i.e. smooth functions, classical gradient-based

methods converge at a rate of O( 1
k
), where k is the iteration number. In [3] it was

shown that a lower bound on the convergence rate for gradient-based methods is

O( 1
k2
). Nesterov showed in his work [4] that an accelerated gradient algorithm

can be constructed such that this lower bound on the convergence rate is achieved

when minimizing unconstrained smooth functions. This result has been extended

and generalized in several publications to handle constrained smooth problems

and smooth problems with an additional non-smooth term [5, 6, 7, 8]. Gradient-

based methods are suitable for distributed optimization when they are used in

combination with dual decomposition techniques.

Dual decomposition is a well-established concept since around 1960 when

Uzawa’s algorithm [9] was presented. Similar ideas were exploited in large-scale

optimization [10]. Over the next decades, methods for decomposition and coor-

dination of dynamic systems were developed and refined [11, 12, 13] and used

in large-scale applications [14]. In [15] a distributed asynchronous method was

studied. More recently dual decomposition has been applied in the distributed

Model Predictive Control (MPC) literature in [16, 17, 18, 19] for problems with

a strongly convex quadratic cost and arbitrary linear constraints. The above men-

tioned methods rely on gradient-based optimization, which suffers from slow con-

vergence properties O( 1
k
). Also the step size parameter in the gradient scheme

must be chosen appropriately to get good performance. Such information has not
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been provided or has been chosen conservatively in these publications.

In this work we improve on the previously presented distributed optimization

methods by using the accelerated gradient method to solve the dual problem in-

stead of the classical gradient method. We also extend the class of problems con-

sidered by allowing an additional sparse but non-separable 1-norm penalty. Such

1-norm terms are used as regularization term or as penalty for soft constraints

[20]. Further, we also provide the optimal step-size parameter for the algorithm,

which is crucial for performance. The convergence rate for the dual function value

using the accelerated gradient method is implicitly known from [7, 8]. This con-

vergence rate in the dual function value does, however, not indicate the rate at

which the primal iterate approaches the primal optimal solution. In this paper we

also provide convergence rate results for the primal variables.

Related to our work is the approach presented in [21] for systems with a (non-

strongly) convex cost. It is based on the smoothing technique presented by Nes-

terov in [6]. Other relevant work is presented in [22, 23] in which optimization

problems arising in MPC are solved in a centralized fashion using accelerated

gradient methods. These methods are, however, restricted to handle only box-

constraints on the control signals.

To evaluate the proposed algorithm we solve randomly generated large-scale

and sparse optimization problems arising in distributed MPC and compare the

execution times to state-of-the-art optimization software for large-scale optimiza-

tion, in particular CPLEX and MOSEK. We also evaluate the performance loss

obtained when suboptimal step-lengths are used.

The paper is organized as follows. In Section 2, the problem setup is intro-

duced. The dual problem to be solved is introduced in Section 3 and some prop-
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erties of the dual function are presented. The distributed solution algorithm for

the dual problem is presented in Section 4. In Section 5 a numerical example is

provided, followed by conclusions drawn in Section 6.

2. Problem Setup

In this paper we present a distributed algorithm for optimization problems with

cost functions of the form

J(x) =
1

2
xTHx+ gTx+ γ‖Px− p‖1. (1)

The full decision vector, x ∈ R
n, is composed of local decision vectors, xi ∈ R

ni ,

according to x = [xT
1 , . . . , x

T
M ]T . The quadratic cost matrix H ∈ R

n×n is assumed

separable, i.e. H = blkdiag(H1, . . . , HM) where Hi ∈ R
ni×ni . The linear part

g ∈ R
n consists of local parts, g = [gT1 , . . . , g

T
M ]T where gi ∈ R

ni . Further

P ∈ R
m×n is composed of P = [P1, . . . , Pm]

T where each Pr ∈ R
n which in turn

consists of Pr = [P T
r1, . . . , P

T
rM ]T with each Pri ∈ R

ni . We do not assume that

the matrix P should be block diagonal which means that the cost function J is

not separable. However, we do assume that the vectors Pr have sparse structure.

Sparsity refers to the property that for each r ∈ {1, . . . ,m} there exist some

i ∈ {1, . . . ,M} such that Pri = 0. We also have p = [p1, . . . , pm]
T and γ > 0.

This gives the following equivalent formulation of (1)

J(x) =
M
∑

i=1

[

1

2
xT
i Hixi + gTi xi

]

+
m
∑

r=1

∣

∣

∣

∣

∣

M
∑

i=1

P T
rixi − pr

∣

∣

∣

∣

∣

. (2)

Minimization of (1) is subject to linear equality and inequality constraints

A1x = B1 A2x ≤ B2
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where A1 ∈ R
q×n and A2 ∈ R

(s−q)×n contain al ∈ R
n as A1 = [a1, . . . , aq]

T

and A2 = [aq+1, . . . , as]
T . Further each al = [aTl1, . . . , a

T
lM ]T where ali ∈ R

ni .

Further we have B1 ∈ R
q and B2 ∈ R

s−q where B1 = [b1, . . . , bq]
T and B2 =

[bq+1, . . . , bs]
T . We assume that the matrices A1 and A2 are sparse. By introducing

the auxiliary variables xa and the constraint Px − p = xa we get the following

optimization problem:

min
x,xa

1
2
xTHx+ gTx+ γ‖xa‖1

s.t. A1x = B1

A2x ≤ B2

Px− p = xa

(3)

The objective of the optimization routine is to solve (3) in a distributed fashion

using several computational units, where each computational unit computes the

optimal local variables, x∗
i , only. Each computational unit is assigned a number

of constraints in (3) that it is responsible for. We denote the set of equality con-

straints that unit i is responsible for by L1
i , the set of inequality constraints by

L2
i and the set of constraints originating from the 1-norm by Ri. This division is

obviously not unique but all constraints should be assigned to one computational

unit. Further for l ∈ L1
i and l ∈ L2

i we require that ali 6= 0 and for r ∈ Ri that

Pri 6= 0. Now we are ready to define two sets of neighbors to computational unit

i:

Ni =
{

j ∈ {1, . . . ,M} | ∃l ∈ L1
i s.t. alj 6= 0

or ∃l ∈ L2
i s.t. alj 6= 0

or ∃r ∈ Ri s.t. Prj 6= 0
}
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Mi =
{

j ∈ {1, . . . ,M} | ∃l ∈ L1
j s.t. ali 6= 0

or ∃l ∈ L2
j s.t. ali 6= 0

or ∃r ∈ Rj s.t. Pri 6= 0
}

Through the introduction of these sets the constraints that are assigned to unit i

can equivalently be written as

aTl x = bl ⇔
∑

j∈Ni

aTljxj = bl, l ∈ L1
i (4)

aTl x ≤ bl ⇔
∑

j∈Ni

aTljxj ≤ bl, l ∈ L2
i (5)

and the 1-norm term can equivalently be written as

|P T
r x− pr| =

∣

∣

∣

∑

j∈Ni

P T
rjxj − pr

∣

∣

∣
, r ∈ Ri. (6)

In the following section, the dual function to be maximized is introduced. First,

we state some assumptions that will be useful in the continuation of the paper.

Assumption 1. We assume that each Hi in (2) is a real symmetric positive definite

matrix that satisfies the following eigenvalue bounds

σiI � Hi � σ̄iI

where 0 < σi ≤ σ̄i < ∞.

Remark 1. The corresponding bound for H becomes σI � H � σ̄I where σ :=

mini σi and σ̄ := maxi σ̄i. Also note that since H is positive definite we have

1
σ
I � H−1 � 1

σ̄
I (c.f. [24, Corollary 7.7.4]).

Assumption 2. We assume that there exists a vector x̄ such that A1x̄ = b1 and

A2x̄ < b2. Further, we assume that al, l = 1, . . . , q and Pr, r = 1, . . . ,m are

linearly independent.
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Remark 2. Assumption 2 is the Slater condition for (3) [1, Proposition 3.3.9]

since we can always choose x̄a = Px̄− p.

3. Dual problem

In this section we introduce a dual problem to (3) from which the primal solu-

tion can be obtained. We show that this dual problem has the properties required

to apply accelerated gradient methods. We also present some additional properties

that are needed to prove convergence rates of the primal variables.

3.1. Formulation of the dual problem

We introduce Lagrange multipliers, λ ∈ R
q, µ ∈ R

s−q
≥0 , v ∈ R

m for the con-

straints in (3). Under Assumption 2 it is well known (cf. [25, §5.2.3]) that there is

no duality gap and we get the following dual problem

sup
λ,µ≥0,ν

inf
x,xa

{

1

2
xTHx+ gTx+ γ‖xa‖1 + λT (A1x− B1)+

+ µT (A2x−B2) + νT (Px− p− xa)

}

. (7)

After rearranging the terms and changing infx(·) to − supx(−(·)) we get

sup
λ,µ≥0,ν

{

− sup
x

[

− (AT
1 λ+ AT

2 µ+ P Tν + g)Tx−
1

2
xTHx

]

(8)

− λTB1 − µTB2 − νTp− sup
xa

[

νTxa − γ‖xa‖1
]

}

.

The supremum over xa can be solved explicitly:

sup
xa

{

νTxa − γ‖xa‖1
}

= sup
xa

{

∑

i

[

νixi
a − γ|xi

a|
]

}

=
∑

i

{

sup
xi
a

[

νixi
a − γ|xi

a|
]

}
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=







0 if ‖ν‖∞ ≤ γ

∞ else

where super-script i denotes the i-th element in the vector. The supremum over xa

becomes a box-constraint for the dual variables ν. This is crucial for distribution

reasons.

Before we explicitly solve the maximization over x in (8) the following nota-

tion is introduced

A = [AT
1 AT

2 P T ]T B = [BT
1 BT

2 pT ]T z = [λT µT νT ]T

where A ∈ R
(s+m)×n, B ∈ R

s+m and z ∈ R
s+m. We also introduce the set of

feasible dual variables

Z =



















zl ∈ R l ∈ {1, . . . , q}

z ∈ R
s+m zl ≥ 0 l ∈ {q + 1, . . . , s}

|zl| ≤ γ l ∈ {s+ 1, . . . , s+m}



















(9)

Completion of squares in the maximization over x in (8) gives

sup
x

[

− (AT z + g)Tx−
1

2
xTHx

]

=
1

2
(AT z + g)TH−1(AT z + g)

and we get the following dual problem

sup
z∈Z

{

−
1

2
(AT z + g)TH−1(AT z + g)− BT z

}

. (10)

We introduce the following definition of the negative dual function

f(z) :=
1

2
(AT z + g)TH−1(AT z + g) + BT z.

It is easily seen that f is convex and differentiable with the following gradient

∇f(z) = AH−1(AT z + g) + B. (11)
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Next we show some properties of the dual function. The proofs for Propositions

1 and 2 below can be found in the Appendix.

Proposition 1. The gradient, ∇f , is Lipschitz continuous on Z with Lipschitz

constant L = ‖AH−1AT‖2, i.e. for any z1 ∈ Z and z2 ∈ Z we have

‖∇f(z1)−∇f(z2)‖2 ≤ L‖z1 − z2‖2. (12)

Further, the Lipschitz constant, L, is the smallest constant such that (12) holds for

all z1 ∈ Z and z2 ∈ Z.

Remark 3. Note that it is known from [6, Theorem 1] that ∇f is Lipschitz con-

tinuous. However, the Lipschitz constant provided in [6], L̄ = 1
σ
‖A‖2, is larger

than the one presented here.

Proposition 2. Let Z∗ denote the set of optimal dual variables, defined as

Z∗ = {z∗ ∈ Z | f(z∗) ≤ f(z) ∀z ∈ Z}

The following statements hold:

1. Z∗ is non-empty and bounded

2. For any z∗ ∈ Z∗ and any z ∈ Z, we have

f(z)− f(z∗) ≥
1

2σ̄
‖AT (z − z∗)‖22. (13)

4. Distributed optimization algorithm

In this section we show how the accelerated gradient method can be used to

distributively solve (3) by minimizing the negative dual function f . The accel-

erated proximal gradient method for problem (10) is defined by the following

9



iteration as presented in [8, Algorithm 2] and [7, Eq. 4.1-4.3]

vk = zk +
k − 1

k + 2
(zk − zk−1) (14)

zk+1 = PZ

(

vk −
1

L
∇f(vk)

)

(15)

where PZ is the Euclidean projection onto the set Z. Thus, the new iterate, zk+1,

is the previous iterate plus a step in the negative gradient direction projected onto

the feasible set.

For reasons that will be revealed later we define the primal iteration xk :=

H−1(−AT zk − g). Using this definition, straightforward insertion of vk into (11)

gives

∇f(vk) = −A

(

xk +
k − 1

k + 2
(xk − xk−1)

)

+ B

By defining x̄k = xk+ k−1
k+2

(xk−xk−1) and recalling the partition z = [λT µT νT ]T

and the definition (9) of the set Z, we find that (14)-(15) can be parallelized:

xk = H−1(−AT zk − g) (16)

x̄k = xk +
k − 1

k + 2
(xk − xk−1) (17)

λk+1
l = λk

l +
k − 1

k + 2
(λk

l − λk−1
l ) +

1

L
(aTl x̄

k − bl) (18)

µk+1
l = max

{

0, µk
l +

k − 1

k + 2
(µk

l − µk−1
l ) +

1

L
(aTl x̄

k − bl)
}

(19)

νk+1
r = min

{

γ,max
[

− γ, νk
r +

k − 1

k + 2
(νk

r − νk−1
r )

+
1

L
(P T

r x̄
k − pr)

]}

. (20)

From these iterations it is not clear that the algorithm is distributed. By partition-

ing the constraint matrix as

A = [A1, . . . ,AM ]
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where each Ai = [a1i, . . . , asi, P1i, . . . , Pmi]
T ∈ R

(s+m)×ni , and noting that H is

block-diagonal, the local primal variables are updated according to

xki = H−1
i

(

−AT
i z

k − gi
)

(21)

= −H−1
i

(

gi +
∑

j∈Mi

[

∑

l∈L1

j

aliλ
k
l +

∑

l∈L2

j

aliµ
k
l +

∑

r∈Rj

Priν
k
r

])

Thus, each local primal update, xk
i , can be computed after communication with

neighbors j ∈ Mi. Through (4)-(6) we note that the dual variable iterations can

be updated after communication with neighbors i ∈ Ni. We get the following

distributed algorithm.

Algorithm 4.1. Distributed accelerated proximal gradient algorithm

Initialize λ0 = λ−1, µ0 = µ−1, ν0 = ν−1 and x0 = x−1

In every node, i, the following computations are performed:

For k ≥ 0

1. Compute xk
i according to (21) and set

x̄k
i = xk

i +
k − 1

k + 2
(xk

i − xk−1
i )

2. Send x̄k
i to each j ∈ Mi, receive x̄k

j from each j ∈ Ni

3. Compute λk+1
l according to (18), (4) for l ∈ L1

i

Compute µk+1
l according to (19), (5) for l ∈ L2

i

Compute νk+1
l according to (20), (6) for l ∈ Ri

4. Send {λk+1
l }l∈L1

i
, {µk+1

l }l∈L2

i
, {νk+1

r }r∈Ri
to each j ∈ Ni,

receive {λk+1
l }l∈L1

j
, {µk+1

l }l∈L2

j
and {νk+1

r }r∈Rj
from each j ∈ Mi

11



The convergence rates for the dual function f and the primal variables when run-

ning Algorithm 4.1 are stated in the following theorem.

Theorem 1. Algorithm 4.1 has the following convergence rate properties:

1. Denote an optimizer of the dual problem (10) as z∗. The convergence rate

is:

f(zk)− f(z∗) ≤
2L‖z0 − z∗‖22

(k + 1)2
, ∀k ≥ 1 (22)

2. Denote the unique optimizer of the primal problem as x∗. The rate of con-

vergence for the primal variable is

‖xk − x∗‖22 ≤
4σ̄L‖z0 − z∗‖22
σ2(k + 1)2

, ∀k ≥ 1 (23)

Proof. The derivation of Algorithm 4.1 shows that it is a distributed imple-

mentation of [8, Algorithm 2] and [7, Eq. 4.1-4.3] applied to minimize f . The

convergence rate in argument 1 follows from [8, Proposition 2] and [7, Theorem

4.4].

For argument 2 we first show that x∗ = H−1(−AT z∗ − g). KKT-conditions

[25, p. 244] imply that the primal optimal solution, x∗, and dual optimal solutions

z∗ must satisfy

0 = Hx∗ + g +AT z∗ ⇔ x∗ = H−1(−AT z∗ − g)

since H is invertible. This leads to

‖xk − x∗‖22 = ‖H−1(AT zk −AT z∗)‖22

≤ ‖H−1‖2‖AT zk −AT z∗‖22
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≤
1

σ2
‖AT zk −AT z∗‖22

≤
2σ̄

σ2
(f(zk)− f(z∗)) ≤

4σ̄L‖z0 − z∗‖22
σ2(k + 1)2

.

where the second inequality is based on Remark 1, the third inequality on Propo-

sition 2 and the final inequality is from (22). This completes the proof. �

4.1. Distributed step-size computations

To compute the step-size 1
L

for the distributed algorithm, the Lipschitz con-

stant L = ‖AH−1AT‖2 for ∇f is needed. However, this is the 2-norm of a ma-

trix whose elements are spread over the different computational units, which may

require non-negligible computational/communicational overhead to compute. We

have in Proposition 1 shown the smallest Lipschitz constant to ∇f . However,

any Lipschitz constant to ∇f can be used to choose the step-size and the results

of Theorem 1 still hold. In this section we present two ways to, in distributed

fashion, compute a Lipschitz constant.

We define HA := AH−1AT . The first method relies on the following matrix

result [24, p. 313]

‖HA‖2 ≤ ‖HA‖F ,

√

∑

p

∑

q

[HA]2pq

Let p correspond to some l ∈ L1
i and q to some constraint k, then [HA]pq =

aTl H
−1ak =

∑

j∈Ni
aljH

−1
j akj can be computed in a distributed fashion. All local

terms can be communicated to the other nodes to compute the norm.

Another alternative is to rely on the following result, [24, p. 313]

‖HA‖2 ≤
√

‖HA‖1‖HA‖∞ = ‖HA‖1 , max
p

(

∑

q

|[HA]pq|

)

13



where the first equality holds since HA is symmetric. As previously noted, the

elements [HA]pq can be computed in a distributed fashion and communicated to

the other nodes to compute the norm.

In the following section we will evaluate the algorithm with different step-

sizes. We denote by LF = ‖HA‖F and L1 = ‖HA‖1 and compare the perfor-

mance using step-sizes 1
LF

, 1
L1

to the optimal 1
L

.

5. Numerical Example

In this section we evaluate the performance of Algorithm 4.1. We compare

the presented algorithm to state-of-the-art centralized optimization software for

large-scale optimization implemented in C, namely CPLEX and MOSEK. We also

evaluate the performance loss when using sub-optimal step-sizes. Our algorithm

is implemented on a single processor to be able to compare execution times.

The comparison is made on 100 random optimization problems arising in dis-

tributed MPC. A batch of random stable controllable dynamical systems with ran-

dom structure and random initial conditions are created. The sparsity fraction, i.e.

the fraction of non-zero elements in the dynamics matrix and the input matrix,

is chosen to be 0.1. We have random inequality constraints that are generated to

guarantee a feasible solution and a 1-norm cost where the P -matrix and p-vector

are randomly chosen. The quadratic cost matrices are chosen Q = I and R = I .
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To summarize, we consider problems of the form

min
x,u







N−1
∑

t=0

x(t)TQx(t) + u(t)TRu(t) +

∥

∥

∥

∥

P





x(t)

u(t)



− p

∥

∥

∥

∥

1







s.t.

x(t+ 1) = Ax(t) + Bu(t), t = 0, . . . , N − 2

A1





x(t)

u(t)



 ≤ b1, t = 0, . . . , N − 1

x(0) = x0

(24)

Table 1 shows the numerical results obtained by a Linux PC with a 3 GHz Intel

Core i7 processor and 4 GB memory.

Table 1: Algorithm comparison with 1-norm cost term and random state and input constraints.

Algorithm 4.1 is implemented in MATLAB, while the others are implemented in C.

Alg. vars./constr. tol. # iters # exec (ms)

mean max mean max

4.1 (L) 4320/3231 0.005 69.8 160 253 609

4.1 (L1) 4320/3231 0.005 160 420 594 1532

4.1 (LF ) 4320/3231 0.005 248 640 934 2444

MOSEK 4320/3231 - - - 1945 2674

CPLEX 4320/3231 0.005 - - 1663 2832

4.1 (L) 2160/1647 0.005 63.8 100 94 200

4.1 (L1) 2160/1647 0.005 75.8 180 115 368

4.1 (LF ) 2160/1647 0.005 121 320 185 488

MOSEK 2160/1647 - - - 334 399

CPLEX 2160/1647 0.005 - - 282 522

The first column specifies the algorithm used where 4.1 is supplemented with

the step-size used. The second column specifies the number of variables and con-

straints in the optimization problems. In the third column we have information
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about the duality gap tolerance that is used as stopping condition in the algo-

rithms (if possible to set). The two final columns present the results in terms of

number of iterations and execution time. The difference between the upper and

lower halves of the table is the size of the problems that are solved.

Table 1 reveals that Algorithm 4.1 performs better than CPLEX and MOSEK

on these large-scale sparse problems despite the fact that CPLEX and MOSEK are

implemented in C and Algorithm 4.1 is implemented in MATLAB. We also con-

clude that the choice of step-size in Algorithm 4.1 is important for performance

reasons.

6. Conclusions

We have presented a distributed optimization algorithm for strongly convex

optimization problems with sparse problem data. The algorithm is based on

an accelerated gradient method that is applied to the dual problem. The algo-

rithm was applied to large-scale sparse optimization problems originating from a

distributed model predictive control formulation. Our algorithm performed bet-

ter than state-of-the-art optimization software for large-scale sparse optimization,

namely CPLEX and MOSEK, on these problems.
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8. Appendix

In this section we present the proofs for the propositions stating the properties

of the dual function.

8.1. Proof for Proposition 1

For convenience we introduce HA = AH−1AT . We have

‖∇f(z1)−∇f(z2)‖2 = ‖HA(z1 − z2)‖2 ≤ ‖HA‖2‖z1 − z2‖2

due to the Cauchy-Schwarz inequality. This shows that (12) holds. Next we show

that L = ‖HA‖2 is the smallest Lipschitz constant on Z. From the definition (9)

of Z we conclude that there exist z1 ∈ Z and z2 ∈ Z such that the difference dz =

z1−z2 with ‖dz‖ = ǫ is parallel to the eigen-vector vmax(HA) corresponding to the

largest eigen-value λmax(HA). By choosing vmax(HA) such that ‖vmax(HA)‖ = 1

we get for some z1, z2 ∈ Z:

‖∇f(z1)−∇f(z2)‖2 = ‖HA(z1 − z2)‖2 = ‖HAdz‖2
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= ‖HAvmax(HA)ǫ‖2

= λmax(HA)ǫ‖vmax(HA)‖2

= ‖HA‖2ǫ = ‖HA‖2‖dz‖

= ‖HA‖2‖z1 − z2‖

This completes the proof. �

8.2. Proof for Proposition 2

Under Assumption 2 it is well known (cf. [26, Corollary 28.2.2]) that the set

Z∗ is non-empty. Further from [27] we know that Assumption 2 is equivalent to

the Mangasarian-Fromovitz Constraint Qualification (MFCQ). In [27] it is shown

that MFCQ is equivalent to Z∗ being bounded. This shows argument 1.

To prove argument 2 we introduce f1(y) = 1
2
yTH−1y, which gives f(z) =

f1(A
T z + g) + BT z. From Remark 1 we know that H−1 � 1

σ̄
I and hence that f1

is strongly convex and satisfies (c.f. [2, Definition 2.1.2])

f1(y1) ≥ f1(y2) + 〈∇f1(y2), y1 − y2〉+
1

2σ̄
‖y1 − y2‖

2

We set y1 = AT z + g for any z ∈ Z and y2 = AT z∗ + g for any z∗ ∈ Z∗. This

gives

f(z) = f1(A
T z + g) + BT z

≥ f1(A
T z∗ + g) + 〈∇f1(A

T z∗ + g),AT z + g −AT z∗ − g〉

+
1

2σ̄
‖AT z + g −AT z∗ − g‖22 + BT z + BT (z∗ − z∗)

= f(z∗) + 〈A∇f1(A
T z∗ + g) + B, z − z∗〉+

1

2σ̄
‖AT (z − z∗)‖22

= f(z∗) + 〈∇f(z∗), z − z∗〉+
1

2σ̄
‖AT (z − z∗)‖22
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≥ f(z∗) +
1

2σ̄
‖AT (z − z∗)‖22

where the last inequality comes from the first-order optimality condition for con-

vex functions (cf. [2, Theorem 2.2.5])

〈∇f(z∗), z − z∗〉 ≥ 0.

for any z ∈ Z and z∗ ∈ Z∗. This completes the proof. �

22


