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Abstract

We propose a distributed optimization algorithm for mixed L1/L2-norm optimiza-

tion based on accelerated gradient methods using dual decomposition. The algorithm

achieves convergence rate O( 1
k2 ), where k is the iteration number, which significantly

improves the convergence rates of existing duality-based distributed optimization al-

gorithms that achieve O( 1
k
). The performance of the developed algorithm is evaluated

on randomly generated optimization problems arising in distributed Model Predictive

Control (MPC). The evaluation shows that, when the problem data is sparse and large-

scale, our algorithm outperforms state-of-the-art optimization software CPLEX and

MOSEK.

Keywords: Distributed optimization, Accelerated gradient algorithm, Model

predictive control

1. Introduction

Gradient-based optimization methods are known for their simplicity and low com-

plexity within each iteration. A limitation of classical gradient-based methods is the

slow rate of convergence. It can be shown [1, 2] that for functions with a Lipschitz-

continuous gradient, i.e. smooth functions, classical gradient-based methods converge

at a rate of O( 1
k
), where k is the iteration number. In [3] it was shown that a lower

bound on the convergence rate for gradient-based methods is O( 1
k2 ). Nesterov showed

in his work [4] that an accelerated gradient algorithm can be constructed such that

this lower bound on the convergence rate is achieved when minimizing unconstrained

smooth functions. This result has been extended and generalized in several publica-

tions to handle constrained smooth problems and smooth problems with an additional

non-smooth term [5, 6, 7, 8]. Gradient-based methods are suitable for distributed opti-

mization when they are used in combination with dual decomposition techniques.

Dual decomposition is a well-established concept since around 1960 when Uzawa’s

algorithm [9] was presented. Similar ideas were exploited in large-scale optimization

[10]. Over the next decades, methods for decomposition and coordination of dynamic

systems were developed and refined [11, 12, 13] and used in large-scale applications
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[14]. In [15] a distributed asynchronous method was studied. More recently dual

decomposition has been applied in the distributed Model Predictive Control (MPC)

literature in [16, 17, 18, 19] for problems with a strongly convex quadratic cost and

arbitrary linear constraints. The above mentioned methods rely on gradient-based op-

timization, which suffers from slow convergence properties O( 1
k
). Also the step size

parameter in the gradient scheme must be chosen appropriately to get good perfor-

mance. Such information has not been provided or has been chosen conservatively in

these publications.

In this work we improve on the previously presented distributed optimization meth-

ods by using the accelerated gradient method to solve the dual problem instead of the

classical gradient method. We also extend the class of problems considered by allowing

an additional sparse but non-separable 1-norm penalty. Such 1-norm terms are used as

regularization term or as penalty for soft constraints [20]. Further, we also provide the

optimal step-size parameter for the algorithm, which is crucial for performance. The

convergence rate for the dual function value using the accelerated gradient method is

implicitly known from [7, 8]. This convergence rate in the dual function value does,

however, not indicate the rate at which the primal iterate approaches the primal optimal

solution. In this paper we also provide convergence rate results for the primal variables.

Related to our work is the approach presented in [21] for systems with a (non-

strongly) convex cost. It is based on the smoothing technique presented by Nesterov

in [6]. Other relevant work is presented in [22, 23] in which optimization problems

arising in MPC are solved in a centralized fashion using accelerated gradient methods.

These methods are, however, restricted to handle only box-constraints on the control

signals.

To evaluate the proposed algorithm we solve randomly generated large-scale and

sparse optimization problems arising in distributed MPC and compare the execution

times to state-of-the-art optimization software for large-scale optimization, in particu-

lar CPLEX and MOSEK. We also evaluate the performance loss obtained when subop-

timal step-lengths are used.

The paper is organized as follows. In Section 2, the problem setup is introduced.

The dual problem to be solved is introduced in Section 3 and some properties of the

dual function are presented. The distributed solution algorithm for the dual problem

is presented in Section 4. In Section 5 a numerical example is provided, followed by

conclusions drawn in Section 6.

2. Problem Setup

In this paper we present a distributed algorithm for optimization problems with cost

functions of the form

J(x) =
1

2
xTHx+ gTx+ γ‖Px− p‖1. (1)

The full decision vector, x ∈ R
n, is composed of local decision vectors, xi ∈ R

ni ,

according to x = [xT
1 , . . . , x

T
M ]T . The quadratic cost matrix H ∈ R

n×n is assumed

separable, i.e. H = blkdiag(H1, . . . , HM ) where Hi ∈ R
ni×ni . The linear part

g ∈ R
n consists of local parts, g = [gT1 , . . . , g

T
M ]T where gi ∈ R

ni . Further P ∈
R

m×n is composed of P = [P1, . . . , Pm]T where each Pr ∈ R
n which in turn consists

of Pr = [PT
r1, . . . , P

T
rM ]T with each Pri ∈ R

ni . We do not assume that the matrix

P should be block diagonal which means that the cost function J is not separable.

However, we do assume that the vectors Pr have sparse structure. Sparsity refers to
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the property that for each r ∈ {1, . . . ,m} there exist some i ∈ {1, . . . ,M} such that

Pri = 0. We also have p = [p1, . . . , pm]T and γ > 0. This gives the following

equivalent formulation of (1)

J(x) =

M
∑

i=1

[

1

2
xT
i Hixi + gTi xi

]

+

m
∑

r=1

∣

∣

∣

∣

∣

M
∑

i=1

PT
rixi − pr

∣

∣

∣

∣

∣

. (2)

Minimization of (1) is subject to linear equality and inequality constraints

A1x = B1 A2x ≤ B2

where A1 ∈ R
q×n and A2 ∈ R

(s−q)×n contain al ∈ R
n as A1 = [a1, . . . , aq]

T

and A2 = [aq+1, . . . , as]
T . Further each al = [aTl1, . . . , a

T
lM ]T where ali ∈ R

ni .

Further we have B1 ∈ R
q and B2 ∈ R

s−q where B1 = [b1, . . . , bq]
T and B2 =

[bq+1, . . . , bs]
T . We assume that the matrices A1 and A2 are sparse. By introducing the

auxiliary variables xa and the constraint Px−p = xa we get the following optimization

problem:

min
x,xa

1
2x

THx+ gTx+ γ‖xa‖1

s.t. A1x = B1

A2x ≤ B2

Px− p = xa

(3)

The objective of the optimization routine is to solve (3) in a distributed fashion using

several computational units, where each computational unit computes the optimal lo-

cal variables, x∗
i , only. Each computational unit is assigned a number of constraints

in (3) that it is responsible for. We denote the set of equality constraints that unit i is

responsible for by L1
i , the set of inequality constraints by L2

i and the set of constraints

originating from the 1-norm by Ri. This division is obviously not unique but all con-

straints should be assigned to one computational unit. Further for l ∈ L1
i and l ∈ L2

i

we require that ali 6= 0 and for r ∈ Ri that Pri 6= 0. Now we are ready to define two

sets of neighbors to computational unit i:

Ni =
{

j ∈ {1, . . . ,M} | ∃l ∈ L1
i s.t. alj 6= 0

or ∃l ∈ L2
i s.t. alj 6= 0

or ∃r ∈ Ri s.t. Prj 6= 0
}

Mi =
{

j ∈ {1, . . . ,M} | ∃l ∈ L1
j s.t. ali 6= 0

or ∃l ∈ L2
j s.t. ali 6= 0

or ∃r ∈ Rj s.t. Pri 6= 0
}

Through the introduction of these sets the constraints that are assigned to unit i can

equivalently be written as

aTl x = bl ⇔
∑

j∈Ni

aTljxj = bl, l ∈ L1
i (4)

aTl x ≤ bl ⇔
∑

j∈Ni

aTljxj ≤ bl, l ∈ L2
i (5)

and the 1-norm term can equivalently be written as

|PT
r x− pr| =

∣

∣

∣

∑

j∈Ni

PT
rjxj − pr

∣

∣

∣
, r ∈ Ri. (6)
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In the following section, the dual function to be maximized is introduced. First, we

state some assumptions that will be useful in the continuation of the paper.

Assumption 1. We assume that each Hi in (2) is a real symmetric positive definite

matrix that satisfies the following eigenvalue bounds

σiI � Hi � σ̄iI

where 0 < σi ≤ σ̄i < ∞.

Remark 1. The corresponding bound for H becomes σI � H � σ̄I where σ :=
mini σi and σ̄ := maxi σ̄i. Also note that since H is positive definite we have 1

σ
I �

H−1 � 1
σ̄
I (c.f. [24, Corollary 7.7.4]).

Assumption 2. We assume that there exists a vector x̄ such that A1x̄ = b1 and A2x̄ <
b2. Further, we assume that al, l = 1, . . . , q and Pr, r = 1, . . . ,m are linearly inde-

pendent.

Remark 2. Assumption 2 is the Slater condition for (3) [1, Proposition 3.3.9] since

we can always choose x̄a = P x̄− p.

3. Dual problem

In this section we introduce a dual problem to (3) from which the primal solution

can be obtained. We show that this dual problem has the properties required to ap-

ply accelerated gradient methods. We also present some additional properties that are

needed to prove convergence rates of the primal variables.

3.1. Formulation of the dual problem

We introduce Lagrange multipliers, λ ∈ R
q, µ ∈ R

s−q
≥0 , v ∈ R

m for the constraints

in (3). Under Assumption 2 it is well known (cf. [25, §5.2.3]) that there is no duality

gap and we get the following dual problem

sup
λ,µ≥0,ν

inf
x,xa

{

1

2
xTHx+ gTx+ γ‖xa‖1 + λT (A1x−B1)+

+ µT (A2x−B2) + νT (Px− p− xa)

}

. (7)

After rearranging the terms and changing infx(·) to − supx(−(·)) we get

sup
λ,µ≥0,ν

{

− sup
x

[

− (AT
1 λ+AT

2 µ+ PT ν + g)Tx−
1

2
xTHx

]

(8)

− λTB1 − µTB2 − νT p− sup
xa

[

νTxa − γ‖xa‖1
]

}

.

The supremum over xa can be solved explicitly:

sup
xa

{

νTxa − γ‖xa‖1
}

= sup
xa

{

∑

i

[

νixi
a − γ|xi

a|
]

}
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=
∑

i

{

sup
xi
a

[

νixi
a − γ|xi

a|
]

}

=

{

0 if ‖ν‖∞ ≤ γ
∞ else

where super-script i denotes the i-th element in the vector. The supremum over xa be-

comes a box-constraint for the dual variables ν. This is crucial for distribution reasons.

Before we explicitly solve the maximization over x in (8) the following notation is

introduced

A = [AT
1 AT

2 PT ]T B = [BT
1 BT

2 pT ]T z = [λT µT νT ]T

where A ∈ R
(s+m)×n, B ∈ R

s+m and z ∈ R
s+m. We also introduce the set of feasible

dual variables

Z =







zl ∈ R l ∈ {1, . . . , q}
z ∈ R

s+m zl ≥ 0 l ∈ {q + 1, . . . , s}
|zl| ≤ γ l ∈ {s+ 1, . . . , s+m}







(9)

Completion of squares in the maximization over x in (8) gives

sup
x

[

− (AT
z + g)Tx−

1

2
x
T
Hx

]

=
1

2
(AT

z + g)TH−1(AT
z + g)

and we get the following dual problem

sup
z∈Z

{

−
1

2
(AT z + g)TH−1(AT z + g)− BT z

}

. (10)

We introduce the following definition of the negative dual function

f(z) :=
1

2
(AT z + g)TH−1(AT z + g) + BT z.

It is easily seen that f is convex and differentiable with the following gradient

∇f(z) = AH−1(AT z + g) + B. (11)

Next we show some properties of the dual function. The proofs for Propositions 1 and

2 below can be found in the Appendix.

Proposition 1. The gradient, ∇f , is Lipschitz continuous on Z with Lipschitz constant

L = ‖AH−1AT ‖2, i.e. for any z1 ∈ Z and z2 ∈ Z we have

‖∇f(z1)−∇f(z2)‖2 ≤ L‖z1 − z2‖2. (12)

Further, the Lipschitz constant, L, is the smallest constant such that (12) holds for all

z1 ∈ Z and z2 ∈ Z.

Remark 3. Note that it is known from [6, Theorem 1] that ∇f is Lipschitz continuous.

However, the Lipschitz constant provided in [6], L̄ = 1
σ
‖A‖2, is larger than the one

presented here.
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Proposition 2. Let Z∗ denote the set of optimal dual variables, defined as

Z∗ = {z∗ ∈ Z | f(z∗) ≤ f(z) ∀z ∈ Z}

The following statements hold:

1. Z∗ is non-empty and bounded

2. For any z∗ ∈ Z∗ and any z ∈ Z, we have

f(z)− f(z∗) ≥
1

2σ̄
‖AT (z − z∗)‖22. (13)

4. Distributed optimization algorithm

In this section we show how the accelerated gradient method can be used to dis-

tributively solve (3) by minimizing the negative dual function f . The accelerated proxi-

mal gradient method for problem (10) is defined by the following iteration as presented

in [8, Algorithm 2] and [7, Eq. 4.1-4.3]

vk = zk +
k − 1

k + 2
(zk − zk−1) (14)

zk+1 = PZ

(

vk −
1

L
∇f(vk)

)

(15)

where PZ is the Euclidean projection onto the set Z. Thus, the new iterate, zk+1, is the

previous iterate plus a step in the negative gradient direction projected onto the feasible

set.

For reasons that will be revealed later we define the primal iteration xk := H−1(−AT zk−
g). Using this definition, straightforward insertion of vk into (11) gives

∇f(vk) = −A

(

xk +
k − 1

k + 2
(xk − xk−1)

)

+ B

By defining x̄k = xk + k−1
k+2 (x

k − xk−1) and recalling the partition z = [λT µT νT ]T

and the definition (9) of the set Z, we find that (14)-(15) can be parallelized:

xk = H−1(−AT zk − g) (16)

x̄k = xk +
k − 1

k + 2
(xk − xk−1) (17)

λk+1
l = λk

l +
k − 1

k + 2
(λk

l − λk−1
l ) +

1

L
(aTl x̄

k − bl) (18)

µk+1
l = max

{

0, µk
l +

k − 1

k + 2
(µk

l − µk−1
l ) +

1

L
(aTl x̄

k − bl)
}

(19)

νk+1
r = min

{

γ,max
[

− γ, νkr +
k − 1

k + 2
(νkr − νk−1

r )

+
1

L
(PT

r x̄k − pr)
]}

. (20)

From these iterations it is not clear that the algorithm is distributed. By partitioning the

constraint matrix as

A = [A1, . . . ,AM ]
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where each Ai = [a1i, . . . , asi, P1i, . . . , Pmi]
T ∈ R

(s+m)×ni , and noting that H is
block-diagonal, the local primal variables are updated according to

x
k
i = H

−1

i

(

−A
T
i z

k
− gi

)

(21)

= −H
−1

i

(

gi +
∑

j∈Mi

[

∑

l∈L1

j

aliλ
k
l +

∑

l∈L2

j

aliµ
k
l +

∑

r∈Rj

Priν
k
r

])

Thus, each local primal update, xk
i , can be computed after communication with neigh-

bors j ∈ Mi. Through (4)-(6) we note that the dual variable iterations can be updated

after communication with neighbors i ∈ Ni. We get the following distributed algo-

rithm.

Algorithm 4.1. Distributed accelerated proximal gradient algorithm

Initialize λ0 = λ−1, µ0 = µ−1, ν0 = ν−1 and x0 = x−1

In every node, i, the following computations are performed:

For k ≥ 0

1. Compute xk
i according to (21) and set

x̄k
i = xk

i +
k − 1

k + 2
(xk

i − xk−1
i )

2. Send x̄k
i to each j ∈ Mi, receive x̄k

j from each j ∈ Ni

3. Compute λk+1
l according to (18), (4) for l ∈ L1

i

Compute µk+1
l according to (19), (5) for l ∈ L2

i

Compute νk+1
l according to (20), (6) for l ∈ Ri

4. Send {λk+1
l }l∈L1

i
, {µk+1

l }l∈L2

i
, {νk+1

r }r∈Ri
to each j ∈ Ni,

receive {λk+1
l }l∈L1

j
, {µk+1

l }l∈L2

j
and {νk+1

r }r∈Rj
from each j ∈ Mi

The convergence rates for the dual function f and the primal variables when running

Algorithm 4.1 are stated in the following theorem.

Theorem 1. Algorithm 4.1 has the following convergence rate properties:

1. Denote an optimizer of the dual problem (10) as z∗. The convergence rate is:

f(zk)− f(z∗) ≤
2L‖z0 − z∗‖22

(k + 1)2
, ∀k ≥ 1 (22)

2. Denote the unique optimizer of the primal problem as x∗. The rate of conver-

gence for the primal variable is

‖xk − x∗‖22 ≤
4σ̄L‖z0 − z∗‖22
σ2(k + 1)2

, ∀k ≥ 1 (23)
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Proof. The derivation of Algorithm 4.1 shows that it is a distributed implementation

of [8, Algorithm 2] and [7, Eq. 4.1-4.3] applied to minimize f . The convergence rate

in argument 1 follows from [8, Proposition 2] and [7, Theorem 4.4].

For argument 2 we first show that x∗ = H−1(−AT z∗ − g). KKT-conditions [25,

p. 244] imply that the primal optimal solution, x∗, and dual optimal solutions z∗ must

satisfy

0 = Hx∗ + g +AT z∗ ⇔ x∗ = H−1(−AT z∗ − g)

since H is invertible. This leads to

‖xk − x∗‖22 = ‖H−1(AT zk −AT z∗)‖22

≤ ‖H−1‖2‖AT zk −AT z∗‖22

≤
1

σ2
‖AT zk −AT z∗‖22

≤
2σ̄

σ2
(f(zk)− f(z∗)) ≤

4σ̄L‖z0 − z∗‖22
σ2(k + 1)2

.

where the second inequality is based on Remark 1, the third inequality on Proposition 2

and the final inequality is from (22). This completes the proof. �

4.1. Distributed step-size computations

To compute the step-size 1
L

for the distributed algorithm, the Lipschitz constant

L = ‖AH−1AT ‖2 for ∇f is needed. However, this is the 2-norm of a matrix whose

elements are spread over the different computational units, which may require non-

negligible computational/communicational overhead to compute. We have in Proposi-

tion 1 shown the smallest Lipschitz constant to ∇f . However, any Lipschitz constant

to ∇f can be used to choose the step-size and the results of Theorem 1 still hold. In this

section we present two ways to, in distributed fashion, compute a Lipschitz constant.

We define HA := AH−1AT . The first method relies on the following matrix result

[24, p. 313]

‖HA‖2 ≤ ‖HA‖F ,

√

∑

p

∑

q

[HA]2pq

Let p correspond to some l ∈ L1
i and q to some constraint k, then [HA]pq = aTl H

−1ak =
∑

j∈Ni
aljH

−1
j akj can be computed in a distributed fashion. All local terms can be

communicated to the other nodes to compute the norm.

Another alternative is to rely on the following result, [24, p. 313]

‖HA‖2 ≤
√

‖HA‖1‖HA‖∞ = ‖HA‖1 , max
p

(

∑

q

|[HA]pq|

)

where the first equality holds since HA is symmetric. As previously noted, the elements

[HA]pq can be computed in a distributed fashion and communicated to the other nodes

to compute the norm.

In the following section we will evaluate the algorithm with different step-sizes.

We denote by LF = ‖HA‖F and L1 = ‖HA‖1 and compare the performance using

step-sizes 1
LF

, 1
L1

to the optimal 1
L

.
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5. Numerical Example

In this section we evaluate the performance of Algorithm 4.1. We compare the

presented algorithm to state-of-the-art centralized optimization software for large-scale

optimization implemented in C, namely CPLEX and MOSEK. We also evaluate the

performance loss when using sub-optimal step-sizes. Our algorithm is implemented on

a single processor to be able to compare execution times.

The comparison is made on 100 random optimization problems arising in dis-

tributed MPC. A batch of random stable controllable dynamical systems with random

structure and random initial conditions are created. The sparsity fraction, i.e. the frac-

tion of non-zero elements in the dynamics matrix and the input matrix, is chosen to be

0.1. We have random inequality constraints that are generated to guarantee a feasible

solution and a 1-norm cost where the P -matrix and p-vector are randomly chosen. The

quadratic cost matrices are chosen Q = I and R = I . To summarize, we consider

problems of the form

min
x,u

{

N−1
∑

t=0

x(t)TQx(t) + u(t)TRu(t) +

∥

∥

∥

∥

P

[

x(t)
u(t)

]

− p

∥

∥

∥

∥

1

}

s.t.

x(t+ 1) = Ax(t) +Bu(t), t = 0, . . . , N − 2

A1

[

x(t)
u(t)

]

≤ b1, t = 0, . . . , N − 1

x(0) = x0

(24)

Table 1 shows the numerical results obtained by a Linux PC with a 3 GHz Intel Core

i7 processor and 4 GB memory.

Table 1: Algorithm comparison with 1-norm cost term and random state and input constraints. Algorithm 4.1

is implemented in MATLAB, while the others are implemented in C.

Alg. vars./constr. tol. # iters # exec (ms)

mean max mean max

4.1 (L) 4320/3231 0.005 69.8 160 253 609

4.1 (L1) 4320/3231 0.005 160 420 594 1532

4.1 (LF ) 4320/3231 0.005 248 640 934 2444

MOSEK 4320/3231 - - - 1945 2674

CPLEX 4320/3231 0.005 - - 1663 2832

4.1 (L) 2160/1647 0.005 63.8 100 94 200

4.1 (L1) 2160/1647 0.005 75.8 180 115 368

4.1 (LF ) 2160/1647 0.005 121 320 185 488

MOSEK 2160/1647 - - - 334 399

CPLEX 2160/1647 0.005 - - 282 522

The first column specifies the algorithm used where 4.1 is supplemented with the

step-size used. The second column specifies the number of variables and constraints in

the optimization problems. In the third column we have information about the duality

gap tolerance that is used as stopping condition in the algorithms (if possible to set).

The two final columns present the results in terms of number of iterations and execution

time. The difference between the upper and lower halves of the table is the size of the

problems that are solved.

Table 1 reveals that Algorithm 4.1 performs better than CPLEX and MOSEK on

these large-scale sparse problems despite the fact that CPLEX and MOSEK are imple-

mented in C and Algorithm 4.1 is implemented in MATLAB. We also conclude that

the choice of step-size in Algorithm 4.1 is important for performance reasons.
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6. Conclusions

We have presented a distributed optimization algorithm for strongly convex opti-

mization problems with sparse problem data. The algorithm is based on an accelerated

gradient method that is applied to the dual problem. The algorithm was applied to

large-scale sparse optimization problems originating from a distributed model predic-

tive control formulation. Our algorithm performed better than state-of-the-art opti-

mization software for large-scale sparse optimization, namely CPLEX and MOSEK,

on these problems.

7. Acknowledgments

The second author would like to thank Quoc Tran Dinh for helpful discussions on

the topic of this paper.

The second, third and fourth authors were supported by the European Union Sev-

enth Framework STREP project “Hierarchical and distributed model predictive con-

trol (HD-MPC)”, contract number INFSO-ICT-223854, and the European Union Sev-

enth Framework Programme [FP7/2007-2013] under grant agreement no. 257462 HY-

CON2 Network of Excellence.

The first and last authors were supported by the Swedish Research Council through

the Linnaeus center LCCC.

References

[1] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA, 2nd

edition, 1999.

[2] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course (Ap-

plied Optimization), Springer Netherlands, 1 edition, 2004.

[3] A. Nemirovsky, D. Yudin, Informational Complexity and Efficient Methods for

Solution of Convex Extremal Problems, Wiley, NewYork, NY, 1983.

[4] Y. Nesterov, A method of solving a convex programming problem with conver-

gence rate O (1/k2), Soviet Mathematics Doklady 27 (1983) 372–376.

[5] Y. Nesterov, On an approach to the construction of optimal methods of minimiza-
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8. Appendix

In this section we present the proofs for the propositions stating the properties of

the dual function.

8.1. Proof for Proposition 1

For convenience we introduce HA = AH−1AT . We have

‖∇f(z1)−∇f(z2)‖2 = ‖HA(z1 − z2)‖2 ≤ ‖HA‖2‖z1 − z2‖2

due to the Cauchy-Schwarz inequality. This shows that (12) holds. Next we show that

L = ‖HA‖2 is the smallest Lipschitz constant on Z. From the definition (9) of Z we

conclude that there exist z1 ∈ Z and z2 ∈ Z such that the difference dz = z1 − z2
with ‖dz‖ = ǫ is parallel to the eigen-vector vmax(HA) corresponding to the largest

eigen-value λmax(HA). By choosing vmax(HA) such that ‖vmax(HA)‖ = 1 we get

for some z1, z2 ∈ Z:

‖∇f(z1)−∇f(z2)‖2 = ‖HA(z1 − z2)‖2 = ‖HAdz‖2

= ‖HAvmax(HA)ǫ‖2

= λmax(HA)ǫ‖vmax(HA)‖2

= ‖HA‖2ǫ = ‖HA‖2‖dz‖

= ‖HA‖2‖z1 − z2‖

This completes the proof. �

8.2. Proof for Proposition 2

Under Assumption 2 it is well known (cf. [26, Corollary 28.2.2]) that the set

Z∗ is non-empty. Further from [27] we know that Assumption 2 is equivalent to

the Mangasarian-Fromovitz Constraint Qualification (MFCQ). In [27] it is shown that

MFCQ is equivalent to Z∗ being bounded. This shows argument 1.

To prove argument 2 we introduce f1(y) = 1
2y

TH−1y, which gives f(z) =
f1(A

T z + g) + BT z. From Remark 1 we know that H−1 � 1
σ̄
I and hence that f1

is strongly convex and satisfies (c.f. [2, Definition 2.1.2])

f1(y1) ≥ f1(y2) + 〈∇f1(y2), y1 − y2〉+
1

2σ̄
‖y1 − y2‖

2

We set y1 = AT z + g for any z ∈ Z and y2 = AT z∗ + g for any z∗ ∈ Z∗. This gives

f(z) = f1(A
T z + g) + BT z

12



≥ f1(A
T z∗ + g) + 〈∇f1(A

T z∗ + g),AT z + g −AT z∗ − g〉

+
1

2σ̄
‖AT z + g −AT z∗ − g‖22 + BT z + BT (z∗ − z∗)

= f(z∗) + 〈A∇f1(A
T z∗ + g) + B, z − z∗〉+

1

2σ̄
‖AT (z − z∗)‖22

= f(z∗) + 〈∇f(z∗), z − z∗〉+
1

2σ̄
‖AT (z − z∗)‖22

≥ f(z∗) +
1

2σ̄
‖AT (z − z∗)‖22

where the last inequality comes from the first-order optimality condition for convex

functions (cf. [2, Theorem 2.2.5])

〈∇f(z∗), z − z∗〉 ≥ 0.

for any z ∈ Z and z∗ ∈ Z∗. This completes the proof. �
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