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Distributed Tree-Based Model Predictive Control on an Open Water

System

J. M. Maestre, L. Raso, P. J. van Overloop and B. De Schutter

Abstract— Open water systems are one of the most externally
influenced systems due to their size and continuous exposure
to uncertain meteorological forces. In this paper we use a
stochastic programming approach to control a drainage system
in which the weather forecast is modeled as a disturbance tree.
A model predictive controller is used to optimize the expected
value of the system variables taking into account the distur-
bance tree. This technique, tree-based model predictive control
(TBMPC), is solved in a parallel fashion by means of dual
decomposition. In addition, different possibilities are explored
to reduce the communicational burden of the parallel algorithm.
Finally, the performance of this technique is compared with
others such as minmax or multiple model predictive control.

I. INTRODUCTION

Societies living near open waters strive at managing these

waters by trying to control the water levels in them. As

being open environmental systems, the open waters are

vulnerable to meteorological influences. With the passing

of the time, these disturbances can be predicted better and

over longer horizons. Over the last decade, as being able

to structurally handle anticipation, Model Predictive Control

(MPC) has been proposed for control of open water systems

in infrastructures with limited capacities and conflicting

objectives [18], [21]. MPC is a high-performance control

technique that handles in a systematic manner multi-variable

interactions, constraints on manipulated inputs and system

states, and optimization requirements. To this end, MPC

uses a system model to predict the state future evolution

along a given prediction horizon. The future predictions of

the state, output, and input variables are used to minimize

a given performance index, which is a cost function that

defines the optimization criterion used to determine the

best possible control action sequence. Due to its versatility,

MPC has become very popular in the industry and many

implementations can be found [2].

In this paper we are especially interested in the way

MPC deals with uncertainty. The simplest way is to let

the controller work in a nominal and deterministic fashion,
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which often results in a poor control performance. In general,

it is more robust to assume a bounded set of unmeasured

disturbances that may affect the system and then use min-

max MPC [20], so that the controller is ready to face

the worst possible scenario. Nevertheless, this approach

has shown to be very conservative and is translated into

slow response controllers [3]. An alternative approach to

deal with uncertainty is stochastic programming (SP) [8],

which models unknown disturbances as random variables and

focuses on the control of the expected value of the system

variables while guaranteeing robust constraint satisfaction.

Under this approach unknown disturbances can be also

taken into account by considering different representative

realizations of the disturbances. For example, this idea has

been previously used for the control of water systems in [19],

where multiple MPC (MMPC) is proposed.

In this work we use tree-based MPC (TBMPC) which is an

SP-MPC scheme that assumes that the time evolution of the

most relevant possible disturbance signals can be synthesized

in a rooted tree [13], [9]. Each root-to-leaf path is a possible

disturbance scenario, i.e., branches appear in the tree as the

different disturbance forecasts diverge along the prediction

horizon. As a result of this, the controller provides us with a

rooted tree of control actions that are calculated according to

the different sequences in the disturbance tree. Consequently,

non-anticipativity constraints [14] are introduced in the op-

timization problem in order to limit the anticipative nature

of the control sequences. At this point, it is important to

remark that in this paper we assume that all the scenarios

contained in a tree have the same value at the first step of

the prediction horizon. This assumption is reasonable in the

context of open water systems, where the weather forecasts

provide a good indication about how the disturbances will

be specially at the beginning of the forecasted period.

Probably, the major issue about MPC is its computational

burden, which is prohibitive for large-scale systems [10].

In order to overcome this problem, different distributed

MPC (DMPC) techniques have been proposed during the

last decade; see [15] for an extensive survey on this topic.

In general, DMPC focuses on the application of MPC to

systems that are composed of several subsystems governed

by local controllers or agents. Each of these agents imple-

ments a local MPC controller and may or may not share

information with the other subsystems. In this paper we

use dual decomposition [12], [11] in order to distribute the

TBMPC optimization problem. This approach has been also

previously used in water management, in particular for water

resources system planning; see [4].



Besides the application of distributed control techniques

in order to consider different scenarios in the control of

water systems, this paper studies the reduction of the com-

municational burden imposed by the use of dual decompo-

sition. Specifically, we show that the limitation of the non-

anticipativity constraints in the prediction horizon provides

similar closed-loop performance with significantly less com-

municational burden. Likewise, we study different thresholds

as stopping condition in the parallel algorithm. Finally,

the performance of the controller is compared with other

techniques that has been previously used in the literature

such as MMPC [19].

II. DMPC BASED ON SCENARIO DECOMPOSITION

In this section we provide with the grounds for under-

standing how the scenario trees are generated in the first

place. Next, we deal with the basic formulation of the MPC

problem and explain how its computation can be distributed

by means of dual decomposition.

A. Ensemble forecasting

In open water systems, the uncertainty is generally intro-

duced by the unpredictable nature of the weather. Specifi-

cally, runoff derived from rainfall are the major source of

uncertainty in this context. An ensemble forecast (EF) is

a weather prediction composed of possible trajectories of

its evolution. It is generated by a model that is run using

different initial conditions or different numerical represen-

tations of the atmosphere, accounting for the major sources

of forecast uncertainty [5]. These trajectories have generally

small differences at the initial stage of the forecast; then

they tend to diverge, because of the chaotic nature of the

underlying model. Finally, notice that each of the trajectories

in the EF has a certain associated probability.

For simulation purposes, a large number of scenarios

improves the accuracy of the stochastic approach. However,

this may lead to an excessive growth of the computational

burden. In order to avoid this problem, a representative

subset of scenarios can be chosen using a scenario reduction

algorithm [6]. This reduced ensemble is bundled into a

tree that will allow us to set up a multistage stochastic

programming problem. In general, the tree is generated from

the ensemble by aggregating trajectories over time until the

difference between them becomes such that they can be no

longer assumed to be similar. At such a point, a bifurcation

is produced and the tree branches. The operation of tree

generation has been the subject of numerous studies, for

example [6], [17].

B. Model Predictive Control

At first, we begin analyzing a standard MPC controller.

Let the model of the system be described by the following

discrete time equation:

x(k + 1) = Ax(k) +Bu(k) + Ew(k) (1)

where x(k) ∈ R
q is the state of the system at time step k,

u ∈ R
r is the vector of manipulated variables, and w ∈ R

s

is a vector of measurable disturbances. A,B, and E are

matrices of proper dimensions. We consider linear constraints

in the states and the inputs, i.e., x ∈ X and u ∈ U , where

X and U are closed polyhedra defined by a system of linear

inequalities. Without loss of generality, we can assume that

the control objective consists in regulating the state vector to

the origin. To this end, it is possible to define the following

performance index

J(U, x0) =
Nh−1
∑

k=0

(

xT (k)Qx(k) +Qlx(k) + uT (k)Ru(k)
)

+xT (Nh)Qx(Nh) +Qlx(Nh)
(2)

where Q,Ql, and R are constant weighting matrices of the

proper size and Nh is the prediction horizon. Taking into

account equation (1), it can be seen that function J depends

on the control input sequence U = (u(0), . . . , u(Nh − 1))
and the value of the state at time step k = 0, x0. The

MPC controller calculates the optimal control action by

minimizing this cost:

U∗ = argmin
U

J(U, x0)

s.t.
x(k + 1) = Ax(k) +Bu(k) + Ew(k)
x(k) ∈ X ∀k ∈ {1, . . . , Nh}
u(k) ∈ U ∀k ∈ {0, . . . , Nh − 1}
x(0) = x0

w(k) = wk

(3)

where wk = (w0, w1, w2, . . . , wNh
) is a deterministic se-

quence composed by the present and future values of the

disturbances. The result of this optimization problem is the

optimal control sequence U∗ = (u∗(0), . . . , u∗(Nh − 1)).
Only the first component of U∗ is applied. The rest of the

sequence provides information about the expected evolution

of the manipulated variables in the future but is not imple-

mented during the next sample times. At the next sample

instant, the optimization problem (3) is solved using the

current state at that time and the most recent disturbance fore-

cast. The first component of the resulting control sequence is

implemented again. This procedure is repeated every sample

time in what is usually denominated as receding horizon

strategy. Distributed TBMPC uses the tree provided by the

ensemble forecasting and solves the problem (3) taking into

account the sequences contained in the tree. In particular,

problem (3) is solved for each possible disturbance sequence

in the tree. Notice that the resulting set of problems can

be solved by a set of agents in parallel. Thus, if there are

Ns different scenarios in the tree, there are Ns different

agents working in parallel. Nevertheless, the problem faced

by the agents has more constraints than (3). Additional

restrictions have to be imposed in order to account for the

non-anticipativity constraints in the optimization procedure.

To this end, we define the boolean auxiliary function δi,j(k)
so that δi,j(k) = 1 iff ui(k) = uj(k), i.e., the control input

of agent i must have the same value of the control input of

agent j at time k.

In order to have an input tree with the same structure as



the disturbance tree, δi,j(k) must be 1 for k = 0, . . . , kij ,

where kij is first the time step at which the disturbance

sequences corresponding to agents i and j are different.

From a centralized point of view, the problem solved by

a TBMPC controller is the following:

min
U1,...,UNs

Ns
∑

i=1

αiJ(Ui, x0)

s.t.
xi(k + 1) = Axi(k) +Bui(k) + Ewi(k)
xi(k) ∈ X ∀k ∈ {1, . . . , Nh}
ui(k) ∈ U ∀k ∈ {0, . . . , Nh − 1}
xi(0) = x0

wi(k) = wi,k

δi,j(k)ui(k) = δi,j(k)uj(k)
∀j ∈ {1, .., Ns}, k ∈ {0, . . . , Nh − 1}







































∀i ∈ [1, Ns]

(4)

where wi,k = (wi,0, wi,1, . . . , wi,Nh
) is a deterministic

sequence composed by the present and future values of

the disturbances faced by agent i and αi is the probability

assigned to the disturbance sequence wi,k.

C. Dual Decomposition

In order to solve problem (4) in a distributed fashion,

it is necessary to remove the coupling constraints of the

type ui(k) = uj(k). Dual decomposition can be used to

this end [1]. In particular, the introduction of Lagrange

multipliers λi,j(k) allows us to separate the problem:

max
Λ

min
U1,...,UNs

Ns
∑

i=1

(

αiJ(Ui, xi,0)

+
Ns
∑

j=1

Na
∑

k=0

δi,j(k)λi,j(k)(ui(k)− uj(k))

)

s.t.
xi(k + 1) = Axi(k) +Bui(k) + Ewi(k)
xi(k) ∈ X ∀k ∈ {1, . . . , Nh}
ui(k) ∈ Ui ∀k ∈ {0, . . . , Nh − 1}
xi(0) = x0

wi(k) = wi,k























∀i ∈ [1, Ns]

(5)

where Λ = {λi,j(k), ∀i, j ∈ {1, .., Ns}, k ∈
{0, Na} | δi,j(k) = 1} is the set of all the Lagrange

multipliers, sometimes referred to as set of prices. Notice

that we have introduced a new parameter, Na, which is the

agreement horizon. Ideally, Na = Nh − 1, i.e, the agents

have to respect the non-anticipativity constraints defined over

the entire horizon. Nevertheless it may be desirable to limit

the effect of these constraints in time so that the number of

coupling constraints is reduced.

As it can be seen, problem (5) can be solved in a

distributed fashion. The following algorithm shows the dis-

tributed optimization procedure that takes place at time step

k:

• Step 0: Let l be the index used to count the number of

iterations of the procedure. Initially l = 0 and an initial

set of prices Λ0 is given.

• Step 1: At each iteration l, each agent i calculates

its own optimal input trajectory solving the following

problem for a particular set of values of the Lagrange

multipliers Λl:

U∗
i = argmin

Ui

(

αiJ(Ui, x0)

+
Na
∑

k=0

ui(k)
∑

j 6=i

δi,j(k)λ
l
i,j(k)

)

s.t.
xi(k + 1) = Axi(k) +Bui(k) + Ewi(k)
xi(k) ∈ X ∀k ∈ {1, . . . , Nh}
ui(k) ∈ U ∀k ∈ {0, . . . , Nh − 1}
xi(0) = x0

wi(k) = wi,k

(6)

Notice that problem (6) corresponds to the part of

problem (5) that corresponds to agent i.
• Step 2: Once the input trajectories have been calculated,

the prices of agent i are updated by a gradient step:

λl+1
i,j (k) = λl

i,j(k) + γl(ui(k) − uj(k)). Notice that a

price is only changed whenever there is a disagreement

about the value of the variable between the agents.

Convergence of these gradient algorithms has been

proven under different type of assumptions on the step

size sequence γl [16]. Note that in order to update

the prices, the agents must communicate. See [7] for

alternatives in the way the prices can be updated.

• Step 3: Let ∆u(k) = max
i,j

|ui(k) − uj(k)|. The al-

gorithm stops if ∆u(k) ≤ ∆umax, where ∆umax is

a parameter that represents the maximum allowable

difference between the proposals of any two agents.

In case that u(k) is a vector, this criterion is applied

componentwise. Alternatively, the algorithm also stops

if the number of iterations l exceeds a given threshold

lmax. Otherwise, the process is repeated from step 1 for

l = l + 1.

Fig. 1. Schematization of drainage water system.

III. RESULTS AND DISCUSSION

We have applied the distributed TBMPC controller to a

model of a real drainage system described in [19]. In Figure 1

a sketch of the water system can be seen. There are three

important variables in this figure. In the first place we have



the controlled variable, h (m), which is the average water

level with respect to average sea level. The second variable is

Qc (m3/s), which represents the effect of pumping water out

of the system and is the manipulated variable. Finally, there

is a disturbance term given by Qd (m3/s), which stands for

the inflow of water due to rainfall. The discrete-time model

used to represent the dynamics of the drainage canal system

is:

h(k + 1) = h(k)−
Tc

As

Qc(k − kd) +
Tc

As

Qd(k) (7)

where As is the average storage area (m2), Tc is the control

time step (s), kd is the number of delay steps between control

action and change in average water level, and k is the time

step index. A state space model based on equation (7) will

be used for the controller. In particular, the model will focus

on the error between the current water level and the water

level setpoint. Let href be the constant water level setpoint.

Thus, the error e(k) in the water level can be calculated

as e(k) = h(k) − href . In addition, the state vector will

be expanded with the state variable ezone(k) in order to

represent explicitly how much the error e(k) is above or

below of a given safety margin defined around the water

level setpoint. Taking all of this into consideration, we can

define the following space state model:





e(k + 1)
ezone(k)
Qc(k)



 =





1 0 − Tc

As

1 0 − Tc

As

0 0 1



 ·





e(k)
ezone(k − 1)
Qc(k − 1)





+





0 0
0 −1
1 0



 ·

[

∆Qc(k)
uzone(k)

]

+





Tc

As

Tc

As

0



 · [Qd(k)]

(8)

Note that a new variable has been introduced in this model,

uzone(k), which is related to the constraints of the optimiza-

tion problem the MPC controller solves. In particular, hard

constraints are defined on the input of the system and a soft

constraints are introduced on the state:

Qc(k) ∈ [0, Qc,max]
uzone(k) ∈ [hmin − href , hmax − href ]

These constraints help us explain better the meaning of

uzone(k). According to (8), ezone(k) may seem equal to

a duplicated version of e(k + 1). The difference between

them is that ezone(k) is affected by the auxiliary manipulated

variable uzone(k), so that ezone(k) = 0 as long as e(k +
1) stays between hmin and hmax. Note that uzone(k) is

introduced only in order to avoid infeasibility problems.

The behavior of the disturbance Qd(k) in (8) is modeled

as a tree that contains its most representative possible tra-

jectories along the prediction horizon. The data contained in

the tree that is given to the controller each time sample k is

obtained from artificial ensemble forecasts that are generated

using meteorological models.

In Figures 2(a) and 2(b), we show the results of a closed-

loop simulation of the proposed scheme during 25 hours,

TABLE I

MODEL AND CONTROLLER PARAMETERS

Parameter Symbol Value

Storage area As 7.3e6 (m2)

Control time step Tc 900 (s)

Number of scenarios in the tree Ns 6

Prediction horizon Nh 16

Control horizon Nc 16

Maximum pump capacity Qmax 75 (m3/s)

Delay in the actuation kd 1

Maximum number of iterations lmax 2000

Agreement horizon Na 10

Disagreement threshold ∆umax 1 (m3/s)
Quadratic penalty on e Qe 180

Quadratic penalty on ezone Qezone 180e5

Linear penalty on Qc Ql,Qc
130e-5

Quadratic penalty on ∆Qc R∆Qc
1e-6

Quadratic penalty on uzone Ruzone
1e-16

which corresponds to a 100 time steps. The simulation

takes place during a stormy event that tests the controller

capability to keep the water level within the desired margin.

The numerical values of the parameters that characterize the

system and the cost function of the controller can be seen

in Table I. In addition, we have carried out simulations with

values different from the ones shown in Table I in order to see

their influence in the controller performance. In particular,

these additional simulations were carried out for different

values of the agreement horizon, Na, and the disagreement

threshold, ∆umax.

At first, in Figure 2(a), the results of a centralized MPC

controller with a perfect forecast are depicted. Notice that

this case is given only as a reference since a perfect forecast,

i.e. an exact knowledge about the future evolution of weather,

cannot be obtained. However, this case gives us an upper

bound for the performance of the rest of the controllers.

In Figure 2(b) the centralized TBMPC configured with the

parameters of Table I can be seen.

In general, it is not possible to calculate the exact number

of optimization variables that the centralized TBMPC prob-

lem has; it depends on the structure of the tree. An upper

bound is r ×Ns × (Nc − 1) + r, where r is the dimension

of the manipulated variables vector, Ns is the number of

scenarios and Nc is the control horizon. This corresponds to

the case in which the tree branches completely after the first

time step in the horizon. A lower bound is given simply by

r×Nc, assuming that there is only one scenario in the tree.

The distributed algorithm that we use in this paper substitutes

a problem with up to r × Ns × (Nc − 1) + 1 optimization

variables by Ns separable problems with r × Nc variables

that have to be solved iteratively until an agreement has

been reached. The size of the problem that we use in this

paper as an example is not big enough to demand the use

of parallel computation, but it helps us illustrate how the
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Fig. 2. Simulation cases: (a) MPC with perfect forecast, (b) TBMPC.

problem is distributed and the iterative procedure that takes

place for the convergence. In our example, the number of

optimization variables is bounded between 32 and 182, and

its distributed version is composed of 6 problems with 32
optimization variables for each one.

The separation of the original optimization problem into

several separable optimization problem comes at a price:

these problems have to be solved iteratively until an agree-

ment has been obtained. In Table II, the number of iterations

needed for convergence are shown for different values of

the agreement horizon, Na. As expected, a greater value of

Na implies a higher number of iterations, which is logical

since it implies a higher number of variables on which

the agents must reach an agreement. A question that arises

naturally is how a change of Na affects the performance of

the controller. Table II also helps to answer this question.

The pump flow difference between the centralized TBMPC

and its distributed versions have been analyzed in order to

calculate its mean and standard deviation along the 100 time

steps of the simulation. As it can be seen, the results are

quite similar. These results suggest that the completeness of

the set of non-anticipativity constraints is not so relevant in

the calculation of the first component of the control vector.

In addition, Table II shows in its last column the value of

the cumulated cost of the closed-loop system at the end

of the simulation. This value is calculated according to the

performance index defined in (2) and the parameters given in

Table I. It is interesting to observe how the performance of

these controllers was very similar to the performance shown

by the centralized TBMPC.

Table II shows that the maximum deviation from the

control signal provided by the centralized TBMPC is always

below 3%, but this value can be reduced with a proper

adjustment of the disagreement threshold ∆umax, which is

another degree of freedom with a strong influence on the

number of iterations. For this reason, Table III shows the

impact of a variation of ∆umax. As ∆umax grows, the

number of iterations and the quality of the solution decrease.

Finally, we have performed closed-loop simulations with

TABLE II

IMPACT ANALYSIS OF AN AGREEMENT HORIZON VARIATION

(∆umax = 1).

Iterations l
for convergence

Pump flow

diff. (m3/s)

Na Mean
Std.

dev.
Mean

Std.

dev.

Cum.

cost

Cen. - - 0 0 2.31e5

1 16.56 27.44 0.00 0.58 2.44e5

3 38.17 64.49 -0.01 0.51 2.35e5

5 70.84 121.57 -0.02 0.35 2.37e5

TABLE III

IMPACT ANALYSIS OF A DISAGREEMENT THRESHOLD ∆umax

VARIATION (Na = 16).

Iterations l
for convergence

Pump flow

diff. (m3/s)

∆umax Mean
Std.

dev.
Mean

Std.

dev.

Cum.

cost

Cen. - - 0 0 2.31e5

0.5 297.01 461.25 -0.00 0.12 2.32e5

1 169.82 279.41 -0.03 0.39 2.32e5

2 79.15 141.83 -0.00 0.63 2.42e5

several controllers for the sake of comparison. In particular,

we have tested the following controllers:

• PFMPC: MPC with perfect forecast.

• TBMPC: Centralized TBMPC controller.

• DTBMPCx: Distributed implementation of the TBMPC

controller where x is the value of the agreement horizon.

The following values were tested: Na = 1, 3, 5.

• ProbMPC: MPC with a single forecast consisting on the

weighted average of all the scenarios.

• MMPC: Multiple MPC, which is presented in [19].



TABLE IV

TOTAL CUMULATED COST COMPARISON

Controller Total cumulated cost

Mean Std. Dev

PFMPC 1.42e7 4.77e7

TBMPC 1.56e7 4.87e7

DTBMPC1 1.57e7 4.86e7

DTBMPC3 1.56e7 4.87e7

DTBMPC5 1.58e7 4.86e7

ProbMPC 1.77e7 5.21e7

MMPC 1.77e7 5.21e7

MinmaxMPC 1.86e7 5.46e7

• MinmaxMPC: Min-Max MPC implemented as in [3].

A total number of a 100 different simulations were carried

out for the test. The disturbances used in the simulations

were based on real rainfall data from the Netherlands and

their severity ranges over the whole spectrum of possible

scenarios. Specifically, the maximum inflow into the drainage

system of each simulation was chosen between 0 and 500

m3/s. For each one of these simulations, the drainage system

was controlled in closed-loop during 25 hours by each

controller. The total cumulated cost of the 25 hours was

computed according to the performance index defined in (2)

and the parameters given in Table I. The results can be

seen in Table IV and are consistent with the expectations

about the performance of the controllers. Naturally, the

PFMPC outperforms the rest of the controllers with a great

difference. Then it can be seen how the TBMPC and its

distributed versions offer the best performance of the rest of

the controllers. The probMPC and the MMPC controllers are

a step behind these controllers. Finally, the minmax offers

the worst performance of all the controllers tested.

IV. CONCLUSIONS

In this paper we have presented an implementation of

TBMPC in a distributed fashion by means of dual decom-

position. The distributed formulation allows us to apply

TBMPC to problems with a higher number of optimization

variables than traditional MPC controllers and sets the basis

for distributed TBMPC. In addition, we have carried out

experiments using a drainage water system as a benchmark

in order to test how the number of iterations needed for

convergence vary as different parameters change. It has

been shown that a proper choice of the agreement horizon

Na and the disagreement threshold ∆umax can reduce the

number of iterations in a significant manner, while keeping

almost constant control performance. Our results suggest

that the relevance of the non-anticipativity constraints is

low from a control point of view. Nevertheless, the absence

of these constraints makes the control signals calculated

by the controller unrealistic for those time steps different

from the first one. Finally, the TBMPC and its distributed

versions have been compared to other controllers in the same

benchmark. The results of our simulations showed that the

TBMPC outperformed the rest of the alternatives considered,

such as minmax MPC or MMPC, and it can be concluded

that the TBMPC and its distributed versions are suitable

controllers to deal with the uncertain inflows that are typical

for this kind of open water systems.
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[8] D. Muñoz de la Peña, A. Bemporad, and T. Alamo. Stochastic

programming applied to model predictive control. In CDC-ECC

’05. 44th IEEE Conference on Decision and Control 2005 and 2005

European Control Conference, pages 1361 – 1366, Seville, Dec. 2005.
[9] J. M. Mulvey and A. Ruszczynski. A new scenario decomposition

method for large-scale stochastic optimization. Operations Research,
43(3):477–490, 1995.

[10] R. R. Negenborn, B. De Schutter, and H. Hellendoorn. Multi-agent
model predictive control of transportation networks. In Proceedings of

the 2006 IEEE International Conference on Networking, Sensing and

Control (ICNSC 2006), pages pp. 296–301, Ft. Lauderdale, Florida,
April 2006.

[11] R. R. Negenborn, B. De Schutter, and H. Hellendoorn. Multi-agent
model predictive control for transportation networks: Serial versus
parallel schemes. Engineering Applications of Artificial Intelligence,
21(3):353–366, April 2008.

[12] A. Rantzer. Dynamic dual decomposition for distributed control. In
American Control Conference, 2009. ACC ’09, pages 884 –888, St.
Louis, MO, June 2009.

[13] L. Raso, P. J. van Overloop, and D. Schwanenberg. Decisions
under uncertainty: Use of flexible model predictive control on a
drainage canal system. In Proceedings of the 9th Conference on

Hydroinformatics, Tianjin, China, 2009.
[14] R.T. Rockafellar and R.J.-B. Wets. Scenario and policy aggregation in

optimization under uncertainty. Mathematics of Operation Research,
16(1):119–147, 1991.

[15] R. Scattolini. Architectures for distributed and hierarchical model
predictive control - a review. Journal of Process Control, 19:723–
731, 2009.

[16] N. Z. Shor. Minimization Methods for Nondifferentiable functions.
Springer, 1985.

[17] K. Sutiene, D. Makackas, and H. Pranevicius. Multistage k-means
clustering for scenario tree construction. Informatica, 21(1):123–138,
2010.

[18] P. J. van Overloop. Model Predictive Control on Open Water Systems.
PhD thesis, Delft University of Technology, Delft, The Netherlands,
2006.

[19] P. J. van overloop, S. Weijs, and S. Dijkstra. Multiple model predictive
control on a drainage canal system. Control Engineering Practice,
16(5):531–540, 2008.

[20] W. S. Witsenhausen. A minimax control problem for sampled linear
systems. IEEE Transactions on Automatic Control, 13(1):5–21, 1968.

[21] A. Zafra-Cabeza, J. M. Maestre, M. A. Ridao, E. F. Camacho, and
L. Sánchez. A hierarchical distributed model predictive control
approach in irrigation canals: A risk mitigation perspective. Journal

of Process Control, 21(5):787–799, 2011.


