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Micro-Ferry Scheduling Problem with Time Windows

M. Burger, B. De Schutter and J. Hellendoorn

Abstract— We propose a method to solve scheduling problems
taking into account energy-efficiency and variable speeds. We
focus on a scheduling problem for autonomous micro-ferries,
where the task of assigning transportation requests to specific
micro-ferries and determining the order of handling them is
done centrally. The method is based on the travelling salesman
problem and vehicle routing problem with time-windows, but
differs in the inclusion of constraints on the energy-consumption
and an increased flexibility in travel times, which are both
influenced by varying the speed of the micro-ferries. This results
in a mixed-integer non-linear programming problem, which
can be transformed into a mixed-integer linear programming
problem by using an approximation of the speed variables.

I. INTRODUCTION

The Port of Rotterdam in the Netherlands stretches from

the North Sea up to the centre of the city. Currently, it is

being expanded at the sea side by reclaiming 16 km2 of

land from the sea [1]. Due to the expected movement of

the port industry from the City Ports (Stadshavens) to this

new area Maasvlakte 2, the harbour area close to the city

centre becomes available for development of new living and

business areas. In order to connect the different parts of the

City Ports, transportation over water is expected to become

important. Envisioned is a water bus network called Aquanet,

which will be manned and operated with a fixed schedule.

Besides this water bus network there would be possibilities

for an on demand autonomous micro-ferry network to ac-

count for fast and personal transportation between several

locations in the harbour. Figure 1 shows a schematic view

of the Rotterdam City Ports, including an example network

of docking locations for the micro-ferries. In this paper we

describe the modelling of such a micro-ferry network, and

develop the optimisation problem that needs to be solved

to schedule transportation requests, taking into account both

the possibility to travel at different speeds and the energy

consumption of the micro-ferries.

The problem of scheduling transportation requests in a

harbour using micro-ferries is closely related to several

standard optimisation problems in logistics, such as the pick-

up and delivery problem [2], [3], the travelling salesman

problem [4], the vehicle routing problem [5], and the dial-

a-ride problem [6], but differs in the use of variable speeds,

and thereby variable costs in the objective function. We want

to optimise the transportation between a fixed number of

This work is supported by the Delft Research Center Next Generation
Infrastructures (DRC-NGI), and the European Union Seventh Framework
Programme [FP7/2007-2013] under grant agreement no. 257462 HYCON2
Network of Excellence.

All authors are with the Delft Center for Systems and Control, Delft
University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
{m.burger, b.deschutter, j.hellendoorn}@tudelft.nl

Rijnhaven

Fig. 1. Schematic view of the City Ports with an example network of
pick-up and delivery locations

stations, where a small group of people can share a ferry,

just like a taxi on land. The ferries will pick the people

up at one station, and directly deliver them to their desired

destination; we assume that no stops are made in between to

add more people to the ferry. As such this problem becomes

a dial-a-ride problem, where first all passengers have to be

delivered at their destination, before a new pick-up can be

made. We solve a static problem, as opposed to dynamic

problems where e.g. the arrival times of customers are based

on random distributions [7].

The novelty in the proposed micro-ferry scheduling prob-

lem is the use of variable costs dependent on speeds. Both

the energy consumption and the travel times of a micro-

ferry will be dependent on the speed, and by assigning a

separate speed for each transportation request we add more

flexibility to the scheduling problem. By adding constraints

on the energy consumption of each micro-ferry, we obtain a

schedule that does not assign more requests to a micro-ferry

than it can handle based on its energy level.

The structure of this paper is as follows. In Section II the

micro-ferry scheduling problem is presented, by introducing

the necessary variables and constants. They are used in Sec-

tion III to introduce the optimisation problem, by stating the

objectives and constraints of the system. This leads to a non-

linear optimisation problem, for which a linear programming

approximation is derived in Section IV. Conclusions and

ideas about future work can be found in Section V.

II. PROBLEM FORMULATION

To describe and solve the micro-ferry scheduling problem,

we consider two distinct networks. First the physical network

is introduced, in which the micro-ferries move between

several locations. Afterwards, the problem of scheduling

requests is defined as a network problem, where each request

corresponds to a node that should be visited once.



A. Description of the physical network

We consider a harbour, lake or river where a fleet of

M micro-ferries can pick up and deliver customers at L

distinct locations. The amount of transportation requests

between the locations is denoted by R. The micro-ferries

can travel at different speeds bounded by the interval [u,u],
with 0 < u < u. The locations are represented by the set

L = {1, . . . , L}. The matrix L ∈ R
L×L
+

contains the path

lengths lpq ≥ 0 between the locations p and q (with p, q ∈L);

we have lpq = 0 if and only if p = q.

The customers can make transportation requests to be

brought from one location to another. The setR = {1, . . . ,R}
denotes the different requests; each request r∈R has a pick-

up location pr ∈L, a delivery location qr ∈L, and a desired

time-interval [ta,r, tb,r] for the pick-up to take place.

The set R consists of two types of requests: current re-

quests and future requests. The setM = {1, . . . ,M} denotes

the current requests, consisting of the requests that the M

micro-ferries are handling at the moment the scheduling

problem is to be solved. The set N = {M+1, . . . ,R} denotes

the future request, which still need to be scheduled in time,

and assigned to the micro-ferries. The set R is defined as

R ∶=M ∪N = {1, . . . ,M,M + 1, . . . ,R}, (1)

with R =M +N the total number of requests.

B. Description of the scheduling problem

The scheduling problem associated with the network de-

scribed above consists of finding assignments of requests to

micro-ferries such that

i) each requests is handled by one (and only one) vehicle;

ii) the energy consumption needed to fulfil the requests

does not exceed the available energy level;

iii) the distance travelled by the ferries is minimised;

iv) the pick-ups for the requests should (preferably) be

within the desired time-interval.

The problem can be represented by a graph G = (R,A)
where R = {1, . . . ,R} is a set of nodes associated with the

requests, and A = {(i, j) ∶ i, j ∈R} is a set of arcs connecting

the nodes. The nodes consist of two groups, one associated

with the M current requests and one associated with the N

future requests, numbered as defined in the set R in (1).

1) Node properties: Associated with each node r∈R are

variables tr ∈ R indicating the scheduled starting time (the

time at which the customer is picked up), kr ∈M indicating

the micro-ferry number and er ∈ R+ indicating the energy

level of the micro-ferry after completion of request r.

We define a cost crr indicating the distance from the pick-

up location pr to the delivery location qr of request r as

crr ∶= lprqr . (2)

If the node number r > M , it is associated with a future

request n = r − M , and the distance crr > 0 equals the

distance from pr to qr. When the node number r ≤M , it

is associated with a micro-ferry m = r performing a request,

and crr ≥ 0 equals the distance of the currently handled

request; if the ferry waits at a location the distance is zero.

2) Arc properties: Associated with each arc a∈A are

binary variables xij ∈ {0,1} indicating whether (xij = 1) or

not (xij = 0) node j is ‘visited’ directly after node i by a

micro-ferry, and constants cij ∈ R+ indicating the ‘cost’ to

schedule request j after request i. This cost is defined as

the distance needed to travel from the delivery location qi of

request i towards the pick-up location pj of request j; when

request j directly succeeds request i, the micro-ferry has to

travel without a passenger aboard for a distance

cij ∶= lqipj
. (3)

If the locations are the same, we have cij = 0.

III. DEFINITION OF THE OPTIMISATION

PROBLEM

Using the network definitions and the variables described

in the previous section, we can define the optimisation

problem of this paper. First we describe several objective

functions, which define the terms we wish to minimise. After

that the constraints on the optimisation variables are given.

A. Objective function

The objective function used in this paper establishes

a trade-off between energy consumption, empty-travel dis-

tance, and the travel time for customers. A trade-off can be

made between the different objectives by using the weighting

variables αec, αet, αtt ≥ 0 in the objective function

J = αecJec + αetJet + αttJtt. (4)

Definitions of the objectives Jec, Jet and Jtt are given next.

1) Energy consumption: A common way to model the

dynamics of a vessel is by the vectorial representation [8]

Mν̇ +Cν +Dν + τe = τc, (5)

where ν = [u, v, r]⊺ is the velocity vector consisting of the

surge speed u, the sway speed v, and the rotational speed r,

matrix M is a symmetric, positive definite mass matrix, C

is a skew-symmetric Coriolis and centripetal forces matrix,

D is a symmetric, positive definite damping matrix, τe is

a force vector representing external disturbances (e.g. wind

and currents), and τc is the control vector representing the

forces exerted by the actuators. Using the force balance (5)

we can write the kinetic energy of a surface vessel as

Ekin =
1

2
ν
⊺

Mν, (6)

and the associated power (due to movement) becomes

Pkin =
d

dt
Ekin =

1

2
[ν̇⊺Mν + ν⊺Mν̇] = ν⊺Mν̇ (7)

= ν⊺[−Dν + τc − τe] = [τc − τe]
⊺

ν − ν⊺Dν.

In order to take the energy consumption of the micro-

ferries into account, we use a simplified expression for the

power based on the along-path speed uj for request j.

Furthermore, we assume we have a homogeneous fleet of

micro-ferries, meaning that all micro-ferries have the same

properties. Besides the quadratic and linear terms of (7) due



to the kinetic energy, we also add a constant term to include

energy losses due to a running motor when the micro-ferries

are not moving. Therefore, the power of the micro-ferries

will be a second order function in the speed, written as

P (uj) = p2u2

j + p1uj + p0, (8)

where the constants p0,p1,p2 ≥ 0 are properties of the

specific micro-ferry model.

We will assign a constant speed uj per request j within

an allowed range [u,u], hence we can obtain the energy

consumption associated with this request by multiplying the

power by the duration of the request. The time Tij(uj)
associated with a request j can be found by dividing the

distance by the speed. Therefore, the energy consumption

ǫij of request j when it is preceded by request i is given by

ǫij = P (uj)Tij(uj) = (p2u2

j + p1uj + p0)
cij + cjj

uj

= (p2uj + p1 + p0
1

uj

)Cij , (9)

where cij (defined in (3)) is the path length from the

delivery location of request i towards the pick-up location of

request j, and cjj (defined in (2)) is the path length between

the pick-up and delivery location of request j. Variable

Cij ∶= cij + cjj (10)

is a constant representing the total distance travelled when

request i precedes request j.

The energy consumption ǫij represents the energy that

would be used when the request associated with node j

directly succeeds the request of node i; if this is not the

case, the energy consumption ǫij is not actually consumed.

Therefore, the total energy consumption can be written as

Jec =
R

∑
j=1

ǫj =
R

∑
j=1

R

∑
i=1

(p2uj + p1 + p0
1

uj

)Cijxij (11)

where the energy consumption term

ǫj ∶=
R

∑
i=1

ǫijxij = (p2uj + p1 + p0
1

uj

)
R

∑
i=1

Cijxij , (12)

represents the energy consumption that will be used for

request j. A lower energy consumption means lower (fuel)

costs for the owner, and less pollution.

2) Empty-travel distance: The distances a micro-ferry is

travelling without a customer aboard are undesired costs for

the owner. Although it is penalised by (11) already, one might

want to penalise it more to reduce operational costs.

The empty-travel distance between two requests associated

with nodes i and j are given by the costs cij ; the empty-

travel distance of the fleet is found by summing up the costs

Jet =
R

∑
i=1

R

∑
j=1

cijxij . (13)

3) Travel time: The travel time for a passenger is given

by the length of his/her trip divided by the speed, that is

Jtt =
R

∑
i=1

cii

ui

. (14)

A lower travel time means a better service for the customer,

since they will arrive at their desired location earlier.

B. Constraints

There are several constraints on the optimisation variables

of the micro-ferry scheduling problem that need to be

satisfied to obtain a useful solution to our problem. These

constraints are discussed in detail next.

1) Scheduling variables xij: The variables xij represent

the order of handling the requests; if xij = 1 request j is

handled directly after request i by the same micro-ferry

ki ∈M. To ensure that all requests are handled by one and

only one ferry, we use the constraints (see e.g. [4], [9])

R

∑
i=1

xij = 1 ∀ j ∈R, (15a)

R

∑
j=1

xij = 1 ∀ i∈R. (15b)

The constraints (15a) ensure that all the nodes in the graph G
have exactly one outgoing arc; every request is preceded by

exactly one other request. The constraints (15b) ensure that

all the nodes in the graph G have exactly one incoming arc;

every request is succeeded by exactly one other request.

2) Start time variables ti: At the time we run the op-

timisation algorithm, it is likely that some micro-ferries are

currently handling a request. To obtain correct start times for

the following requests, the start times of the requests that are

currently handled are assigned to the vehicle nodes as

ti = t0,i ∀ i∈M, (16)

where t0,i represents the start time of the request currently

handled by micro-ferry ki ∈M; if no request is handled by

micro-ferry ki one should assign the current time.

The start times ti of requests i∈R should be consistent;

that is, if request j directly succeeds request i using the same

micro-ferry, start time tj should be at least the start time of

request i, plus the time it takes to perform the pick-up and

delivery of request i, plus the time it takes to move the micro-

ferry from the delivery location of request i to the pick-up

location of request j. This can be stated as the constraints

tj ≥ ti +
cii

ui

+
cij

uj

if xij = 1, (17)

for all i, j ∈R, or equivalently

(ti − tj +
cii

ui

+
cij

uj

)xij ≤ 0. (18)

This non-linear inequality can be rewritten in an equivalent

linear form in two steps. First we substitute the speed

variables ui by their reciprocals

wi ∶=
1

ui

⇒ w ∶=
1

u
≤ wi ≤ w ∶=

1

u
. (19)



Secondly we define a large constant T (based on the big-M

method [10]). The non-linear inequality constraints (18) can

then be substituted by the linear inequality constraints

ti − tj + ciiwi + cijwj +Txij ≤ T ∀i, j ∈R. (20)

3) Slack variables sa,i and sb,i: As stated in the problem

formulation, a desired time interval [ta,i, tb,i] is associated

with each request i∈R for the start time ti. Inequality

constraints can be used to force the start time to lie within

this interval, but this makes it possible for the optimisation

problem to become infeasible. To avoid infeasibility we add

two slack variables sa,i and sb,i representing the amount of

time the start time is scheduled too early and to late respec-

tively. The associated inequality constraints then become

ta,i − sa,i ≤ ti ∀i∈R, (21a)

tb,i + sb,i ≥ ti ∀i∈R, (21b)

sa,i, sb,i ≥ 0 ∀i∈R. (21c)

The start times should preferably be inside or close to the

time windows. Deviations from the time-windows can be

penalised by using the objective function

Jsv =
R

∑
i=1

αsasa,i + αsbsb,i, (22)

where the coefficients αsa, αsb ≥ 0 can be used to alter the

relative importance of early or late starting times; if αsa > αsb
starting earlier than the desired time interval is penalised

more than starting later than the desired time interval.

4) Assignment variables ki: The constraints of (15) assure

that each node in graph G has exactly one incoming arc and

one outgoing arc. For scheduling purposes this is not enough.

There are two possible situations that need to be avoided.

If there exists a sub-tour within the request nodes, it

means that the associated requests are not assigned to a

micro-ferry. This problem has been addressed and solved

by Miller, Tucker and Zemlin in [11] (and extended and

improved in [12]), and the solution is known as the MTZ

sub-tour elimination constraints. The method is based on the

idea of associating potentials to the nodes in the network, and

ensuring that the potential increases along the arcs. Here the

start times have taken over the role of the node potentials,

and (20) can be seen as the sub-tour elimination constraints.

Since we assign a separate node to each micro-ferry, tours

that include more than one micro-ferry node can exist. To

avoid this, we introduce a method that can be considered to

be the dual of the MTZ sub-tour elimination constraints: with

every node we associate a current flowing through the arcs.

By assigning a unique current to each of the micro-ferry

nodes (these nodes can be thought of as current sources),

and having the knowledge that all nodes have exactly one

incoming and one outgoing arc (due to (15)), we can exclude

the possibility that two micro-ferry nodes share the same

tour. Indeed, by assuring that node j has the same current as

node i if there exists an arc from i to j (xij = 1), there will

be a conflict when node j represents a second micro-ferry,

since it already has another current assigned to it. We set

ki = i ∀i∈M (23)

to assign a unique current to the micro-ferry nodes, and

(ki − kj)xij = 0 ∀i, j ∈R (24)

to assign currents to the other nodes. For a feasible

solution the currents ki in the network have values

1 ≤ ki ≤M due to the assignment in (23), and therefore

ki − kj ≤M − 1 =∶M ∀i, j ∈R. We can substitute the non-

linear constraints (24) by the equivalent linear constraints

ki − kj +M(xij − 1) ≤ 0 ∀i, j ∈R. (25)

This would result in R2 inequality constraints. We can reduce

this to 1/2R(R + 1) inequality constraints by using

ki − kj +M(xij + xji − 1) ≤ 0 ∀i, j ∈R, i ≤ j. (26)

Note: Inequality constraints (26) eliminate loops in the

network. This means that only solutions will be found where

all micro-ferries will handle at least one request. This might

be unnecessary and suboptimal, and would even lead to

infeasibility of the problem when the number of future

requests is less than the number of micro-ferries (i.e. if

N <M ). Therefore, we will use the adjusted formulation

ki − kj +M(xij + xji − 1) ≤ 0 ∀(i, j)∈K (27)

where the set K is given by

K = {(i, j) ∶ {i, j ∈R, i < j} ∪ {i, j ∈N , i = j}} (28)

to allow for loops at the micro-ferry nodes (representing a

waiting micro-ferry), which are 1/2R(R−1)−M constraints.

See Appendix I for more details.

5) Energy level variables ei: With every micro-ferry node

i∈M we associate an initial energy level e0,i by using

ei = e0,i ∀i∈M. (29)

Using the energy-consumption term (9), we can determine

the energy levels of the micro-ferries after completion of a

request j. If a micro-ferry handles request j directly after

request i, we have ej = ei − ǫij as the energy level after

handling request j. Therefore

(ei − ej − ǫij)xij = 0 ∀i∈R, j ∈N . (30)

These non-linear constraints can be written in an equivalent

linear form by choosing an appropriately large constant E,

and substituting (30) by the linear inequality constraints

ej − ei + ǫij + Exij ≤ E ∀i∈R, j ∈N , (31a)

ei − ej − ǫij + Exij ≤ E ∀i∈R, j ∈N . (31b)

Using e and e to denote the minimum and maximum energy

levels of the micro-ferries, the constraints

e ≤ ei ≤ e, ∀i∈R (32)

ensure that the schedule is such that micro-ferries will never

run out of energy; if there is not enough initial energy in

the micro-ferries to conduct all requests, the optimisation

problem is infeasible. This could be overcome by including

charging in the scheduling, and is considered as future work.



IV. LINEAR PROGRAMMING APPROXIMATION

In the previous section we have described the model for the

micro-ferry scheduling problem. The objective function (11)

becomes non-linear due to the energy consumption terms ǫij
defined in (9). We will use an approximation of the speed in

order to obtain a mixed-integer linear programming problem.

A. Approximation of the speeds

The speed uj is related to the variable wj by (19) as

uj = w-1
j . (33)

We approximate this by a piece-wise affine (PWA) function

ûj =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

a1wj + b1, w0 ≤ wj ≤ w1

⋮ ⋮
aPwj + bP , wP−1 ≤ wj ≤ wP

(34)

where P denotes the amount of sections, w0 = w, wP = w as

defined in (19), and the scalars wp are optimisation variables

for all p ∈ {1, . . . , P − 1}. We minimise the error uj − ûj in

a least-squares sense to obtain the values of w1, . . . ,wP−1

(with wp < wp+1), a1, . . . , aP , and b1, . . . ,bP .

Using the methods described in [13, Section 3.4] we can

transform the PWA function (34) into a single function. We

introduce R ⋅ P binary variables zjp, representing

[zjp = 1] ⇔ [wj ≤ wp]. (35)

The logical rules (35) can be enforced by using

wj −wp ≤ (w −w)(1 − zjp), (36a)

wp −wj ≤ (w −w)zjp, (36b)

where (36a) ensures zjp = 0 when wj > wp, and (36b)

ensures zjp = 1 when wj < wp. Note that all zjq = 1
for q = p + 1, . . . , P if zjp = 1, since wp < wp+1 for all

p = {1, . . . , P}. Using the variables zjp with zjP = 1, the

PWA function (34) can be written as

ûj = (A1wj +B1)zj1 +⋯+ (Apwj +Bp)zjP , (37a)

where A1, . . . ,Ap and B1, . . . ,Bp are constants given as

Ap = ap − ap+1 ∀p ∈ {1, . . . , P − 1}, AP = aP , (37b)

Bp = bp − bp+1 ∀p ∈ {1, . . . , P − 1}, BP = bP . (37c)

Figure 2 shows an example where 2 ≤ uj ≤ 5 using three

sections. The continuous, blue curve shows (33), whereas the

striped, green lines represent the approximation (37). The

dotted, black lines indicate the positions of w1 and w2.

B. Linearised formulation of the energy consumption

Using the approximation (37) of uj , the approximation of

the energy consumption term (12) can be written as

ǫ̂j = (p2ûj + p1 + p0
1

uj

)
N

∑
i=1

(cij + cjj)xij , (38)

= [p2
P

∑
p=1

{(Apwj +Bp)zjp} + p1 + p0wj]
N

∑
i=1

Cijxij
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Fig. 2. Real function u and its piece-wise affine approximation û

with Cij defined in (10). This equation is non-linear, since

it contains multiplications of the variables wj , zjp and xij .

Using the ideas presented in [13] we will transform (38) into

an equivalent linear form as follows.

First we introduce new variables fj . Notice that by (15a)

only one xrj equals one for each j, and hence the sum

∑N
i=1 Cijxij equals the constant Crj for which xrj = 1;

Cijxij = 0 for all i ≠ r. If the variable fj satisfies

fj ≤ Cijwj + (f − f)(1 − xij) ∀i∈N , (39a)

fj ≥ Cijwj + (f − f)(xij − 1) ∀i∈N , (39b)

where f and f are a lower bound and an upper bound on the

product Cijwj respectively, we obtain fj ≙ wj∑
N
i=1 Cijxij ;

constraints (39a) give upper bounds on fj with a minimum

of wjCij when xij = 1; constraints (39b) give lower bounds

on fj , with a maximum of wjCij when xij = 1.

Next we define the new variables gjp, and again use the

property that only one element xrj = 1 for each j. If

gjp ≤ gzjp, gjp ≤
N

∑
i=1

Cijxij + g(zjp − 1), (40a)

gjp ≥ gzjp, gjp ≥
N

∑
i=1

Cijxij + g(zjp − 1), (40b)

where g and g are a lower bound and an upper bound on the

constants Cij respectively, we obtain gjp ≙ zjp∑
N
i=1 Cijxij .

Finally, we introduce new variables hjp satisfying

hjp ≤ fzjp, hjp ≤ fj + f(zjp − 1), (41a)

hjp ≥ fzjp, hjp ≥ fj + f(zjp − 1), (41b)

such that hjp ≙ zjpfj . Substituting the non-linear terms in

(38) by the variables fj , gjp, and hjp results in

ǫ̂j = p0fj + p1
N

∑
i=1

Cijxij + p2
P

∑
p=1

(Aphjp +Bpgjp), (42)

which is a linear function in the variables fj , gjp and hjp.

The problem becomes a mixed-integer linear program by

substituting (11) by the linear approximation

Ĵec =
N

∑
j=1

[p0fj+p1
N

∑
i=1

Cijxij+p2
P

∑
p=1

(Aphjp+Bpgjp)]. (43)



V. CONCLUSIONS AND FUTURE WORK

In this paper a method is proposed to schedule the trans-

portation requests of micro-ferries. This method can be seen

as a novel variant of the travelling salesman problem, or more

specifically the vehicle routing problem, where we include

variable speeds and energy consumption. Besides influencing

the energy consumption, the variable speeds add flexibility

in the time it takes to handle a request, making it possible

to satisfy time window constraints that otherwise would not

be feasible. The exact formulation results in a mixed-integer

non-linear programming problem, but by using a piece-wise

affine approximation of the speed we can present the problem

as a mixed-integer linear programming problem.

This paper presents the first modelling results of the micro-

ferry scheduling problem, and serves as a basis for future

work. The current work can be expanded to take into account

the charging of the micro-ferries, to make it possible to

obtain schedules for long time-periods. Using e.g. a rolling

horizon approach, one can then use the knowledge about the

daily transportation needs by including expected requests in

the problem to account for trends in the transportations. The

linearisation provides accurate results, but by introducing

new binary variables the mixed-integer linear program be-

comes hard to solve for large numbers of requests. Therefore,

alternative methods to solve the original (non-linear) problem

might be developed.

APPENDIX I

NODE CURRENTS WITH LOOPS

This appendix provides a more detailed derivation of the

inequality constraints (27) and their associated set K defined

in (28). Recall that the set R is the concatenation of the

sets M (associated with the current requests/micro-ferries)

and N (associated with the future requests); node index i

satisfies i ∈ {1, . . . ,M} if i∈M and i ∈ {M + 1, . . . ,R} if

i∈N . The constraints of (26) can be split into four sets:

i) arcs (i, j) from micro-ferry nodes (i∈M) towards

micro-ferry nodes (j ∈M);

ii) arcs (i, j) from micro-ferry nodes (i∈M) towards

future request nodes (j ∈N );

iii) arcs (i, j) from future request nodes (i∈N ) towards

micro-ferry nodes (j ∈M);

iv) arcs (i, j) from future request nodes (i∈N ) towards

future request nodes (j ∈N ).

If we would use the inequality constraints (26), there will

be R constraints where i = j such that

ki − ki + (xii + xii − 1) = 2xii − 1 ≤ 0, (44)

and hence —since xii ∈ {0,1}— this can only be satisfied if

xii = 0. Within the network setting this means that a node i

cannot have a loop to itself; this result is desired for the

nodes associated with the future request in N , but not for

the nodes associated with the current requests M.

Within the network of requests G = (R,A), an arc (i, j)
with j ∈M represents the final arc in the tour for micro-

ferry kj ∈M; that is, request i is the last request handled

by micro-ferry kj . Therefore, a loop at a node j ∈M would

mean that vehicle kj will handle its current request, and does

not take on any future requests. This behaviour is desirable,

as it can be better (with respect to the objectives) to not use a

particular micro-ferry; when the number of future requests is

smaller than the number of micro-ferries it is necessary, since

there are not enough nodes belonging to set N to create M

tours. Therefore, we should allow the possibility that xjj = 1
for j ∈M. This is done by substituting (26) with

ki − kj +M(xij + xji) ≤M ∀i∈M, j ∈M, i < j (45a)

ki − kj +M(xij + xji) ≤M ∀i∈M, j ∈N , i ≤ j (45b)

ki − kj +M(xij + xji) ≤M ∀i∈N , j ∈M, i ≤ j (45c)

ki − kj +M(xij + xji) ≤M ∀i∈N , j ∈N , i ≤ j (45d)

where (45a) excludes the set of constraints where i = j for

i, j ∈M, such that loops are allowed for these nodes. Note

that (45c) does not add any constraints, since i > j if i∈N
and j ∈M; furthermore, in (45b) we can use i < j since i < j
if i∈M and j ∈N . Inequality constraints (45) can thus be

described as a set of constraints where i < j for i, j ∈R plus

a set of constraints where i = j for i, j ∈N . We obtain

ki − kj +M(xij + xji − 1) ≤ 0 ∀i, j ∈R, i < j (46a)

ki − kj +M(xij + xji − 1) ≤ 0 ∀i, j ∈N , i = j (46b)

where (46a) ensures that ki = kj when θij = 1 or θji = 1,

while (46b) prevents the existence of loops for the nodes

associated with the future requests. This results in the con-

straints (27) for the set K of arcs (i, j) given by (28).
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