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Distributed Identification of the Cell Transmission Traffic Model: A

Case Study

Marco Rinaldi, Luca Capisani, Antonella Ferrara, Alfredo Núñez, Mohammad Hajiahmadi, Bart De Schutter

Abstract— The problem of the distributed identification of a
macroscopic first-order traffic model, viz. the Cell Transmission
Model (CTM), is considered in the paper. The parameters to be
identified characterize the dynamics of the density in different
sections of the freeway (cells). We explore different distributed
identification schemes. The purposes of the approach are mainly
to obtain good prediction models through the minimization of
the one-step ahead prediction error of the densities of the cells,
and to reduce the computational time and the effort required to
perform the identification. The methodology is validated relying
on real-life data measured on a portion of the A12 freeway
in The Netherlands. An evaluation of the performance of the
identified model used as a set of virtual sensors in different
scenarios is presented.

I. INTRODUCTION

The design of advanced control and prediction systems

that are able to regulate or predict the flow of vehicles on a

freeway requires the knowledge of a suitable model of the

specific portion of the freeway to be considered, see e.g. [3],

[8]. The choice of the model is dictated by the particular

requirements to be satisfied. While microscopic models take

into account the behavior and the dynamics of each single

vehicle present on the freeway, macroscopic models are par-

ticularly useful when little computation power is available.

Those models are based on the vehicle conservation principle

and are able to model the dynamics of the average flow,

density, and velocity of different segments of the freeway. In

particular, macroscopic first-order models [6], [13] describe

the dynamics of the densities in different segments of the

freeway called “cells”, and are based on the fundamental

assumption that the relation between the density and the

flows in each cell is given by a pre-specified fundamental

diagram, see [2], [5], [9].

In this paper we deal with the distributed identification

of a macroscopic first-order traffic density model, viz. the

Cell Transmission Model (CTM), developed in [5], [6]. This

model is a linear switching system [11], and the parame-

ters to be identified characterize the dynamics of different

cells. Those parameters are: the free velocity, the maximum

density, and the backward congestion propagation speed.
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In cases when, for example, an accident occurs, or there

are changes in the weather, a fast and good identification

method is essential to update, for example, the model used

in a model predictive control (MPC) scheme so to decide

how to modify a reconfigurable controller, or to trigger a

fault detection scheme. To perform the identification for the

whole highway section in those cases is computationally

prohibitive as the optimization problem we solve is highly

non-linear, [1], [4], [10]. Therefore, in this paper the purpose

is to extend the results obtained in [14], [15], estimating a set

of parameters that minimize a proposed objective function

in a fast and distributed way. This function has a twofold

objective. On one hand, to obtain parameters suitable for

prediction, monitoring, and control, it takes into account

the minimization of the one-step ahead prediction error of

the densities of the cells. On the other hand, to decide

how to properly split the identification problem (a nonlinear

optimization problem), into smaller but more tractable ones,

it changes the interactions between different hierarchical and

distributed optimization problems. Some consequences of

the topology we select in this step are also related to the

robustness of the identification procedure, the total compu-

tational time required to identify the whole highway, the

level of communication between the distributed problems,

the number of parameters to be obtained, etc. It is important

to highlight that while most of the literature focuses on the

problem of distributed control and state estimation design, in

this paper we focus on the distributed identification problem.

Even if we validate the procedure reference to a specific class

of hybrid non-linear systems, the methodology we propose

in the paper is general and can be used for the identification

of other classes of distributed parameter systems [12].

The outline of the paper is as follows. In Section 2, the

CTM is presented. In Section 3, the identification procedure

is proposed. In Section 4, we use real data to identify

the parameters of the model, and we evaluate the resulting

models under different scenarios. Finally, conclusions and

future works are highlighted.

II. CELL TRANSMISSION MODEL (CTM)

The CTM [6] represents a network with a set of elementary

components called cells, interconnected by junctions, con-

taining on-ramps and off-ramps. Within each cell the density

of vehicles is homogeneous. The network is represented by

links divided into N segments of length L with λ lanes. Each

segment i represents one cell. The cells are characterized by

the traffic density ρi(k) (veh/lane/km) and the flow in the

junction qi(k) (veh/h). In each cell at most one type of ramp



can exist (or not), where the flow entering via an on-ramp or

the flow leaving the cell via an off-ramp is denoted by ui(k)
(veh/h). An extra variable γi ∈ {−1,0,1} is introduced in

order to indicate whether the flow variable ui(k) represent the

flow leaving the cell via an off-ramp (γi =−1), the entering

flow via an on-ramp (γi = 1), or the cell does not have any

ramps at all (γi = 0). For each cell i, the following equations

hold:

ρi(k+1) = ρi(k)+
T

Lλ
(qi(k)−qi+1(k)+ γiui(k)),

qi(k) = min{vi−1ρi−1(k),qi,M,wi(ρi,M −ρi(k))},
(1)

where k indicates the time instant t = kT , and T is the

time step used for the simulation of the traffic flow (in our

case T = 10s), vi(km/h) is the free flow speed, qi,M(veh/h)
is the maximum flow between the upstream cell and the

downstream cell, wi(km/h) is the backward congestion prop-

agation speed, and ρi,M(veh/km) the maximal density of cell

i. In Fig. 1 the elements of the CTM are depicted.

ρi−1(k) ρi(k) ρi+1(k)
qi(k) qi+1(k)

γi−1ui−1(k) γiui(k) γi+1ui+1(k)

Cell i-1 Cell i Cell i+1

Fig. 1. Cell Transmission Model.

In this paper, the identification procedure will be explained

with a single link case study, with no on-ramps or off-

ramps. Next we write a synthetic representation of the

CTM, which is an important hybrid system in the field

of traffic. The PWA structure of the CTM could be ex-

ploited in further considerations of controller designs, closed

loop analysis, etc. Let us introduce a state vector xT (k) =
[ρ1(k),ρ2(k), ...,ρN(k)] ∈ R

N , the input vector uT (k) =
[q1(k),qN+1(k)] ∈R

2 for the whole freeway section, and the

vector of unknown parameters θ T = [vT ,wT ,ρM
T ] ∈ R

3N ,

with vT = [v1,v2, ...,vN−1] ∈ R
N−1, wT = [w2,w3, ...,wN ] ∈

R
N−1, ρM

T = [ρ2,M,ρ3,M, ..., ρN−1,M] ∈ R
N−1. From (1), a

nonlinear dynamic state equation can be derived having the

general form:
{

x(k+1) = fCTM(x(k),u(k),θ),
y(k) =CT x(k),

(2)

where fCTM(·) is a non-linear function defined by a Piece-

Wise Affine (PWA) model. For the identification purposes,

we assume to have one sensor for each state (CT = IN , with

IN the identity matrix). A PWA model has the following

structure [7]:
{

x(k+1) = A jx(k)+B ju(k)+ f j,
if Gx

jx(k)≤ Gc
j

(3)

where the subindex j takes values from 1 to 2N , so the

number of PWA dynamics is 2N , each one defined over a

set χ j of a polyhedral partition. Every set χ j of the partition

defines the state-input space over which the different dy-

namics are active. The dynamics are defined by the matrices

A j, B j, and vector f j. The sets of the partition are defined

by hyper-planes given by matrices Gx
j, and Gc

j. The model

(3) is supposed to be well-posed, and then the regions χ j

form a complete partition of the output regressor set χ ,

i.e.,
⋃2N

j=1 χ j = χ and χ j ∩ χk = /0, ∀ j 6= k. Then, the set of

inequalities Gx
jx(k) ≤ Gc

j in the system (3), should be split

in strict inequalities (<) and non-strict inequalities (≤). For

simplicity in the notation this issue will be neglected. The

vectors and matrices that define (3) for j = 1, ...,2N are in

the Appendix.

The region χ j represents one of the 2N discrete states of

the traffic in the highway. Next we will define the meaning

of the state j. Let us first obtain the number j in terms

of binary variables j = [1,2,22, ...,2N−1]δ j, where δ j =
[δ j

1 ,δ
j

2 , ...,δ
j

N−1,δ
j

N ]
T ∈ {0,1}N . If δ

j
i = 1 we will assume

that in the region j the cell i is in free flow. If δ
j

i = 0,

then in the region j the cell i is congested. For example,

if N = 8, there are 28 regions. For the region j = 100,

δ 100 = [1,1,0,0,1,0,0,0]T , so the cells 1, 2 and 5 are in

free flow state, while the rest are under congestion. In the

notation used in [11], δ 100 = [F,F,C,C,F,C,C,C]T where F

stands for free flow and C for congested flow.

III. IDENTIFICATION PROCEDURE

Throughout this paper we assume that Nd input/output data

have been collected:

Φ =




(x1)T (u1)T

(x2)T (u2)T

...
...

(xNd)T (uNd)T




Nd+1,N+2

, (4)

where Nd denotes the number of data samples, (xk)T =
y(k) = [ρ1(k),ρ2(k), ...,ρN(k)] ∈ R

N are the outputs, and

(uk)T = [q1(k),qN+1(k)] ∈ R
2 are the inputs. All those vari-

ables were measured at time steps k = 0, ...,Nd.

Next, an identification procedure is carried out by min-

imizing an objective function with respect to the unknown

parameters θ of the CTM. In a PWA black-box identification,

we would need data from each of the j = 2N regions, in order

to obtain the parameters. However, since each of the regions

is actually defined by just 3(N − 1) parameters (for each

cell the parameters are [vi−1,wi,ρi,M]T ), it is not necessary

to have data in each of the 2N regions. The collected data

should contain enough information for each cell, to make the

modeling and prediction of the congested and the free flows

cells possible.

The fastest and most simple approach to calibrate the CTM

is based on comparing the fundamental diagram with a real

one [14], [15], minimizing the following function:

Vstatic(θ) =
1

NdN

Nd

∑
k=1

N

∑
i=1

(
qi(k)−

max{0,min{vi−1ρi(k),wi(ρi,M −ρi(k))}}
)2

(5)



This approach is static, because it does not consider the

dynamics of the system, but only the interpretability of

the fundamental diagram assumed for the CTM (triangular

shape). In order to obtain a good prediction capability of

the model (e.g. for control purposes), we should consider

explicitly the prediction capabilities of the CTM, minimizing

an objective function such as:

V (θ) =
1

NdN

Nd

∑
k=1

N

∑
i=1

(ρi(k)− ρ̂i(k|k−1))2 (6)

where ρ̂i(k|k − 1) is the one-step ahead prediction given

by the CTM. In large highway networks, performing the

identification for the whole highway section may take several

minutes, unacceptable in a control setting. To deal with

this problem, in this paper we propose to use distributed

optimization schemes. The identification procedure is divided

in two steps. Firstly, we split the optimization problem into

smaller but more tractable ones. This step is actually an

integer optimization problem that could be further gener-

alized, as it involves many variables like communication,

computational time, computational effort, the topology of

the network, etc. In the second step, given the distributed

scheme, we will obtain the parameters of the CTM that

minimize the one-step ahead prediction of the densities.

A. Distributed schemes: Information exchange

For cell i the parameters needed to completely define

the CTM model are θi = [(θ 1
i )

T ,(θ 2
i )

T ]T , where θ 1
i =

[vi−1,wi,ρi,M]T are the shared parameters with the model

of the cell i − 1 and θ 2
i = [vi,wi+1,ρi+1,M]T the shared

parameters with model of the cell i+ 1. In the model for

cell 1 we only need to identify θ 2
1 = [v1,w2,ρ2,M]T , and in

the cell N the parameters are θ 1
N = [vN−1,wN ,ρN,M]T . Note

that to obtain the fundamental diagram of cell i we use θ 2
i .

The distributed identification problem of the highway can

be represented using an interconnected network of sub-

systems (the identification procedure of the parameters θi

needed for cell i), that can be described by a directed graph

G = (V ,E ), where the nodes in V are the subsystems and

the edge ( j, i) in the set E ⊆ V × V models how the j-

th subsystem communicates directly its common parameters

with the i-th subsystem.

Assuming we use one-step ahead prediction, we will have

four cases for the communication between the identification

procedures of the parameters θi needed for the model of cell

i and the parameters θ j needed for the model of cell j (let

us assume θ 2
i and θ 1

j to be the common parameters between

the optimization procedures for cell i and j). If ( j, i) 6∈ E

and (i, j) 6∈ E then the parameters of cell i and j will be

obtained independently. If ( j, i) ∈ E and (i, j) ∈ E then the

identification procedures for cells i and j will be performed

in a group optimization algorithm that includes the constraint

θ 2
i = θ 1

j , meaning that the shared parameters between i

and j will be obtained at the same time, with a consensus

algorithm, or in joint optimization. If ( j, i)∈ E and (i, j) 6∈ E

then the optimization procedure of cell j will hierarchically

communicate the shared parameters, so the procedure of cell

i will wait to receive from j the information (θ 1∗
j ) to assume

θ 2
i = θ 1∗

j and then it will obtain the remaining parameters.

The fourth case is (i, j) ∈ E and ( j, i) 6∈ E , analogous to the

previous one.

In total, for the CTM identification we may have 4N−1

information exchange combinations. To select an optimal

structure, some criteria could be the following: computational

time, decay rate of transmission, CPU times, RMS of the

output, etc. To limit the number of possible solutions, we can,

for example, avoid groups of more than 3 cells. In this paper,

we solve the identification problem for few but representative

cases (see Figure 2): decentralized, hierarchical, and mixed

hierarchical-distributed scheme.

1

2

3

4

5

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5

Fig. 2. Distributed schemes, 1) Decentralized, 2) Centralized, 3) Hierarchi-
cal forward, 4) Hierarchical backward, 5) Mixed hierarchical-decentralized

B. Distributed schemes: Parameters identification

We will say that the optimization problems of the con-

secutive cells iini until the cell ifin will form a group if: 1)
they are completely connected, so the edges (i, i+ 1) and

(i+ 1, i) are in E , i = iini, ..., ifin − 1, and 2) at least one of

the edges in the cell iini (edges (iini −1, iini) or (iini, iini −1))
and at least one of the edges in the cell i f in (the edges

(ifin + 1, ifin) or (ifin, ifin + 1)) do not belong to E . In this

case, the identification of the cells will be solved including as

constraints the fact that there are shared parameters between

consecutive optimization problems.

Once the communication structure E is determined, the

following algorithm determines the order according to which

each optimization problem has to be solved:

Step 1: Define Vc the set nodes (identification problems)

whose parameters θi are known. Set l = 0 the iteration of

this algorithm.

Step 2: If Vc \V = {} then stop. Otherwise, l = l + 1, and

choose the nodes i belonging to Vc \V that are in a group

of cells (or alone) not waiting to receive information. Call

this set of optimization problems El .

Step 3: For each of the groups in the set El , let say the

group {iini, ..., ifin}, solve the following optimization problem

to identify the parameters:



min
{θiini

,...,θifin
}

ifin

∑
i=iini

Vi(θi)

Vi(θi) =
1

Nd

Nd

∑
k=1

(ρ i(k+1)− ρ̂i(k+1|k))2

ρ̂i(k+1|k) = ρ i(k)+
T

Li

(qi(k)−qi+1(k))

qi(k) =





min{vi−1ρ i−1(k),wi(ρi,M −ρ i(k))}, i > 1

q1(k), i = 1

qN+1(k), i = N +1

θ 2
j = θ 1

j+1, j = iini, ..., ifin −1

i f (iini −1, iini) ∈ E ⇒ θ 1
iini

= θ ∗2
iini−1

i f (ifin, ifin +1) ∈ E ⇒ θ 2
ifin

= θ ∗1
ifin+1

(7)

where the data collected from k = 1, ...,Nd needed

is φi(k) = [ρ iini−1(k), ...,ρ ifin+1(k)]
T if optimization

problems for cells 1 and N are not in the group,

φi(k) = [q1(k),ρ1(k), ...,ρ ifin+1(k)]
T if the optimization

problem for 1 belongs to the group, and similarly,

φi(k) = [ρ iini−1(k), ...,ρN(k),qN+1(k)]
T if the optimization

problem for cell N belongs to the group. Note that if

(iini −1, iini) ∈ E or (ifin, ifin +1) ∈ E , then the optimization

problem cannot be solved until the optimal parameters

coming from the neighbors cells are known (θ ∗2
iini−1 and

θ ∗1
ifin

respectively). Note that this situation (to wait for the

parameters from other groups) cannot happen within the

loop of this algorithm.

Step 4: Include all the already solved nodes i in the set Vc

and go to Step 2.

To clarify this algorithm, let us consider the different cases

in the Figure 2:

Case 1 (decentralized): In this case the algorithm first will

suggest to solve all the problems that are not waiting to

receive information. As this is the decentralized scheme, with

no connections between optimization problems of neighbors,

then E1 = {{1},{2},{3},{4},{5}}, and all those problems

are solved in parallel. The computational time of this case is

the maximum of all the times spent in each problem (if they

are solved in parallel), and the number of variables obtained

in each problem is 6. Half of the parameters obtained in each

problem are not used for validation.

Case 2 (centralized): In this case the algorithm first will

suggest to solve all the problems that are not waiting to

receive information. All the problems are connected, being

all the nodes a group. Then E1 = {{1,2,3,4,5}}, and all

those problems are solved in the same group optimization,

including the constraints of shared parameters. The computa-

tional time of this case is the time spent in solving the group

optimization. All the parameters obtained from this problem

are used in the final model.

Case 3 (hierarchical forward): In this case the algorithm

first will suggest to solve the optimization problem 1, then

E1 = {{1}}. Once this problem is solved, sequentially the

consecutive problems are solved: E2 = {{2}}, E3 = {{3}},

E4 = {{4}}, and finally E5 = {{5}}. The computational

time of this case is the sum of the times spent in solving

all problems (they have to be solved sequentially). All the

parameters obtained from this problem are used in the final

model.

Case 4 (hierarchical backward): Analogous to Case 3, but

E1 = {{5}}, E2 = {{4}}, E3 = {{3}}, E4 = {{2}}, and finally

E5 = {{1}}.

Case 5 (mixed hierarchical-distributed): In this case the

algorithm first will suggest to solve the optimization prob-

lems E1 = {{1},{3},{5}} in a distributed way. Once those

problems are solved, the next ones are: E2 = {{2},{4}}. The

computational time of this case is the maximum of the time

spent in solving the problems {1}, {3} or {5} (they can be

solved in parallel). The optimization problems {2}, {4} are

easily solved as the shared parameters are obtained from the

neighbors (the parameters of 2 come from the optimization

of 1 and 3, and the parameters of 4 from the optimization

of 3 and 5). All the parameters obtained from this problem

are used in the final model.

IV. EXPERIMENTAL RESULTS

In this section we summarize the simulation tests con-

ducted to show the application of the identification procedure

to a real scenario. A 2.55 km long stretch of the A12 freeway,

in The Netherlands has been used as test field to validate the

identification method. This road connects the city of The

Hague, with the German border, near Zevenaar. The stretch

we use is in the segment that crosses the Dutch province of

South Holland. In Fig. 3 the scheme of the stretch is depicted.

39.80 km   40.11 km   40.60 km   40.95 km   41.325km  41.7 km    42.025km   42.35 km   42.725km 

Sensor 1   Sensor 2   Sensor 3    Sensor 4   Sensor 5   Sensor 6   Sensor 7    Sensor 8   Sensor 9 

Cell 1        Cell 2         Cell 3       Cell 4        Cell 5       Cell 6        Cell 7        Cell 8

ρ
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8
(k)

Fig. 3. Schematic sensor positions and cells of the A12 freeway in The
Netherlands.

A period of eight hours (4:00-12:00) representative of

typical working Monday will be modeled. Data of two days

were used for the identification. For validation, data from

Monday 12 of October was used (see Figure 4). We use

the command lsqnonlin from the optimization toolbox of

Matlabr.

1) Model identification: We will consider the distributed

cases 1, 3, 4 and 5 of Figure 2. In Figure 5, the one-step

ahead prediction for cell 5 of the distributed schemes using

the validation data is shown.

The sum of the Root Mean Square (RMS) of the prediction

error of densities in the cells for the cases 1 (Decentralized),

3 (Hierarchical Forward), 4 (Hierarchical backward) and

5 (Mixed hierarchical-decentralized) is 15.9396, 16.7916,

16.0512, and 16.5784 respectively. The standard deviation

for the respectively cases is: 1.4689, 1.3886, 1.4722, 1.4622.
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Fig. 5. One-step ahead prediction cell 5, cases 1) Decentralized, 2)
Hierarchical Forward, 3) Hierarchical backward, 4) Mixed hierarchical-
decentralized.

The computational time required to solve the optimization

problems, in an AMD Athlon x26000+, @3.1GHz, 4GB

RAM, are:

Decentralized: for the identification of the central cells

(from cell 2 to cell 7), ≈ 107 (s). For the cells in the

borders (they require half the parameters to be identified),

≈ 18 (s). So the total time required to solve the problem in

parallel was ≈ 107 (s).
Hierarchical forward: for the cell 1 the time was ≈ 18 (s),
and for each of the following six cells ≈ 18 (s). So the total

time was ≈ 126 (s). Note that the last cell does not need

any optimization procedure. The times and procedure are

similar for the hierarchical backwards (total ≈ 126 s).

Mixed hierarchical-decentralized: ≈ 107 (s) for the

identification of cells 3, 5 and 7; ≈ 18 (s) for the

identification of cell 1. Only those 4 optimizations problem

are needed to be solved.

Centralized: Just to highlight the important reduction of the

computational time, the centralized solution’s computational

time was ≈ 1500 (s) for the 8 cells. We also tried 10 and

11 cells and the computational time was ≈ 1996 (s) and

≈ 3225 (s) respectively, increasing exponentially with the

number of cells.

2) Virtual Sensor: failure in the sensor of cell i: In

this sub-section, we analyze the effect of a failure in the

sensor i for the cases 1 (Decentralized), 3 (Hierarchical For-

ward), 4 (Hierarchical backward) and 5 (Mixed hierarchical-

decentralized). We assume the failure is detected immedi-

ately, and we replace the sensor i with the CTM identified

in the previous section, one sensor at the time. In Fig. 6(a)

we show the RMS of the virtual sensor error, when cell i

has failed. The sum of the Root Mean Square (RMS) for the

cases is 45.4500, 39.0148, 42.2545, 40.6964 and the standard

deviation is 4.0570, 2.4123, 3.2730, 2.4650 respectively.

From the figure, we can see when the sensors in the borders

fail, the most important errors happen. When the sensor of

the middle fails, it generates a smaller error.

3) Virtual Sensor: Only the sensor of cell i is available:

We consider now the case when only the density sensor of

cell i is available, so the output equation is y(k) = ρi(k). In

Fig. 6(b) we show the RMS of the virtual sensor errors, when

only the sensor of cell i is working. The sum of the Root

Mean Square (RMS) for the different cases in each case is

150.8778, 124.6164, 149.1010, 120.3082 and the standard

deviation is 8.2253, 5.7030, 8.1012, 5.3341 respectively.

From the figure, the methods hierarchical-forward and mixed

hierarchical-decentralized are the ones that generate the best

estimation of the whole section in terms of the mean value

and standard deviation.
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Fig. 6. Identification data measured: (a) RMS for failure in cell i. (b) Sum
of the RMS from virtual sensors, when only the sensor i is available.

V. CONCLUSIONS AND FUTURE WORK

In this paper, the distributed identification of the pa-

rameters of the Cell Transmission Model (CTM) for a

chosen freeway has been analyzed. Those parameters are:

the free velocity, the maximum density and the backward

congestion propagation speed. The purpose of the proposed

identification approach is to minimize the one-step ahead

prediction error of the densities of the cells; while, on the

other hand, reducing the computational time and effort to

obtain them. By relying on experimental data measured

on a portion of the A12 freeway of The Netherlands, we

have shown that it is possible to find a good solution. The

parameters obtained in some of the sections (especially the

backpropagation waves’ speeds) resulted to be inaccurate,

mainly due to the overabundance of free flow vs. congestion

measurements in the data set. The purpose of this paper is

the empirical exploration of a possible solution to reduc-



ing model calibration computational time, the mathematical

soundness of this approach will be object of future studies.

Finally, to show the good properties of the identified

model, an evaluation of the performance of the identified

model used as a set of virtual sensors in several scenarios was

made. As the CTM belongs to the class of linear Piecewise

Affine (PWA) systems, a topic for future work is to compare

the obtained models to a more general PWA model. The

method we described can be used to generate an initial

solution to be transferred to other iterative optimization

procedures that could converge to the centralized solution.

Convergence and properties of the methods are topics for

further research. More sophisticated schemes of failures and

detection can also be analyzed in the future, as well as on-

line identification.
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APPENDIX

From (1), the following vectors and matrices define (3)

for j = 1, ...,2N :

(A j)i,k =





1−
T

L1
(δ j

2 v1) if i = k = 1

T

L1
(1−δ

j
2 )w2 if i = 1,k = 2

T

Li

δ
j

i vi−1 if 1 < i < N,k = i−1

1−
T

Li

((1−δ
j

i )wi +δ
j

i+1vi)

if 1 < i < N, i = k
T

Li

(1−δ
j

i+1)wi+1

if 1 < i < N,k = i+1
T

LN

δ
j

NvN−1 if i = N,k = N −1

1−
T

LN

((1−δ
j

N)wN)

if i = N,k = N

0 otherwise.

(8)

(B j)i,k =





T

L1
if i = 1,k = 1

−T

LN

if i = N,k = 2

0 otherwise.

(9)

( f j)i,1 =





T

L1
((1−δ

j
2 )w2ρ2,M), if i = 1,

T

Li

((1−δ
j

i )wiρi,M +(1−δ
j

i+1)wi+1ρi+1,M),

if i = 2, ...,N −1,
T

LN

((1−δ
j

N)wNρN,M), if i = N,

(10)

(Gx
j)i,k =





(2δ
j

i −1)vi if i = 1, ...,N −1,k = i

(2δ
j

i −1)wi+1 if i = 1, ...,N −1,k = i+1

0 otherwise.
(11)

(Gc
j)i,1 = (2δ

j
i −1)wiρi,M (12)


