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Abstract

This paper presents a weight tuning technique for iterative distributed Model Predictive Control (MPC). Particle Swarm Optimi-

sation (PSO) is used to optimise both the weights associated with disturbance rejection and the weights associated with achieving

consensus between control agents (while this paper focuses on disturbance rejection, the same techniques could also be used for

set-point tracking based weight optimisation). Unlike centralised MPC, where tuning focuses solely on disturbance rejection per-

formance, iterative distributed MPC practitioners must concern themselves with the trade off between disturbance rejection and the

overall communication overhead when tuning weights. This is particularly the case in large scale systems, such as power networks,

where typically there will be a large communication overhead associated with control. This paper examines the effects of weight

optimisation on both the disturbance rejection and the communication overhead. Two PSO fitness functions are employed; the first

function evaluates fitness based solely on disturbance rejection ability, and the second is based on achieving a trade off between

good disturbance rejection ability and the maximum number of distributed MPC iterations per control step. Simulation experiments

illustrate the potential of the proposed approach for weight tuning in two different power system scenarios.

Keywords: Distributed Model Predictive Control, Particle Swarm Optimisation, Smart Grids, Weight tuning, Power networks.

1. Introduction

Model Predictive Control (MPC) (Maciejowski, 2002) is an

optimal control technique, in which the controller uses an inter-

nal process model to predict the process output over a certain

number of sample steps (called the prediction horizon) to cal-

culate optimal control moves for the system. One of the main

advantages of this control technique is the systematic and in-

tuitive manner in which constraints are incorporated into the

control system and the fact that delays are naturally catered for.

It is a mature technology at this stage, with stability and robust-

ness analysis well established.

However, for large systems such as the electricity grid, it is

often impractical to implement MPC from a central controller,

due to computational constraints. Likewise it is often desirable

or necessary to use a number of separate controllers, referred

to as agents, to control subsystems, e.g., in a deregulated power

market several controllers may be responsible for the control

of different sections of the power grid. Likewise, when power

systems span several countries, then each country will typically

have separate controllers for their own sections of the grid.

There has been much research interest in recent years in dis-

tributed MPC (Scattolini, 2009; Sanchez et al., 2011; Liu et al.,
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2010), in which several agents communicate and cooperate

with each other to approximate the behaviour of a centralised

MPC agent. Lyapunov-based MPC techniques (Liu et al., 2010,

2009), game-theoretic approaches (Sanchez et al., 2011), and

iterative techniques based on the decomposition of the origi-

nal control problem into several smaller problems (Negenborn

et al., 2008; Venkat, 2006) have all been used to distribute the

control amongst agents.

Weights are used in MPC to determine the relative impor-

tance of the various goals contained in the MPC cost function

during optimisation. By tuning the weights appropriately, MPC

system performance can be improved, given a specific perfor-

mance criterion. The equivalent in classical control would be

the tuning of PID parameters to achieve desired performance.

In classical control scenarios, stochastic search techniques such

as Simulated Annealing (Kwok and Sheng, 1994), Genetic Al-

gorithms (GA) (Jones and De Moura Oliveira, 1995), and Par-

ticle Swarm Optimisation (PSO) (Gaing, 2004) have proven to

be efficient ways of finding optimal solutions for PID gains.

GAs have proven to be particularly popular as a tool for

tuning PID gains (Fabijanski and Lagoda, 2008; Jones and

De Moura Oliveira, 1995; Lin and Liu, 2010). However, re-

cently the advantages of using PSO over GA for the optimi-

sation of PID gains have been demonstrated, in terms of both

the quality of and the efficiency with which a final solution can

be found (Gaing, 2004). The reason for this is that PSO per-

forms better than GA when optimising epistatic functions, i.e.,

functions where there is a high level of correlation between the
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parameters being optimised.

MPC gains can be automatically tuned in the same way as

PID gains. There are a number of techniques in the literature

for tuning centralised MPC weights (Di Cairano and Bempo-

rad, 2010; Lee and Yu, 1994; Rowe and Maciejowski, 2000).

PSO has been used in (Suzuki et al., 2007) for this purpose,

with promising results. PSO is attractive for tuning for a num-

ber of reasons. Its capability to optimise on a wide range of

surfaces which may be convex, non-convex, discontinuous or

multi-modal (Trelea, 2003; Liang et al., 2006) means that it is

flexible in terms of what criterion can be used to determine the

fitness of given weights. Also no special knowledge is needed

about the MPC algorithm being used and so it is user friendly

for industrial practitioners. PSO is preferable in comparison

with GA for weight optimisation due to the level of correlation

between weights when optimising in an MPC setting.

While typically in centralised MPC one is concerned with

tuning weights so as to fulfil a set-point tracking criterion, in

iterative distributed MPC algorithms, such as those in (Negen-

born et al., 2008; Venkat, 2006; Sanchez et al., 2011), it is typ-

ically desirable to choose weights so as to achieve a good trade

off between set-point tracking and the communication over-

head. In these algorithms, agents must communicate each iter-

ation with adjacent agents. The level of communication needed

depends on the number of iterations needed for agents to form

a consensus on inputs and interconnecting variables.

In situations where plants have slow dynamics, and therefore

longer sample times (e.g., chemical plants), high levels of com-

munication may not be important, as agents have sufficient time

to communicate with each other before applying control inputs

to the plant. However, in large networks with fast dynamics,

such as power networks, it is necessary that the number of such

iterations is small, as the short sample times constrain the time

allowed for communication.

In this paper, a novel PSO based weight optimisation algo-

rithm is proposed for the serial iterative distributed MPC tech-

nique proposed in (Negenborn et al., 2008). First, the effects on

both disturbance rejection and the communication overhead are

illustrated when the PSO weight optimisation fitness is based

only on disturbance rejection. Then, an iteration deterrent, that

assigns a penalty proportional to the maximum number of iter-

ations used in a simulation is added to the PSO fitness function.

The results obtained when using the deterrent are compared to

the original optimisation that is based solely on the disturbance

rejection performance (while the criteria in this paper are based

on disturbance rejection, the same technique could be applied

to optimise for set-point tracking in other scenarios).

This weight tuning technique is evaluated on two different

multi-agent Load Frequency Control (LFC) situations. The first

system is a discrete-time 20 area LFC problem, which has a

large number of tunable parameters, thus making it difficult to

tune. The second system is a smaller scale, continuous-time

multiple High Voltage Direct Current (HVDC) link problem.

While there are less tunable parameters in this problem, a large

number of iterations may be needed to achieve convergence of

the distributed MPC problem at each sample step. It is diffi-

cult in this problem to find a set of weights to yield a desirable

trade off between disturbance rejection and the communication

overhead.

This paper is organised as follows. In Section 2, centralised

MPC scheme and the iterative distributed MPC used in this pa-

per, will be presented. Section 3 will introduce the PSO al-

gorithm in detail. In Section 4 it will be shown how PSO is

used to optimise the weights of the iterative distributed MPC

algorithm. It will then be seen, in Section 5, how this weight

optimisation affects the performance of two multi-agent power

networks. Conclusions will be outlined in Section 6.

2. Model Predictive Control

Model Predictive Control (Maciejowski, 2002) is an ad-

vanced control technique that utilises real-time optimisation. It

uses predictions, based on a suitable model, in order to provide

optimal control inputs to a system. One of its main advantages

over other control techniques is its ability to incorporate con-

straints into its formulation. It is at this stage a mature technol-

ogy, with feasibility, stability, and robustness proofs well estab-

lished (Rawlings and Mayne, 2009).

2.1. Definition of an agent

For clarity the definition of an agent, as understood in this pa-

per, will now be provided. An agent is defined here as an entity

responsible for the control of a system or subsystem, with ac-

cess to the current state of the system or subsystem it controls.

The agent’s local states are accessed by direct measurement or

estimation. Agents have access to a model of the local sys-

tem or subsystem and in the distributed case, agents are able to

communicate with other agents who share a common variable.

Agents compute values for their control inputs at discrete time

steps based on the information available to them.

2.2. Description and state space prediction

In MPC a control agent uses a discrete-time system model

that predicts the system’s future trajectory over a prediction

horizon in order to calculate the optimal inputs over this hori-

zon. Only the input for the first time step is applied. At the next

time step a new action is determined. MPC is often called Re-

ceding Horizon Control due to the prediction horizon moving

forward each time step.

A system consisting of n subsystems is considered, where

each subsystem consists of a set of nodes (a node being an

individual point in a network that can be described using a

combination of variables and equations) and the interconnec-

tions between these nodes. Subsystems are assumed to be non-

overlapping, i.e., nodes do not appear in 2 different subsystems.

A discrete-time, linear, time-invariant state-space model is used

to model the subsystem dynamics. This is given as follows:

xa(k + 1)= Aaxa(k)+Baua(k)+ Dada(k)+Vava(k) (1)

ya(k)=Cx
axa(k)+Cu

aua(k)+Cd
ada(k)+Cv

ava(k), (2)

where xa(k) is the state of the ath subsystem, ua(k) are local

subsystem inputs, da(k) are known disturbances, ya(k) are sub-

system outputs, va(k) are external inputs from other subsystems
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that influence subsystem a at sample step k, and Aa, Ba, Da,

Va, Cx
a, Cu

a, Cd
a, and Cv

a are the state-space matrices.

To simplify notation, the prediction vector, over a horizon N

is first introduced. For a general vector z, its prediction vector is

z̃(k) = [zT(k) . . . zT(k+N−1)]T. State predictions for subsystem

a over the prediction horizon are then determined using (1) as

follows:

x̃a(k + 1)= Af
axa(k)+Bf

aũa(k)+ Df
a d̃a(k)+Vf

aṽa(k) (3)

where Af
a, Bf

a, Df
a, Vf

a are the state space prediction matrices.

The derivation of these matrices is well established in the liter-

ature (Maciejowski, 2002).

2.3. MPC formulations

In a system of n subsystems, with agents 1, . . . , n, assume

initially that agent a has access to xa(k), d̃a(k), and ṽa(k). The

following optimisation problem is then solved at each time step:

ũa(k) = arg min
ũa(k)

Jlocal
a (xa(k), ũa(k), d̃a(k), ṽa(k))

subject to constraints

{

ci(x) = 0, i ∈ E

da(x) ≥ 0, a ∈ I.

(4)

where I and E are two finite sets of indices, and ci, for i ∈ E,

and da, for a ∈ I, are the equality and inequality constraints

of the problem, respectively. The local cost of subsystem a at

sample time k is (henceforth, Jlocal
a (xa(k), ũa(k), d̃a(k), ṽa(k)) is

denoted as Jlocal
a (k)),

Jlocal
a (k) =

N−1
∑

l=0

J
stage
a (k, p), (5)

where J
stage
a (k, p) is the cost at the pth step of the prediction

horizon for subsystem a at sample step k, typically defined as

the following quadratic cost function:

J
stage
a (k, p) =eT

a (k + p + 1)Qaea(k + p + 1)

+ ∆uT
a (k + p)Ra∆ua(k + p),

(6)

where ea(k + p) is the vector of errors for agent a at the pth

stage of the prediction horizon, at sample time k. The error,

ea(k + p) = ya(k + p) − ra(k + p), where ra(k + p) is a vector of

the set-points of agent a.

The weighting matrices Qa and Ra determine the relative im-

portance of the minimisation of the error and the control ef-

fort from sample to sample during optimisation, respectively.

The tuning of these parameters significantly influences the be-

haviour of the control system. Using the stage cost in (6),

Jlocal
a (k) represents the desire to minimise the square of the error

over the prediction horizon, i.e., to follow as closely as possible

the set-point over the prediction horizon.

Let there be a set of agents, with indices j ∈ Na, that are

connected to agent a. The interconnecting input vector, win
ja

, is

defined as the vector of inputs to control problem a from agent

j and the interconnecting output vector wout
ja

is defined as the

vector of outputs to control problem j from agent a.

The vector of all interconnecting inputs w̃in
a (k), and all inter-

connecting outputs w̃out
a (k) to agent a are typically defined as

follows:

w̃in
a (k) =

[

(w̃in

N in
a {1}a

(k))T . . . (w̃in

N in
a {ma}a

(k))T
]T
= ṽa(k),

w̃out
a (k) =

[

(w̃out
Nout

a {1}a
(k))T . . . (w̃out

Nout
a {ga}a

(k))T
]T
= Kout

a x̃T
a (k),

(7)

where N in
a {i} denotes the ith agent connected to agent a by an

interconnecting input,Nout
a {i} denotes the ith agent connected to

agent a by an interconnecting output, ma agents are connected

to agent a by an interconnecting input, ga agents are connected

to agent a by an interconnecting output, and Kout
a is a matrix of

zeros, with entries of 1 used in the positions that pick out the

states in x̃a(k) that connect agent a to other subnetworks.

When many subsystems are interconnected, then knowledge

of w̃in
ja

(k) cannot be assumed, as w̃in
ja

(k) is actually dependent

on the dynamics of other subsystems. Hence, subsystems must

reach a consensus on values for these interconnecting variables.

Centralised, decentralised and distributed control schemes

based on the above formulation will now be presented.

2.3.1. Centralised MPC

In centralised MPC, instead of each subsystem having its

own control agent, one central agent controls the whole system,

solving all the individual subsystem MPC problems simulta-

neously. For a system of n subsystems, the combined overall

optimisation problem can be formed as follows:

min
ũ1(k),...,ũn(k)

n
∑

a=1

Jlocal
a (k), subject to constraints, (8)

and subject to the following equality constraints,

w̃in
ja(k) = w̃out

a j (k), for j ∈ Na. (9)

That is, all interconnecting variables are made equal to each

other over the prediction horizon according to the dynamics of

each subsystem, as given in (3).

However, often the implementation of centralised MPC can

be impractical due to technical constraints, including excessive

computational load and the fact that several separate agents may

be responsible for the control of different connected subsys-

tems. This later situation can occur when different controllers

in different countries control sections of connected power grids.

Therefore, several agents are used to control their respective

subsystems and the behaviour of these agents together approx-

imates the behaviour of the centralised MPC.

2.3.2. Decentralised MPC

Decentralised MPC schemes assume that interconnected sub-

systems interact weakly and so ignore the effects of interactions

with other subsystems in their MPC problems. Agents do not

communicate with each other and independently solve an op-

timisation problem using only the local state variables of each

subsystem, without seeking to achieve consensus amongst con-

nected subsystems. When using decentralised MPC it is pre-

sumed that the effect of feedback in subsystems is sufficient
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to overcome the effects of interactions with other subnetworks.

However, ignoring these interactions between subsystems can

lead to highly suboptimal behaviour and instability (Venkat,

2006).

2.3.3. Distributed case

In distributed MPC systems, inter-agent communication is

used in order to coordinate system control actions. An aug-

mented Lagrangian formulation can be developed from (8) to

incorporate the equality constraints (9) into the cost function. In

(Negenborn et al., 2008) the quadratic terms of the augmented

Lagrangian formulation are distributed across the agents using

a Block Coordinate Descent approach (Royo, 2001; Tosserams

et al., 2008). This is an iterative algorithm, where a distributed

MPC cycle, consisting of a number of iterations, occurs at each

sample step. In this approach, one agent at a time optimises

values for its inputs, ũa(k), and its desired interconnecting input

variables w̃in
ja

(k), for each j ∈ Na, in order to reach consensus on

values for the interconnecting variables over the full prediction

horizon.

The optimisation problem of agent a, for iteration l of the

distributed MPC cycle, at time step k is:

min
ũa(k,l),{w̃in

ja
(k,l): j∈Na}

(

Jlocal
a (k) + Jinter

a (k, l)

)

, (10)

where Jinter
a (k, l) is the interconnection cost for agent a, given

by:

Jinter
a (k, l) =

∑

j∈Na

Jinter
ja (k, l), (11)

and Jinter
ja

(k, l) is the cost associated with the inter-agent coordi-

nation with agent j given by:

Jinter
ja (k, l) =















λ̃
in

ja(k, l)

−λ̃
in

a j(k, l)















T [

w̃in
ja

(k, l)

w̃out
ja

(k, l)

]

+
c

2

∥

∥

∥

∥

∥

∥

[

w̃in
a j,prev

(k, l) − w̃out
ja

(k, l)

w̃out
a j,prev

(k, l) − w̃in
ja

(k, l)

]
∥

∥

∥

∥

∥

∥

2

2

.

(12)

Here c is a positive constant and λ̃
in

ja(k, l) are the Lagrange

multipliers associated with the interconnecting constraints

w̃in
ja

(k, l) = w̃out
a j

(k, l) at iteration l, and time step k.

Each agent optimises this cost in a serial fashion, communi-

cating the interconnecting variables with its neighbours. The

values w̃out
a j,prev

(k, l) and w̃in
a j,prev(k, l) are taken as the most re-

cently updated values of w̃out
a j

(k, l) and w̃in
a j

(k, l), respectively.

One optimisation cycle has completed when all agents have

performed an optimisation. When the optimisation cycle is fin-

ished, the Lagrange multipliers are updated as follows:

λ̃
in

ja (k, l + 1) = λ̃
in

ja (k, l) + c
(

w̃in
ja(k, l) − w̃out

a j (k, l)
)

, (13)

Iterations continue until:

||λ̃
in

ja(k, l + 1) − λ̃
in

ja(k, l)||∞ ≤ ǫ

for a = 1, . . . , n and for all j ∈ Na,
(14)

where ǫ is a specified tolerance and ‖.‖∞ denotes the infinity

norm.

The c and ǫ parameters determine the importance that each

agent gives to achieving consensus with other connected agents

versus fulfilling their local cost function objectives. The tun-

ing of the c and ǫ parameters of the distributed MPC, and the

Qa and Ra parameters associated with each agent a’s local cost

function significantly impacts on the closed loop performance

of the system and on the amount of communication used by the

distributed MPC scheme to achieve this control. Therefore, it

is of interest to develop methods that can be used to tune these

parameters so as to give the desired control performance.

2.4. Application to shared inputs

In typical control applications, agents have their own local

control inputs which are not shared among agents. However,

in the multiple HVDC link application, discussed in Section

5.2 in this paper, all 4 agents must determine actions for the

2 control inputs. In other circumstances different agents’ local

inputs may be coupled, for example, via the objective function

or through the system dynamics.

The algorithm in (Negenborn et al., 2008), used in this paper,

naturally extends to such cases in the following way. Agents

can create a duplicate variable vector, w̃u
p(k), for agents p =

1, . . . ,mu, that share the control input, ũ(k). These agents then

try to form consensus on these duplicate variables. These dupli-

cate variables are then treated as local control inputs by each of

the agents. Equality constraints can then be placed on the du-

plicate variables as follows: w̃u
1
(k) = w̃u

2
(k), w̃u

2
(k) = w̃u

3
(k),. . . ,

w̃u
mu−1

(k) = w̃u
mu

(k), such that w̃u
1
(k) = . . . = w̃u

mu
(k) for a sys-

tem of n subsystems. When the problem is distributed amongst

agents, then each agent will optimise to find the local dupli-

cate inputs. Agents then compare their local duplicate inputs to

the values calculated previously by connected agents in order to

achieve consensus, in the same way that agents compare other

interconnecting variables.

Each agent’s final w̃u
a(k) value will differ slightly from that of

the other agents, depending on the values of c and ǫ, as these

determine to what extent agents will form a consensus on vari-

ables. The control engineer must decide at the design stage

which agent will ultimately decide on the value of the input to

be applied to the real system being controlled, from the inputs

calculated separately by each agent.

3. Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is a stochastic optimi-

sation technique based on the social behaviour of swarms of

flocking animals (Kennedy and Eberhart, 1995). It is suitable

for the optimisation of convex or non-convex, continuous or

discontinuous surfaces. It works by initialising a number of

candidate solutions, called particles, in the parameter space be-

ing searched, and then updating their positions over a number

of iterations, in such a way so as to converge to a final (ideally

global) optimal solution.

In PSO a population of P particles, each of dimension d, are

initially distributed across the parameter space. Particle q at
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iteration i of the PSO algorithm, has a position xq(i), and asso-

ciated fitness fq(i). Each of these particles has a memory of its

own previous best position xb
q(i) and an associated fitness f b

q (i).

Here xg(i), the global best position, is the particle position asso-

ciated with the best fitness f g(i) that has been found previously

across the population of particles. Particle q’s position is then

updated, biased towards both xg(i) and xb
q(i). The general PSO

algorithm (in the case of the minimisation of a cost function) is

as follows:

1. Initialise a population of P particles in d dimensions,

within upper and lower bounds in each dimension, in the

domain of the cost function. The evaluation of these ini-

tial positions is used to initialise xb
q for particle q, and xg

is then initialised from the xb
q value with the lowest asso-

ciated f b
q in the entire swarm of P particles.

2. The velocity, vq(i) of particle q at the ith iteration of the

PSO algorithm is updated for the next iteration as follows:

vq(i + 1) = ωvq(i) + c1r1(i) ◦
(

xb
q(i) − xq(i)

)

+c2r2(i) ◦
(

xg(i) − xq(i)
) (15)

where ◦ denotes the Schur product, r1(i) and r2(i) are ran-

dom vectors with entries uniformly distributed in the inter-

val [0,1], the positive scalar ω is the inertial weight which

controls the exploration and exploitation in the search

space, and c1 and c2 are acceleration constants called the

cognition and social components, respectively.

Applied particle velocities are bounded by vqmin
≤

vqapp
≤ vqmax

where vqmin
and vqmax

are the lower and up-

per bounds on particle velocities, respectively, and vqapp
is

the applied particle velocity. If vq(i+1) exceeds the afore-

mentioned velocity bounds, the applied velocity, vqapp
, is

taken at the upper or lower bound, i.e., if vq < vqmin
, let

vqapp
= vqmin

; if vq > vqmax
, let vqapp

= vqmax
; else let vqapp

= vq.

The position, xq(i), of particle q at the ith iteration of

the PSO algorithm is then updated for the next iteration as

follows:

xq(i + 1) = xq(i) + vqapp
(i + 1). (16)

3. Evaluate the cost function values at each of the P particles’

positions.

4. If for particle q, fq(i + 1) < f b
q (i), then let xb

q(i + 1) =

xq(i + 1).

If fq(i + 1) < f g(i), let xg(i + 1) = xq(i + 1).

If fq(i + 1) ≥ f b
q (i) ≥ f g(i), then xb

q(i + 1) and xg(i + 1)

remain at the same positions as in iteration i.

5. Repeat steps (2)-(4) until termination criteria are met, e.g.,

a maximum amount of iterations has been reached, xg(i)

has not changed for a given number of iterations, etc.

4. PSO Weight Optimisation for Distributed MPC

PSO has previously been used to optimise the centralised

MPC weights (Suzuki et al., 2007), resulting in improved per-

formance according to the desired criterion. Typically when

tuning controllers practitioners are concerned with improving

aspects of the set-point tracking or disturbance rejection perfor-

mance of a system.

However, in iterative distributed MPC algorithms practition-

ers are concerned with both closed loop performance and the

level of communication used to achieve this control. This would

be particularly of concern in power system networks where

short control sample times are needed for the control of the sys-

tem, thus limiting the amount of communication allowed be-

tween agents. Therefore, a tuning algorithm for iterative dis-

tributed MPC that considers both the disturbance rejection per-

formance of the system and the number of iterations needed for

the system to converge is desirable for power systems and other

systems with fast dynamics.

A novel PSO based weight optimisation algorithm for agents

in a distributed MPC system is developed in this section. In

addition a criterion for suppressing the number of iterations

needed for distributed MPC is proposed.

The vector Γ = [γ1 . . . γnγ ]
T contains nγ tunable weights,

consisting of the distributed MPC disturbance rejection related

weights associated with each agent’s local problem and the c

and ǫ weights that are associated with achieving consensus be-

tween agents. For each of the P particles in the PSO, of dimen-

sion d = nγ, a distributed MPC simulation is carried out. In this

paper, this simulation is chosen as a worst case scenario that ex-

cites each of the subsystems controlled by the distributed MPC

agents sufficiently, to prepare the system for the worst contin-

gencies that might arise. The jth agent’s local fitness function,

f local
j

(q, i) is evaluated after a simulation has been run by parti-

cle q at iteration i of the PSO optimisation. The sum of the local

fitnesses of all n agents,
∑n

j=1 f local
j

(q, i), then forms the overall

disturbance rejection fitness for the qth particle’s simulation run

at PSO iteration i. When a system is optimised for disturbance

rejection only (henceforth referred to as the DR only case), the

fitness of particle q in the swarm is given by

fq(i) =

n
∑

j=0

f local
j (q, i), (17)

where fq(i) is the fitness of particle q at iteration i of the PSO

algorithm.

When it is desired to suppress the number of iterations used

in a given simulation, an iteration suppressing cost ρ(q, i) is

used where

ρ(q, i) = max(µ(q, i)), (18)

where µ(q, i) is a vector of the number of distributed MPC iter-

ations used at each sample step during the qth particle’s simu-

lation run at PSO iteration i. In cases where it is desired to use

an iteration deterrent (henceforth, referred to as the DRID case)

the fitness of particle q at iteration i becomes:

fq(i) = υρρ(q, i) +

n
∑

j=0

f local
j (q, i), (19)

where υρ is a positive constant used to determine the relative

importance of the iteration deterrent cost to the disturbance re-

jection cost during optimisation.

The PSO weight optimisation algorithm is as follows:

5
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Figure 1: The PSO optimisation of the distributed MPC weights at iteration i of

the PSO optimisation.

1. A random population of P particles is initialised in d di-

mensions, with xmin ≤ xq ≤ xmax, where xmin ≥ 0 and

xmax ≥ 0 are the upper and lower bounds on particle q’s

position xq. If good initial estimates are known in advance,

some particles can be initialised with these values instead.

2. For each particle q, f local
j

(q, i) for j = 1, . . . , n and then

fq(i) are evaluated.

3. Based on these fitnesses the PSO algorithm updates each

particle q’s personal best position xb
q(i) and fitnesses cor-

responding to these positions, f b
q (i), for q = 1, . . . , P, and

xg(i), the global best position, and its associated fitness

f g(i) and then calculates the next positions in the fitness

function based on (15) and (16). Then with these P parti-

cles, the algorithm repeats from step (2).

4. The algorithm terminates when a termination criterion is

satisfied; in this paper this happens when f g(i) has not

changed by more than a small specified tolerance for a

given number of PSO iterations.

5. Simulation Experiments

In this section, PSO weight optimisation is applied to the dis-

tributed MPC control of two complex, highly interconnected

power systems performing Load Frequency Control (LFC) con-

trolled using distributed MPC, are given in this section. In LFC

it is desired to maintain the frequency of a power system as

close to 50 Hz (or 1 per unit (pu) frequency, which is the nor-

malised frequency) as possible at all times. This is done by

ensuring that the supplied power matches the demanded power

at all times in the network. Agents must be capable of returning

the frequency in the area they control to the 1 pu set-point af-

ter disturbances such as load disturbances and line faults. The

agents’ individual problems are coupled due to power flowing

between subsystems through AC or DC line connections. First

a discrete-time power network consisting of 20 subsystems is

considered, and in the second experiment a continuous-time

multiple link HVDC system, consisting of 4 highly intercon-

nected subsystems is considered.

In both cases the weights are first optimised based only on the

disturbance rejection performance, and then optimised again in-

corporating the iteration deterrent, as in (19). The disturbance

rejection criterion for the jth agent in the simulation, run by par-

ticle q in the swarm, at PSO iteration i, used in both cases pre-

sented here is the Integral of the Square of Time by the Squared

1

2

3

12 11

10 7 8

965

418

19

20

17

14 1316

15

Figure 2: The 20 area discrete-time LFC problem.

Error (ISTSE) (Gambier, 2007), which is used to place greater

emphasis on long term errors over short term errors that occur

immediately after disturbances, given by

f local
j (q, i) =

∞
∑

k=0

k2e2
j (k), (20)

where e j(k) is the error in subsystem j at sample time k, where

the error at sample time k is the difference between the mea-

sured and 1 pu frequencies, and q and i are the PSO particle

and iteration, respectively. As the tuning is based on simulation

runs, it is not practical to run simulations for an infinite number

of samples and so simulations are run for a finite time t f that is

long enough to adequately capture the systems dynamics.

The PSO routines are carried out using the PSO Toolbox for

Matlab (Birge, 2003). In (Trelea, 2003) it was shown that good

convergence properties could be obtained for the PSO, using the

following parameter selection; ω = 0.6, c1 = c2 = 1.7. These

parameter values were selected for this work. Other parameters

used in the PSO toolbox are given in Appendix B.

5.1. System 1: 20 area discrete-time LFC problem

The 20 area discrete time LFC problem is shown in Fig. 2.

The continuous-time dynamics of subsystem a are described by

the following second-order system (Negenborn et al., 2008):

d

dt
∆δa (t) = 2π∆ fa (t) ,

d

dt
∆ fa (t) = −

1

Tpa

∆ fa (t) +
Kpa

Tpa

(

∆P
gen
a (t) − ∆Pdist

a (t)

+
∑

j∈Na

KSa j

2π

(

∆δ j(t) − ∆δa(t)
)

)

,

ya(t) =

[

∆δa(t)

∆ fa(t)

]

.

(21)

where at time t, ∆δa(t) represents the angle of a generator a,

∆ fa(t) the frequency of generator a, ∆P
gen
a (t) the power gener-

ation of generator a and ∆Pdist
a (t) the load disturbance, and ∆

6



in each of these variables denotes a deviation from an original

equilibrium position. Here ya represents the measured output

states, and subnetwork a’s gain Kpa
, its time constant TPa

, and

the synchronising coefficient between areas a and j, KSa j
, are

all constants. For the purposes of the simulations output mea-

surements ya are assumed to be noise free.

In discrete time, the local control input is ua(k) = ∆P
gen
a (k),

the local disturbance is da(k) = ∆Pdist
a (k), and the local state

is xa(k) = [∆δa(k),∆ fa(k)]T. The external inputs from other

subnetworks are va(k) = [∆δN in
a {1}

(k), . . . ,∆δN in
a {ma}

(k)]T, where

ma is the number of subnetworks connected to subnetwork a,

andN in
a {i} is the ith agent connected to agent a. Discretising the

continuous time model using an Euler approximation (with step

size τ=0.2s), the model can be written as in (1) with:

Aa =























1 τ2π
∑

j∈Na

τ
−KPa

KSa j

2πTPa

1 − τ
TPa























, Ba =













0

τ
KPa

TPa













,

Da =













0

−τ
KPa

TPa













,Va =

















0 . . . 0

τ
KPa KS

aN in
a {1}

2πTPa
. . . τ

KPa KS
aN in

a {ma}

2πTPa

















.

(22)

The above model is used to run the discrete time simulation

with a sample time of 0.2s. All subnetworks’ parameters are

identical and are given as follows: Kpa
= 120, TPa

= 20, KSa j
=

0.5.

5.1.1. Controller description

An incremental state space model is used for control of

the system so as to ensure integral action. The augmented

state for agent a at sample k is defined as x
aug
a (k) = [∆xa(k),

xa(k)]T, where ∆xa(k) = xa(k) − xa(k − 1), and incremen-

tal values of ua(k) and va(k), ∆ua(k) = u(k) − u(k − 1) and

∆va(k) = v(k) − v(k − 1), respectively, are used with their as-

sociated state space models for the control of the system (these

are derived as in Wang (2009)). A prediction horizon of N = 10

was used to adequately take into account each subnetwork’s dy-

namic response.

The following stage quadratic cost function is used for the

distributed MPC:

J
stage
a (k, p) = Qa∆ f 2

a (k + p + 1) + Ra∆u2
a(k + p) (23)

where Qa, Ra are the scalar weights in the cost functions for

the variables fa(k + p) and ∆ua(k + p) respectively. Qa and Ra

maintain the same value for all stages of the prediction horizon.

Using this stage cost, Jlocal
a (k) is formed as in (5).

The interconnecting inputs of the ath agent are each ∆δ j for

j ∈ Na and the interconnecting output is ∆δa. The following

gives the interconnection cost agent a experiences due to its

connection to agent j:

Jinter
a j (k, l) =















λ̃
in,∆δ j

ja (l)

−λ̃
in,∆δa

a j (l)















T 













w̃
in,∆δ j

ja
(k)

w̃
out,∆δa

ja
(k)















+
c

2

∥

∥

∥

∥

∥

∥

∥















w̃
in,∆δ j

a j,prev
(l) − w̃

out,∆δa

ja
(k)

w̃
out,∆δa

a j,prev
(l) − w̃

in,∆δa

ja
(k)















∥

∥

∥

∥

∥

∥

∥

2

2

,

(24)

for each j ∈ Na, where in each of the λ and w vectors above

there is one entry for each step of the prediction horizon, i.e.,

for each agent j that agent a is connected to, there are λin
ja and

win
ja

terms over the full prediction horizon to determine what

∆δin
j

values agent a would like to receive, and also there are λout
ja

and wout
ja

terms for each step of the prediction horizon based on

the ∆δout
a terms that agent a would like to send to other agents.

The overall cost function for each agent is formed using (23)

and (24), as in (10). Constraints on the inputs and states are as

follows:

umin
a ≤ ua(k + l) ≤ umax

a

xmin
a ≤ xa(k + l) ≤ xmax

a

for l = 0, ...,N−1, and umin
a =-0.3, umax

a =0.3, xmin
a = [−10,−10]T,

xmax
a = [10, 10]T.

5.1.2. PSO optimisation of the distributed MPC weights

PSO is now used to optimise the weights and parameters of

the distributed MPC system for the 20 area LFC system. Given

the large number of agents in the system, it is non-trivial to

find a combination of weights that give both good disturbance

rejection performance and a low communications overhead.

The weights determine the relative importance of the goals

of the distributed MPC system; c is set equal to 1 and the other

weights are then optimised using PSO. The vector of optimised

weights here is Γ = [ Q1 . . . Q20 ǫ ]T. The Ra weights were not

optimised and were given a value of 10−3. However, these could

be optimised if the practitioner desired so. The constraints for

the variables in the PSO optimisation are as follows: 0.1 ≤

Qa ≤ 100, for agents a = 1, . . . , 20, and 10−4 ≤ ǫ ≤ 1. For the

PSO optimisations involving the iteration deterrent, υ = 2.5.

To save on the overall PSO simulation time an upper limit of

50 distributed MPC iterations is allowed in each simulation run

of the power system. If this is exceeded at any stage a fitness

of 1000 is allocated to the particle at that position and the sim-

ulation of the next particle begins. While this upper limit on

distributed MPC iterations could be reduced it allows the infor-

mation from a wider range of particles to be used in the PSO

optimisation.

The PSO particle fitness is based on a network simulation run

lasting k f = 25 discrete time steps, with τ = 0.2s, i.e., a total

simulation time of 5s. This simulation involves disturbances of

equal magnitude of 0.2 pu being applied at t = 0s to all subsys-

tems except subsystem 17, where a larger disturbance of 0.23

pu is applied, these disturbances being the largest that can be

expected to occur in each area. This is a worst case disturbance

scenario for this system. Simulations were run on a computer

with an Intel® Core™ 2 6400 operating at 2.13 GHz and with 3

GB of RAM in Matlab 7.6.0 (2008a). All distributed MPC opti-

misations are done using quadprog. The PSO terminates when

f g does not improve by more than 2.5 × 10−4 for 7 consecutive

iterations.

Finding a set a weights to control this system for this scenario

is non-trivial. The best performance the authors could achieve

before optimisation, by manually tuning parameters, was with

[ Q1 . . . Q20 c ǫ ]T = [ 10 . . . 10 1 10−2 ]T. Fig. 3 shows the

7
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(b) Plot of the frequency at generator 14.
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(c) Plot of the frequency at generator 17.
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(e) Plot of f g at every PSO iteration for the disturbance rejection

only PSO optimisation.
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with iteration deterrent PSO optimisation.

Figure 3: Plots of pu frequency and distributed MPC iterations over time, and PSO iterations for the disturbance rejection scenario applied to the 20 area discrete-time

LFC network.

results of the experiment. Unacceptable disturbance rejection

is achieved with area 14 becoming unstable towards the end

of the simulation as a result of the disturbance, as can be seen

in Fig. 3(b). The ISTSE for this performance is 131. A large

number of distributed MPC iterations are needed to achieve this

control too.

The frequencies in areas 7, 14, and 17 (used as sample illus-

trations of the effect of the weight optimisations) can be seen

in Figs. 3(a), 3(b), and 3(c), respectively. These results include

the initial manual tuning, the PSO tuning based only on distur-

bance rejection (DR only), and the PSO tuning based on distur-

bance rejection with an iteration deterrent (DRID). The number

of distributed MPC iterations needed over time, for each of the

aforementioned tunings, is given in Fig. 3(d), and f g is plotted

for each of the PSO iterations in the DR only and DRID cases

in Figs. 3(e) and 3(f).

The final optimised weights for the DR only case are as fol-

lows: [ Q1...Q20 ]T = [ 1.78 3.11 94.22 19.98 63.92 71.42 0.10

0.10 83.33 20.93 97.38 87.52 0.10 0.10 42.16 40.24 95.16 0.10

19.86 99.55 ]T, ǫ=0.25, and the final f g=2.3975. The maxi-

mum number of distributed MPC iterations needed to achieve

this is 3 as can be seen in Fig. 3(e)

The final optimised weights for the DRID case are as fol-

lows: [ Q1...Q20 ] = [ 2.29 24.56 42.56 48.75 20.51 100.00

54.45 84.09 65.66 100.00 72.01 0.10 17.07 39.89 74.20 58.13

5.85 73.54 0.10 15.19 ]T, ǫ=0.37, and the final f g=5.3975, con-

sisting of an iteration cost of 2.5 and an ISTSE of 2.8975. The

maximum number of iterations needed to achieve this control is

only 1 in this case though.

Looking at both PSO optimisations it can be seen that weight

optimisation significantly improves not only the disturbance re-

jection cost of the system, but also the number of iterations

needed to converge to the final solution, in both tuning cases.

Comparing the ISTSEs of each of the optimisations it can be

seen that the DR only case trades off an increased number of it-

erations for a better disturbance rejection performance whereas

the DRID case trades off a slightly worse disturbance rejection

performance for a decrease in the number of iterations needed

for the distributed MPC to converge. However, the disturbance

rejection performance in the DRID case is still satisfactory, and

a significant improvement on the disturbance rejection perfor-

mance achieved with the original tuning.
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Figure 4: The multiple HVDC link system with areas controlled by agents

(Erikkson, 2008).

The overall PSO optimisation time for the DR only case was

5 hours and the DRID case was 5.58 hours (measured using

cputime in Matlab which measures the total time in each cpu

core spent over the whole simulation. The actual time taken is

usually roughly equal to the cputime divided by the number of

cores on the computer, i.e., on a dual core computer the real

time would be roughly half the cputime). It can be seen in Figs.

3(e) and 3(f) that in both cases after 8 iterations PSO does not

significantly improve, and is quite near the final optimal value

for the weights.

5.2. System 2: Continuous-time Multiple HVDC link system

The system used in this section, based on the multiple HVDC

link system between Denmark, Norway, and Sweden, is de-

picted in Fig. 4 (Erikkson, 2008). It consists of 4 buses with

their own generation and loads. Both Alternating Current (AC)

and HVDC links connect the buses. The HVDC links are of

the Line Commutated Converter type (Pai et al., 1981). Large

amounts of power are transferred from bus 2, which has the

largest generation capacity, to bus 4, which has the largest

power load. Generation capacities and loads are kept constant

in this paper. A simplification in this paper is to assume no line

losses, which means that the amount of power in the system is

constant at all times, and so the modulation of the HVDC line

powers alone is enough to stabilise the system after line faults.

Due to the high level of interconnectivity between individ-

ual agents problems this is quite a challenging distributed MPC

problem. Finding a good combination of weights that balances

both desirable closed loop performance and a low communica-

tion overhead is non-trivial and so this problem is also a suit-

able testbed on which to evaluate weight tuning algorithms. The

classical swing equations for a generator a are (Kundur, 1994):

d

dt
δra

(t) = ω0∆ωra
(t) (25)

d

dt
ωra

(t) =
1

2Ha

(Pma
(t) − PGa

(t) − Da∆ωra
(t)), (26)

where δra
(t) is the rotor angle (rad), Ha is the inertial constant

(s), ωra
(t) is the rotor speed (pu), ∆ωra

(t) = ωra
(t) − 1 is the

rotor speed deviation (pu), ω0 is the base rotor speed (rad/s),

Pma
(t) and PGa

(t) are the mechanical and generated power (pu),

respectively, and Da is the damping factor (pu).

By modelling the system using an internal node representa-

tion, which gives the system’s generator currents in terms of

the system’s voltages and HVDC line currents (Mc Namara

et al., 2011), the following swing equation for generator a can

be found:

d

dt
ωra
=

1

2Ha

(

Pma
−Ga,aE

′2
qa
−

n
∑

l=1
l,a

E
′

qa
E
′

ql
(Ga,l cos(δra

− δrl
) + Ba,l sin(δra

− δrl
))

+ ga,1PDC
1 + . . . + ga,mPDC

m − Da∆ωra

)

,

(27)

where Eqa
is the magnitude of the internal voltage of generator

a, Ga,l and Ba,l are the coefficients of the contribution of an

internal voltage Eqa
to generator current l in the system, and

ga, j is the coefficient of the contribution of the power injections

from HVDC link j at bus a (details of how each of these are

derived are given in (Mc Namara et al., 2011)).

It can be seen that this equation gives a relationship between

the rotor acceleration of generator a, the rotor positions of each

of the generators in the network, and the HVDC line powers.

From this it can be seen that there is high level of interconnec-

tivity between each of the subsystems’ individual distributed

MPC problems and a large communications overhead can be

expected when agents need to coordinate their actions. The

multiple HVDC link system parameters used in the simulation

are given in Appendix A.

5.2.1. Controller description

At each sample the state equations for each generator are lin-

earised about the current operating point as follows:

d

dt

[

δra

ωra

]

=















0 ω0

∂ fra
∂δra
|
op

∂ fra
∂ωra
|
op















[

δra

ωra

]

+















0 0
∂ fra
∂PDC

1

|
op

∂ fra
∂PDC

2

|
op















[

PDC
1

PDC
2

]

op

+















0
∂ fra
∂δrl
|
op















δrl

(28)

where in the above equation fra
(δra
, ωra
, PDC

1
, PDC

2
, δrl

) = d
dt
ωra

,

as defined in (27), and op indicates the linearisation of the rel-

evant variable, vector, or function about the current operating

point.

The states of agent a are taken as xa = [δra
ωra

]T, the in-

puts ua = [PDC
1

PDC
2

]T, and the interconnecting input va = δrl
.

The full system model is discretised using a zero-order hold

with a sample time τ = 0.01s, providing the discrete-time state

space equations for the distributed MPC system. Predictions

are formed using incremental state space models so as to en-

sure integral action, i.e., the augmented state x
aug
a = [∆xT

a xT
a ]T,

incremental inputs ∆ua, and incremental interconnecting inputs
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Figure 5: Order of serial distributed MPC optimisations and variables commu-

nicated between agents

∆va and their associated state space models are used for pre-

dictions and optimisations. A prediction horizon of N = 50 is

used so as to accurately represent the system dynamics in the

optimisation.

One agent is assigned per generator to control its frequency.

Each agent has access to its relevant state space model, the con-

straints on its variables, and can communicate with agents to

which it is connected by an AC or HVDC link.

The stage cost for the ath agent (there is one agent for each

generator, so for convenience the subscript a is used to index

both), J
stage
a (k, p), for the pth prediction step at sample step k, is

given as follows:

J
stage
a (k, p) = Qa(ωra

(k+ p+1)−1)2+∆ua(k+ p)TRa∆ua(k+ p),

(29)
where Qa is the weight corresponding to ωra

, and Ra is a diag-

onal weight matrix corresponding to each of the inputs in ∆ua

in the cost function. This cost function penalises deviations of

the frequency from the base frequency and the control effort.

The interconnection cost for the distributed MPC case at

sample step k and iteration l of the control cycle, Jinter
a (k, l), is

formed from a hypothetical centralised augmented Lagrangian

MPC formulation which is given as follows:

min
∆ũ1,...,∆ũ4

4
∑

a=1

(

Jlocal
a

)

+



















































































λ̃
in,x4

41

λ̃
in,x3

32

λ̃
in,x2

23

λ̃
in,x1

14

λ̃
u

41

λ̃
u

12

λ̃
u

23

λ̃
u

34



















































































T














































































w̃
in,x4

41
− w̃

out,x4

14

w̃
in,x3

32
− w̃

out,x3

23

w̃
in,x2

23
− w̃

out,x2

32

w̃
in,x1

14
− w̃

out,x1

41

w̃u
1
− w̃u

4

w̃u
2
− w̃u

1

w̃u
3
− w̃u

2

w̃u
4
− w̃u

3















































































+
c

2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

w̃
in,x4

41
− w̃

out,x4

14

w̃
in,x3

32
− w̃

out,x3

23

w̃
in,x2

23
− w̃

out,x2

32

w̃
in,x1

14
− w̃

out,x1

41

w̃u
1
− w̃u

4

w̃u
2
− w̃u

1

w̃u
3
− w̃u

2

w̃u
4
− w̃u

3

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

2

,

(30)

where wu
a(k) = [PDC

1
(k) PDC

2
(k)]T is agent a’s duplicate vector of

the control inputs, and the ks and ls, used to denote the sample

step and distributed MPC iteration, are omitted for compact-

ness. This formulation enables the distribution of the problem

so that agents can reach agreement on the control inputs, i.e.,

the HVDC powers.

Each agent a has a duplicate vector of the control inputs

w̃u
a(k). The order in which agents optimise for the distributed

MPC cycles starts with agent 1 and ends with 4. Therefore

in the hypothetical centralised augmented Lagrangian case, the

equality constraint w̃u
a(k) = w̃u

a,last
(k) is applied for each agent

(wu
a,last

denotes the last agent to optimise) in order to reach

consensus on the duplicate input values. Interconnecting con-

straints between interconnecting state variables are also ap-

plied.

When (30) is distributed amongst the agents, Jinter
a (k, l) takes

the following distributed form for agent a, where bus j is AC-

connected to bus a (this is specific to the system used in this

paper, where each agent AC-connected to only one other agent):

Jinter
a =



































λ̃
in,x j

ja

−λ̃
in,xa

a j

λ̃
u

a

−λ̃
u

a,next



































T 

































w̃
in,x j

ja

w̃
out,xa

ja

w̃u
a

w̃u
a



































+
c

2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

w̃
out,δr j

a j,prev
− w̃

in,x j

ja

w̃
in,xa

a j,prev
− w̃

out,xa

ja

w̃u
last,prev

− w̃u
a

w̃u
next,prev − w̃u

a

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

2

. (31)

Here wu
a,next denotes the next agent to optimise and again the

sample step k, and distributed MPC iteration l, are dropped for

compactness.

After agent a has completed its optimisation, it sends the rel-

evant updated values of the variables to the agents that are con-

nected to it, for use in their distributed MPC optimisations. The

total cost function for agent a is given by (10). This can be put

into quadratic form using simple matrix manipulation, where

the optimisation vector is ∆ũopt(k) = [∆ũT(k) ∆w̃T
in

(k)]T.

The HVDC link ranges are −2 ≤ PDC
i

(k) ≤ 2 pu, for i ∈ {1, 2}

and the frequency range at all buses is 0.97 ≤ ωra
(k) ≤ 1.03 pu,

for a = 1, . . . , 4. These constraints are applied over the full

prediction horizon.

In a centralised MPC case, the optimal values calculated for

PDC
1

(k) and PDC
2

(k) would be applied to the system. The 4

agents in the distributed MPC system calculate slightly differ-

ent values for the HVDC powers to each other, as these powers

only have to match to a degree, determined by the distributed

MPC parameters c and ǫ.

Here the values for PDC
1

(k) and PDC
2

(k), calculated by agents

2 and 3 respectively, are the control inputs that are applied

(these were chosen as the vast majority of power transfer is

from subsystems 2 and 3 to subsystems 1 and 4, and so it is as-

sumed their agents insist on having the final say on what power

is transferred).

5.2.2. PSO optimisation of the distributed MPC weights

PSO was used to optimise the weights and parameters of the

distributed MPC system for the multiple HVDC link system.

Due to the high level of coupling between the subsystems it can

be difficult to tune the system weights to achieve good distur-

bance rejection in a small number of iterations.

As previously stated, the weights determine the relative im-

portance of the goals of the distributed MPC system. There-

fore one weight is set equal to 1 and the rest of the weights are

then optimised relative to this weight using PSO. The weight

of agent 1, Q1 is set equal to 1 and the vector of PSO weights

is then Γ = [Q2 Q3 Q4 c ǫ]T. The Ra weights are not opti-

mised and are simply set to a small positive constant, where

Ra=diag(10−3,10−3). This helps ensure that the optimisation

10
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Figure 6: Plots of pu frequency and iterations over time for the 200ms line fault applied to lines 1 and 3 simultaneously.

problem is of full rank. However as in the previous example

these weights could be optimised, if desired by the practitioner.

The constraints for the variables in the PSO optimisation were

as follows: 0.1 ≤ Qa ≤ 100, for a = 2, . . . , 4, 0.01 ≤ c ≤ 5, and

10−4 ≤ ǫ ≤ 1. The PSO terminates when f g does not improve

by more than 0.1 for 7 consecutive iterations.

An upper limit of 120 distributed MPC iterations is allowed

for each control cycle to save on simulation time in each simu-

lation of the multiple HVDC link system that is run by the PSO

particles. If this is exceeded at any stage a fitness of 1000 is

allocated to the particle at that position and the simulation of

the next particle is initiated. Again this could be set lower but

it allows the information from a wider range of particles to be

useful in the PSO optimisation.

The tuning scenario used involves three-phase to ground

faults being simultaneously applied to lines 1 and 3 in the sys-

tem for a duration of 200ms and then returning the system to

its non-fault state. Tuning for this scenario is quite difficult and

in fact a number of initial tuning attempts did not stabilise the

system. Manually tuning the distributed MPC, the best per-
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formance the authors could attain was using [Q1 Q2 Q3 Q4 c

ǫ]T=[10 30 10 10 1 10−3 ]T. While this guess is stabilising

there is still an offset towards the end of the simulation and up

to 40 distributed MPC iterations are needed for one of the con-

trol cycles to converge. It was decided not to initialise the PSO

with this guess to see how long it would take to converge on the

final solution with random initial guesses. For the simulations

involving the iteration deterrent, υ=100.

5.2.3. Results

Simulations are run on a 2211.412 MHz Quad-Core AMD

OpteronTM Processor 2354 with a 512 KB cache size in Matlab

version 7.11.0.584 (R2010b). Simulink is used to simulate the

nonlinear, continuous-time power system simulations, using the

Dormand-Prince (ode45 in Matlab) continuous-time algorithm,

with a maximum step size of 2ms and a relative tolerance of

0.001. Linearisations of the nonlinear equations (25) and (27),

are used to derive the discrete-time state space models that are

used in the distributed MPC controllers. These inputs were cal-

culated and applied at fixed time steps of 10ms using Matlab

and the calculated inputs were passed to the continuous-time

Simulink simulations. All MPC optimisations are performed

using TOMLAB v7.4.

The final output of the disturbance rejection only PSO weight

optimisation (DR only) set [Q1 Q2 Q3 Q4 c ǫ]T = [ 1 22.8 100

100 2.9 0.3 ]T, with the final f g(i)=23.13. The final result in

the PSO optimisation based on disturbance rejection with the

iteration deterrent (DRID) gave [Q1 Q2 Q3 Q4 c ǫ]T = [ 1 59.6

100 90.1 1.06 0.13 ]T, with the final f g=693. The f g for the

DRID case consisted of a disturbance rejection cost of 93 and

an iteration deterrent cost of 600.

The fitness at each iteration of the PSO algorithm can be

seen in Figs. 6(g) and 6(h) for the DR only and DRID cases,

respectively. The other plots in Fig. 6 show the frequencies

in each area plotted against time for the initial set of weights,

the DR only weights, and the DRID weights. The plots of the

distributed MPC iterations needed over the course of the sim-

ulation to achieve the control for each of the aforementioned

weight scenarios are also shown.

It can be seen that in both cases the maximum number of

distributed MPC iterations needed for convergence during the

simulation run is significantly reduced in comparison with the

original case, and that the disturbance rejection significantly

improves. This illustrates that weight optimisation can simulta-

neously improve both the disturbance rejection and communi-

cation overhead, at least in certain situations.

While the DR only case results in a smaller overall amount

of iterations than the DRID case, both the DR only and DRID

cases converge on the same maximum number of iterations for

the simulation run, but the DR only case ends up with a smaller

overall communication overhead. In fact the DR only case also

has the smaller disturbance rejection cost of the two. This could

be simply because the PSO simply did not come across this

solution while searching in the DRID case. However, it must

also be considered that the discontinuities in the cost function

caused by the iteration deterrent prevented this better result be-

ing found in the DRID case. From a practical point of view,

though, both results are considerably better in terms of both dis-

turbance rejection and communication performance than with

the original case.

It is noted that there is a significant amount of computa-

tional overhead associated with finding these weights. DRID

took approximately 4 weeks and the duration for the DR only

simulation took approximately 8.5 weeks. The length of time

needed for the optimisation was due to the long time the multi-

ple HVDC link simulation took to run. On average simulation

runs of these simulations took between 10 and 20 minutes at a

time due to the fact that the sample time needed for simulation

was quite small and the fact that a very long simulation time

was needed due to the long settling times in multiple HVDC

link system. Also, a prediction horizon of 50 steps is needed in

this system, and so each of the distributed MPC problems are

quite large. Much time was also spent in the exploitation stage,

of the PSO algorithm, finding the final solution. It can be seen

that even after 20 iterations, in both cases, the PSO has almost

converged to the final result.

5.3. Discussion of overall results

In both of the PSO weight optimisation experiments in this

section it can be seen that the optimised weight values give si-

multaneously both improved disturbance rejection performance

and a reduced number of distributed MPC iterations. Also it

can be seen that the iteration deterrent has the potential to fur-

ther minimise the maximum number of distributed MPC iter-

ations needed in a simulation. Therefore, the use of the itera-

tion deterrent can be useful in scenarios where it is desirable to

minimise the number of iterations needed for convergence of

the distributed MPC algorithm while seeking to simultaneously

improve disturbance rejection performance.

The PSO, in both power system experiments, manages to

reach a near optimal result in the early stage of optimisation.

However the exploitation stage of the algorithm takes a signif-

icant number of iterations and so can be wasteful in terms of

the overall computational overhead. Another criterion, based

on the performance being within satisfactory bounds, could be

used in cases where the system simulations take quite a long

time to run, in order to terminate the PSO optimisation at an

earlier stage.

The duration of the PSO weight optimisations is significantly

influenced by the time taken to run the individual power system

simulations used to evaluate PSO particle fitnesses. While the

PSO updates are calculated quite efficiently, the vast majority

of the time taken to run the optimisations is based on the length

of time taken for the simulation scenarios. It is for this reason

that the multiple HVDC link weight optimisation experiment

took significantly longer than the 20 area LFC weight case. It is

worth carefully considering the length of time the system simu-

lations run for during each fitness evaluation, how efficient sim-

ulation runs are, and what termination criteria should be used

to terminate the PSO, in order to reduce the overall PSO weight

optimisation time. For computationally intensive simulations,

such as the multiple HVDC link system in this paper, overall

times for PSO optimisation could also potentially be reduced
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by running simulations for each of the particles in parallel on

separate computers.

6. Conclusions

A PSO-based weight optimisation algorithm is proposed here

for distributed Model Predictive Control (MPC). Two criteria

are used to evaluate PSO particle fitness. The first is based only

on the disturbance rejection performance of the system. The

second is based on the disturbance rejection performance of the

system and the communication overhead of the system. The

communication overhead is measured as the number of itera-

tions needed for the distributed MPC to reach convergence.

As a general strategy for tuning distributed MPC systems,

PSO is advantageous as it works effectively on a wide range of

surfaces and so is quite flexible in terms of what fitness criteria

can be used to tune the system. Also, practitioners do not need

any in depth knowledge of the distributed MPC algorithm they

are tuning in order to tune the weights, using PSO as described

in the paper. Using an iteration deterrent for the weight opti-

misation, it is possible to tune the control system to achieve a

desirable trade off between the closed loop performance and the

communication overhead needed to achieve this control.

Two power systems examples are used to evaluate this weight

optimisation technique. In both cases the weight optimisa-

tion results in an improvement in both the disturbance rejection

overhead and the communication overhead. However, it was

possible to further reduce the communications overhead using

the disturbance rejection with an iteration deterrent criterion.
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Appendix A. Power system parameters used in the multi-

ple link HVDC simulation

S base = 100 × 106 VA, Ubase = 100 × 103 V, fbase = 50 Hz,

w0 = 2π fbase rad/s.
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Line 1 2 3 4

XL pu 0.6 0.6 0.1 0.1

XS pu 0.1 0.1 0.1 0.1

Generator 1 2 3 4

x
′

d
pu 0.09 0.06 0.12 0.12

H (s) 2 4 2 2

D pu 1 1 1 1

PG = Pm pu 0.1 0.6 0.1 0.1

δr0
rad 5.9874 0.2871 5.585 5.03

E
′

q pu 0.4454 0.513 0.6807 1.0622

Bus 1 2 3 4

Load pu 0.1+0.05i 0.1+0.05i 0.1+0.05i 0.6+0.2759i

U pu 0.1097 0.2426 0.256 0.2219

θ rad -0.4809 6.2768 5.5161 -1.3042

HVDC link a= 1 2

PDC
a,0

pu 0.3573 0.1427

qra
0.8952 0.9037

Appendix B. PSO Toolbox parameters

Parameters used for the PSO Toolbox are given as follows:

Parameter Description

p number of particles 35

mvden max. velocity divisor 2

epoch maximum number of iterations 300
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