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Distributed Tree-Based Model Predictive Control on a Drainage

Water System

J. M. Maestre∗, L. Raso, P. J. van Overloop†, and B. De Schutter ‡

February 15, 2025

Abstract

Open water systems are one of the most externally influenced systems due to their size and contin-
uous exposure to uncertain meteorological forces. The control of systems under uncertainty is in
general a challenging problem. In this paper we use a stochastic programming approach to control a
drainage system in which the weather forecast is modeled as a disturbance tree. Each branch of the
tree corresponds to a possible disturbance realization and has a certain probability associated to it.
A model predictive controller is used to optimize the expected value of the system variables taking
into account the disturbance tree. This technique, tree-based model predictive control (TBMPC),
is solved in a distributed fashion. In particular, we apply dual decomposition to get an optimization
problem that can be solved by different agents in parallel. In addition, different possibilities are
considered in order to reduce the communicational burden of the distributed algorithm without
reducing the performance of the controller significantly. Finally, the performance of this technique
is compared with others such as minmax or multiple model predictive control.

Keywords: control of water systems, distributed model predictive control, stochastic program-
ming.

Introduction

Societies living near open waters strive at managing these waters by trying to control the water
levels in them with structures such as gates and pumps. To this end, different control methods
have been used over the last decades, such as feedforward control [1], feedback control [4], or Model
Predictive Control (MPC) [25]. Other important algorithms detailed in the literature and an intro-
duction to basic control concepts regarding the control of irrigation canals can be found in [12]. In
general, the performance of feedback controllers is reduced by the transport delays that are usually
present in this kind of systems. The use of feedforward controllers solves the problem regarding
the delays, but unfortunately these controllers are not able to cope with the constraints involved in
these control problems, e.g., maximum or minimum flow capacities. The only technique that allows
to handle in a systematic manner multi-variable interactions, constraints on manipulated inputs
and system states, and optimization requirements is MPC. The future predictions of the state,
output, and input variables are generated along a given prediction horizon using a mathematical
model of the system and used to minimize a given performance index, which is a cost function that
defines the optimization criterion used to determine the best possible control action sequence. Due
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to its versatility, MPC has become very popular in the industry and many implementations can be
found [3]. Likewise, MPC has been used or proposed many times for the control of water systems.
For example, in [30] a risk minimization strategy for the control of irrigation canals is proposed.
In [9] a decentralized predictive control strategy is used considered. Finally, in [26] a real time
implementation of MPC is described.

As being open environmental systems, the open waters are vulnerable to meteorological influences.
Due to recent advances and the availability of historical data, these disturbances on the system can
be predicted better and over longer horizons. For this reason, in this paper we are especially inter-
ested in the way MPC deals with uncertainty. The simplest one is to ignore it and let the controller
work in a nominal and deterministic fashion, which often results in a poor control performance. A
more sophisticated way to proceed is to take the uncertainties explicitly into account, e.g. using
deterministic forecasts if the certainty equivalence property holds [24], or assuming a bounded set of
unmeasurable disturbances in order to use a min-max approach [29]. Unfortunately, the certainty
equivalence property does not hold for meteorological disturbances (they are not distributed in a
Gaussian manner), and min-max controllers have shown to be slow and too conservative [5, 13].
This leads to alternative approaches to deal with uncertainty, such as stochastic programming
(SP) [13], which models unknown disturbances as random variables and focuses on the control of
the expected value of the system variables while guaranteeing robust constraint satisfaction. Un-
der this approach unknown disturbances can be also taken into account by considering different
representative realizations of the disturbances. For example, this idea has been previously used for
the control of water systems in [27], where multiple MPC (MMPC) is proposed. MMPC calculates
the control input sequence that minimizes a given performance index for different deterministic
disturbance scenarios. The probability of occurrence of each scenario is taken into account, so that
the most likely scenarios have greater impact on the performance index, i.e., their influence on the
optimal control sequence is higher.

In this work we use TBMPC which is an SP-MPC scheme that assumes that the time evolution of
the most relevant possible disturbance signals can be synthesized in a rooted tree [14, 19]. Each
root-to-leaf path is a possible disturbance scenario, i.e., branches appear in the tree as the different
disturbance forecasts diverge along the prediction horizon. Given that each node of the tree corre-
sponds to a point in time in which a control action can be implemented, control sequences are not
allowed to diverge before disturbance sequences. Thus, it is necessary to introduce compatibility
constraints1 [20] in order to limit the anticipative nature of the MPC controller. The role of these
constraints is simply to force the controller to calculate control trajectories able to cope with all
the scenarios until a bifurcation point allows to discard the realization of some of them. As a result
of this, the controller provides us with a rooted tree of control actions that are calculated according
to the different sequences in the disturbance tree.

At this point it is convenient to point out that the computational burden of TBMPC may become
an important issue. All studies mention the so-called “curse of dimensionality” as main drawback
that comes with optimization problems especially when treated stochastically. Moreover, water
management control problems usually involve long control horizons, which hinders the application
of MPC for large-scale systems [15]. In order to overcome this problem, different distributed MPC
(DMPC) techniques have been proposed during the last decade; see [21] for an extensive survey
on this topic. In general, DMPC focuses on the application of MPC to systems that are composed
of several subsystems governed by local controllers or agents. Each of these agents implements
a local MPC controller and may or may not share information with the other subsystems. The
distribution of a centralized problem between several agents allows us to solve problems that would
be intractable otherwise. In this paper we will use dual decomposition [16, 18] in order to distribute
the TBMPC optimization problem. This approach has been also previously used in water manage-

1Some authors also refer to these constraints as non-anticipativity constraints.
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ment, in particular for water resources system planning; see [6]. In particular, the distribution will
be done according to the different scenarios: we assume that each possible trajectory contained
in the disturbance tree is assigned to an agent. Therefore, the number of agents is the same as
the number of terminal vertexes contained in the tree. Each of these agents optimizes the same
performance index assuming its corresponding disturbance sequence is known and deterministic.
In addition, each agent must respect the compatibility constraints, i.e., each agent must reach a
consensus on the value of its control sequence with those agents whose disturbance sequences follow
the same trajectory. Note that all the agents must agree on the value of the first control step, the
one applied to the system in the closed-loop receding horizon. In Figure 1 the proposed scheme
is shown. For simplicity, only three different scenarios for the disturbance signals are considered.
Then, each of these scenarios is assigned to a different agent, which computes the optimal control
policy for the particular scenario while taking into account the control goal and the constraints of
the problem. Note that compatibility constraints require agents to choose the same value for their
control actions at the time step in which they are active.
The main contribution of this paper is the novel application of distributed control in order to con-
sider different scenarios in the control of water systems. To the best of our knowledge, only [6]
followed a similar approach, but it was in the context of operation research and water resource
planning, and hence not control. Despite that the distributed control technique that we use, dual
decomposition, is very standard and has been previously used in the context of irrigation canals [17],
we also show in this paper ways to reduce its communicational burden. Specifically, we show that
the limitation of the compatibility constraints provides similar closed-loop performance with signif-
icantly less communicational burden. Likewise, we study different thresholds as stopping condition
in the parallel algorithm. Finally, the last contribution of the paper is a comparison of the perfor-
mance of the proposed controller and other techniques used in the literature.
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Figure 1: Proposed control scheme.
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Methods

Ensemble forecasting

In open water systems, the uncertainty is generally introduced by the unpredictable nature of the
weather. Specifically, runoff derived from rainfall is the major source of uncertainty in this context.
An ensemble forecast (EF) is a weather prediction composed of possible trajectories of its evolu-
tion. It is generated by a model that is run using different initial conditions or different numerical
representations of the atmosphere, accounting for the major sources of forecast uncertainty [8].
These trajectories have generally small differences at the initial stage of the forecast; then they
tend to diverge, because of the chaotic nature of the underlying model. Finally, notice that each
of the trajectories in the EF has a certain associated probability.

For simulation purposes, a large number of scenarios improves the accuracy of the stochastic ap-
proach. However, this may be troublesome as it may lead to an excessive growth of the computa-
tional burden. In order to avoid this problem, a representative subset of scenarios can be chosen.
In order to provide the controller with set of the most representative ensemble members, a scenario
reduction algorithm is applied [10]. This reduced ensemble is bundled into a tree that will allow
us to set up a multistage stochastic programming problem. A tree, differently from an ensemble,
specifies when the trajectories diverge from each other. This moment in time is called bifurcation
point. At any bifurcation point the space of ensemble members is divided in two subsets, mutually
exclusive. In general, the tree is generated from the ensemble by aggregating trajectories over time
until the difference between them becomes such that they can be no longer assumed to be similar.
At such a point, a bifurcation is produced and the tree branches. The operation of tree generation
has been the subject of numerous studies, for example [10, 23].

At this point, it is important to remark that in this paper we assume that all the scenarios con-
tained in a tree have the same value at the first step of the prediction horizon. This assumption
is reasonable in the context of open water systems, where the weather forecasts provide a good
indication about how the disturbances will be specially at the beginning of the forecasted period.

Model Predictive Control

A MPC controller assumes the system dynamics can be modeled mathematically and uses this
knowledge to calculate what are the optimal control actions according to a given cost function. In
this paper we will assume that the model of the system can be described by the following discrete
time equation:

x(k + 1) = Ax(k) +Bu(k) + Ew(k) (1)

where x(k) ∈ R
q is the state of the system at time step k, u ∈ R

r is the vector of manipulated
variables, and w ∈ R

s is a vector of measurable disturbances. A,B, and E are matrices of proper
dimensions. We consider the following linear constraints in the states and the inputs

x ∈ X
u ∈ U

(2)

where X and U are closed polyhedra defined by a system of linear inequalities. As we will see
later, this basic model has enough accuracy to provide us with a reasonable model for the control
of some water systems. We will assume that our control goal is the regulation of the state vector
to a given value. For example, this corresponds to the situation in which we want to regulate the
water level to the value of a given reference. Without loss of generality, we can assume that the
control objective consists in regulating the state vector to the origin (otherwise a simple change of

5



variable takes us to this case). To this end, it is possible to define the following performance index

J(U, x0) =
Nh−1
∑

k=0

(

xT (k)Qx(k) +Qlx(k) + uT (k)Ru(k)
)

+xT (Nh)Qx(Nh) +Qlx(Nh)

(3)

where Q,Ql, and R are constant weighting matrices of the proper size and Nh is the prediction
horizon. Note that with this performance index we penalize quadratically and linearly the deviation
of the state vector with respect to the origin, and also quadratically the value of the manipulated
variables with respect to zero. These penalties are calculated and summed over the next Nh time
samples. Taking into account (1), it can be seen that function J depends on the control input
sequence U = (u(0), . . . , u(Nh − 1)) and the value of the state at time step k = 0, x0. The MPC
controller calculates the optimal control action by minimizing this cost:

U∗ = argmin
U

J(U, x0)

s.t.
x(k + 1) = Ax(k) +Bu(k) + Ew(k)
x(k) ∈ X ∀k ∈ {1, . . . , Nh}
u(k) ∈ U ∀k ∈ {0, . . . , Nh − 1}
x(0) = x0
w(k) = wk

(4)

where wk = (w0, w1, w2, . . . , wNh
) is a deterministic sequence composed by the present and future

values of the disturbances. The result of this optimization problem is the optimal control sequence
U∗ = (u∗(0), . . . , u∗(Nh − 1)). Only the first component of U∗ is applied. The rest of the sequence
provides information about the expected evolution of the manipulated variables in the future but
is not implemented during the next sample times. At the next sample instant, the optimization
problem (4) is solved using the current state at that time and the most recent disturbance forecast.
The first component of the resulting control sequence is implemented again. This procedure is
repeated every sample time in what is usually denominated as receding horizon strategy.

Distributed TBMPC uses the tree provided by the ensemble forecasting and solves (4) taking into
account the sequences contained in the tree. In particular, problem (4) is solved for each possible
disturbance sequence in the tree. Notice that the resulting set of problems can be solved by a set
of agents in parallel. Thus, if there are Ns different scenarios in the tree, there are Ns different
agents working in parallel. Nevertheless, the problem faced by the agents has more constraints
than (4). Additional restrictions have to be imposed in order to account for the compatibility in
the optimization procedure. To this end, let us define the binary auxiliary function δi,j(k) in the
following way:

• δi,j(k) is equal to 1 if the control input of agent i must have the same value of the control
input of agent j at time k. That is, δi,j(k) = 1 iff ui(k) = uj(k).

• δi,j(k) is zero otherwise.

In order to have an input tree with the same structure as the disturbance tree, δi,j(k) must be 1 for
k = 0, . . . , kij , where kij is first the time step at which the disturbance sequences corresponding to
agents i and j are different. From a centralized point of view, the problem solved by a TBMPC
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controller is the following:

min
U1,...,UNs

Ns
∑

i=1

αiJ(Ui, x0)

s.t.
xi(k + 1) = Axi(k) +Bui(k) + Ewi(k)
xi(k) ∈ X ∀k ∈ {1, . . . , Nh}
ui(k) ∈ U ∀k ∈ {0, . . . , Nh − 1}
xi(0) = x0
wi(k) = wi,k

δi,j(k)ui(k) = δi,j(k)uj(k) ∀i, j ∈ {1, .., Ns}, k ∈ {0, . . . , Nh − 1}































∀i ∈ {1, . . . , Ns}

(5)

where wi,k = (wi,0, wi,1, . . . , wi,Nh
) is a deterministic sequence composed by the present and future

values of the disturbances faced by agent i and αi is the probability assigned to the event that the
disturbance sequence wi,k actually occurs.

Dual Decomposition

In order to solve (5) in a distributed fashion, it is necessary to remove the coupled constraints, which
in this case are given by equalities of the type ui(k) = uj(k). Dual decomposition can be used to
this end, that is, to distribute the centralized problem (5) between the agents. The introduction of
Lagrange multipliers λi,j(k) in the cost function allows us to separate the problem. In particular,
it can be proven that solving (5) is equivalent to solving the following optimization problem [2]:

max
Λ

min
U1,...,UNs

Ns
∑

i=1

(

αiJ(Ui, xi,0) +
Ns
∑

j=1

Na
∑

k=0

δi,j(k)λi,j(k)(ui(k)− uj(k))

)

s.t.
xi(k + 1) = Axi(k) +Bui(k) + Ewi(k)
xi(k) ∈ X ∀k ∈ {1, . . . , Nh}
ui(k) ∈ Ui ∀k ∈ {0, . . . , Nh − 1}
xi(0) = x0
wi(k) = wi,k























∀i ∈ {0, . . . , Ns}

(6)

where Λ = {λi,j(k), ∀i, j ∈ {1, .., Ns}, k ∈ {0, Na} | δi,j(k) = 1} is the set of all the Lagrange
multipliers, sometimes referred to as set of prices. Notice that we have introduced a new parame-
ter, Na, which is the agreement horizon. Ideally, Na = Nh − 1, i.e, the agents have to respect the
compatibility constraints defined over the entire horizon. Nevertheless it may be desirable to limit
the effect of these constraints in time so that the number of coupling constraints is reduced.

As it can be seen, problem (6) can be solved in a distributed fashion. The following algorithm
shows the distributed optimization procedure that takes place at time step k:

• Step 0: Let l be the index used to count the number of iterations of the procedure. Initially
l = 0 and an initial set of prices Λ0 is given.

• Step 1: At each iteration l, each agent i calculates its own optimal input trajectory solving
the following problem for a particular set of values of the Lagrange multipliers Λl:
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U∗
i = argmin

Ui

(

αiJ(Ui, x0) +
Na
∑

k=0

ui(k)
∑

j 6=i

δi,j(k)λ
l
i,j(k)

)

s.t.
xi(k + 1) = Axi(k) +Bui(k) + Ewi(k)
xi(k) ∈ X ∀k ∈ {1, . . . , Nh}
ui(k) ∈ U ∀k ∈ {0, . . . , Nh − 1}
xi(0) = x0
wi(k) = wi,k

(7)

Notice that (7) corresponds to the part of (6) that corresponds to agent i.

• Step 2: Once the input trajectories have been calculated, the prices of agent i are updated
by a gradient step as follows:

λl+1
i,j (k) = λl

i,j(k) + γl(ui(k)− uj(k)) (8)

Notice that a price is only changed whenever there is a disagreement about the value of the
variable between the agents. Once the agents agree on a value, the price remains constant.
Convergence of these gradient algorithms has been proven under different type of assumptions
on the step size sequence γl. See for example [22]. Note that in order to update the prices,
the agents must communicate. See [11] for alternatives in the way the prices can be updated.

• Step 3: Let ∆u(k) = max
i,j

|ui(k) − uj(k)|. The algorithm stops if ∆u(k) ≤ ∆umax, where

∆umax is a parameter that represents the maximum allowable difference between the proposals
of any two agents. In case that u(k) is a vector, this criterion is applied componentwise.
Alternatively, the algorithm also stops if the number of iterations l exceeds a given threshold
lmax. Otherwise, the process is repeated from step 1 for l = l + 1.

Remark: Notice that the stopping criterion that we use in this paper is similar to the establishment
of a threshold on the price increment. Other criteria are possible, though. For example, in [7] it
is proved how, under certain assumptions, it is possible to establish suboptimality bounds on this
iteration procedure.

Remark: Strictly speaking, the term parallel should be used when the control problem is solved
locally, e.g.: by a multicore computer or cluster of computers, and the term distributed when there
are computers at different locations cooperating to obtain a joint solution. Throughout this paper
both terms are used indistinctively because dual decomposition can be used either way. Neverthe-
less, the simulations we show in the next section are solved in a parallel fashion.

Results and Discussion

We have applied the distributed TBMPC controller to a model of a real drainage system described
in [27]. In Figure 2 a sketch of the water system can be seen. There are three important variables in
this figure. In the first place we have the controlled variable, h (m), which is the average water level
with respect to average sea level. The second variable is Qc (m3/s), which represents the effect of
pumping water out of the system and is the manipulated variable. Note that there is a constraint
present in this actuator being the maximum pump capacity. Finally, there is a disturbance term
given by Qd (m3/s), which stands for the inflow of water due to rainfall. The discrete-time model
used to represent the dynamics of the drainage canal system is:

h(k + 1) = h(k)−
Tc

As

Qc(k − kd) +
Tc

As

Qd(k) (9)
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Figure 2: Schematization of drainage water system.

where As is the average storage area (m2), Tc is the control time step (s), kd is the number of delay
steps between control action and change in average water level, and k is the time step index. A
state space model based on (9) will be used for the controller. In particular, the model will focus
on the error between the current water level and the water level setpoint. Let href be the constant
water level setpoint. Thus, the error e(k) in the water level can be calculated as e(k) = h(k)−href .
In addition, the state vector will be expanded with the state variable ezone(k) in order to represent
explicitly how much the error e(k) is above or below of a given safety margin defined around the
water level setpoint. Taking all of this into consideration, we can define the following space state
model:





e(k + 1)
ezone(k)
Qc(k)



 =





1 0 − Tc

As

1 0 − Tc

As

0 0 1



 ·





e(k)
ezone(k − 1)
Qc(k − 1)





+





0 0
0 −1
1 0



 ·

[

∆Qc(k)
uzone(k)

]

+





Tc

As

Tc

As

0



 · [Qd(k)]

(10)

Note that a new variable has been introduced in this model, uzone(k), which is related to the
constraints of the optimization problem the MPC controller solves. In particular, hard constraints
are defined on the input of the system and a soft constraints are introduced on the state:

Qc(k) ≥ 0
Qc(k) ≤ Qc,max

uzone(k) ≥ hmin − href
uzone(k) ≤ hmax − href

These constraints help us explain better the meaning of uzone(k). According to (10), ezone(k) may
seem equal to a duplicated version of e(k + 1). The difference between them is that ezone(k) is
affected by the auxiliary manipulated variable uzone(k), which is able to compensate this error as
long as the water level stays inside the region defined by hmin and hmax. Therefore, note that
uzone(k) has no physical meaning and it is introduced only in order to avoid the possible infeasi-
bility problems which could have been derived from the use of hard constraints on the state. In
addition, note that ezone(k) will be zero as long as e(k + 1) stays between hmin and hmax.
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Figure 3: Simulation cases: (a) Centralized TBMPC, (b) Distributed TBMPC, (c) Distributed
TBMPC with Na = 1, (d) Minmax.
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Table 1: Model and controller parameters

Parameter Symbol Value

Storage area As 7300000 (m2)
Control time step Tc 900 (s)
Number of scenarios in the tree Ns 6
Prediction horizon Nh 16 (4 hours)
Control horizon Nc 16 (4 hours)
Maximum pump capacity Qmax 75 (m3/s)
Delay in the manipulated variable kd 1
Maximum number of iterations allowed lmax 2000
Agreement horizon Na 10
Disagreement threshold ∆umax 1 (m3/s)
Quadratic penalty weight on e Qe 180
Quadratic penalty weight on ezone Qezone 180e5
Linear penalty weight on Qc Ql,Qc

130e-5
Quadratic penalty weight on ∆Qc R∆Qc

1e-6
Quadratic penalty weight on uzone Ruzone 1e-16

As it has been stated, there is a disturbance in (10), which is the inflow due to rainfall Qd(k).
This inflow consists of the drainage and the pumping of the water precipitated into the polder
area. The future disturbance behavior is modeled as a tree that contains its most representative
possible trajectories along the prediction horizon. The data contained in the tree that is given to
the controller each time sample k is obtained from artificial ensemble forecasts that are generated
using meteorological models. These ensembles are generated modeling the rainfall event Rt at time
t as the product of two random variables Rt = Bt × Et, where Bt is a binary random variable
representing the occurrence of the rain event and Et is a gamma distributed random variable
representing the quantity of precipitation. The mean and variance of Et are determined by γt,
which is related to the uncertainty level so that:

Et ∼ Γ

{

µt = (1− γt)Pt + γtµcl

σ2
t = γt · σ

2
cl

(11)

where µcl and σ2
cl are the climatic mean and variance of the amount of precipitation, which are me-

teorological parameters, and Pt is the observed precipitation at time t. The uncertainty along the
forecasting horizon varies according to γt = t/Nh for t ≤ Nh, where Nh determines the information
prediction horizon [28]. This model allows us to generate artificially a set of 80 different scenarios
that are later condensed into a disturbance tree.

In Figures 3(a) to 3(d), we show the results of a closed-loop simulation of the proposed scheme
during 25 hours, which corresponds to a 100 time steps. As it can be seen, the simulation takes
place during a stormy event that tests the controller capability to keep the water level within the
desired margin. The numerical values of the parameters that characterize the system and the cost
function of the controller can be seen in Table 1. In addition, we have carried out simulations with
values different from the ones shown in Table 1 in order to see their influence in the controller
performance. In particular, these additional simulations were carried out for different values of the
agreement horizon, Na, and the disagreement threshold, ∆umax.

At first, in Figure 3(a), the results of a centralized MPC controller with a perfect forecast are
depicted. Notice that this case is given only as a reference since a perfect forecast, i.e. an exact
knowledge about the future evolution of weather, cannot be obtained. However, this case gives us
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an upper bound for the performance of the rest of the controllers. In Figure 3(b) the centralized
TBMPC configured with the parameters of Table 1 can be seen. Figure 3(c) shows the results of
the TBMPC strategy when the agreement horizon Na = 1. It is remarkable that the approximation
does not lead to significantly different results. Figure 3(d) shows the results corresponding to the
use of the minmax controller. Finally, the plots corresponding to the probabilistic MPC or MMPC
are not included because they are very similar to 3(b) for this particular case.

In general, it is not possible to calculate the exact number of optimization variables that the cen-
tralized TBMPC problem has; it depends completely on the structure of the tree. Nevertheless,
it is possible to calculate an upper and a lower bound for this number of variables. The upper
bound of the number of optimization variables is r ×Ns × (Nc − 1) + r, where r is the dimension
of the manipulated variables vector, Ns is the number of scenarios and Nc is the control horizon.
Notice that this bound is calculated for a case in which the tree branches completely after the first
time step in the horizon. The lower bound is given simply by r ×Nc, assuming that there is only
one scenario in the tree. It is obvious that as the number of scenarios grows, so does the number
of optimization variables. At some point, the number of variables may become intractable from
a computational point of view. Here is a reason that supports the use of distributed algorithms,
but there are more. For example, the system could be naturally distributed such as a large water
network in which there are several areas controlled by different local controllers. Without loss of
generality, we can assume that each node faces a problem similar to (4). Given that the overall
control problem comprises all the nodes’ subproblems, the total number of optimization variables
grows with the number of nodes in the network. Again, at some point there may be computational
problems due to an excessive number of optimization variables. Another suitable situation for the
use of a distributed algorithm would be a multi-objective optimization in which several agents with
different goals try to reach an agreement about the use of a common resource. The distributed al-
gorithm that we use in this paper substitutes a problem with up to r×Ns×(Nc−1)+1 optimization
variables by Ns separable problems with r × Nc variables that have to be solved iteratively until
an agreement has been reached. The size of the problem that we use in this paper as an example
is not big enough to make the use of parallel computation indispensable, i.e., it is not hard to solve
the problem in a centralized fashion. Nevertheless, the use of parallel computation here helps us
to illustrate how the problem is distributed and the iterative procedure that takes place for the
convergence. The number of optimization variables of our example will be bounded between 16
and 182. Its distributed version is composed of 6 problems with 32 optimization variables for each
one.

As it has been stated in the previous paragraph, the separation of the original optimization problem
into several separable optimization problem comes at a price: these problems have to be solved
iteratively until an agreement has been obtained. Hence, one of the most important aspects in
distributed control scheme is the number of iterations that are necessary for convergence. In Ta-
ble 2, the number of iterations needed for convergence is shown for different values of the agreement
horizon, Na. As expected, a greater value of Na implies a higher number of iterations, which is
logical since it implies a higher number of variables on which the agents must reach an agreement.
A question that arises naturally is how a change of Na affects the performance of the controller.
Table 2 also helps to answer this question. The pump flow difference between the centralized
TBMPC and its distributed versions have been analyzed in order to calculate its maximum, mean
and standard deviation along the 100 time steps of the simulation. As it can be seen, the results are
quite similar. Actually, the maximum deviation from the control signal provided by the centralized
TBMPC is always below 3%. These results suggest that the completeness of the set of compati-
bility constraints is not so relevant in the calculation of the first component of the control vector.
In addition, Table 2 shows in its last column the value of the cumulated cost of the closed-loop
system at the end of the simulation. This value is calculated according to the performance index
defined in (3) and the parameters given in Table 1. It is interesting to observe how the performance
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Table 2: Impact analysis of an agreement horizon variation (∆umax = 1).

Iterations l for convergence Pump flow difference (m3/s)

Na Max Mean Std. dev. Max Mean Std. dev.
Cum.
cost

Cen. - - - 0 0 0 2.31× 105

1 119 16.56 27.44 2.35 0.00 0.58 2.44× 105

3 263 38.17 64.49 2.03 -0.01 0.51 2.35× 105

5 565 70.84 121.57 1.19 -0.02 0.35 2.37× 105

7 813 109.69 182.79 0.97 -0.02 0.35 2.40× 105

9 1009 147.81 240.88 1.34 -0.02 0.41 2.35× 105

16 1321 169.82 279.41 1.09 -0.03 0.39 2.32× 105

of these controllers was very similar to the performance shown by the centralized TBMPC. As it
can be seen, the number of iterations can be dramatically reduced while obtaining a very similar
performance by means of a proper use of the agreement horizon Na.

Remark: All the distributed versions of the centralized TBMPC problem include simplifications
with respect to the original problem introduced by the convergence condition ∆u(k) ≤ ∆umax and
the elimination of the compatibility constraints beyond the agreement horizon Na. While these
simplifications explain the slight loss of performance of these alternatives, in general it is not pos-
sible to quantify exactly the loss amount for different simulations. Moreover, Table 3 shows that
alternatives theoretically closer to the original problem can show worse performance than others
that include more simplifications.

Remark: Notice that this fact does not question the rationale behind the disturbance tree. Ac-
tually, the compatibility constraints allow us to see a tree of the most likely control signals in
the future. Without them, the controller always anticipates and therefore the future values of the
control signals are not as realistic as possible.

Table 2 shows that the maximum deviation from the control signal provided by the centralized
TBMPC is always below 3%, but this value can be reduced with a proper adjustment of the dis-
agreement threshold ∆umax, which is another degree of freedom with a strong influence on the
number of iterations. For this reason, Table 3 shows the impact of a variation of the disagreement
threshold ∆umax. It can be seen that as ∆umax grows, the number of iterations for convergence
and the quality of the solution decrease.

Remark: Notice that we have not included figures showing the simulations with the distributed
versions of the TBMPC controller. The reason is that the differences are negligible when these
figures are compared with Figure 3(b). Tables 2 and 3 clearly point out the similarities between
the centralized and distributed solutions.

Finally, we have performed closed-loop simulations with several controllers for the sake of compar-
ison. Specifically, we have tested the following controllers:

• PFMPC: Centralized MPC with perfect forecast.

• TBMPC: Centralized TBMPC controller.
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Table 3: Impact analysis of a disagreement threshold ∆umax variation (Na = 16).

Iterations l for convergence Pump flow difference (m3/s)

∆umax Max Mean Std. dev. Max Mean Std. dev.
Cum.
cost

Cen. - - - 0 0 0 2.31× 105

0.25 2720 460.95 681.53 0.24 -0.00 0.09 2.32× 105

0.5 1964 297 461.25 0.35 -0.00 0.12 2.32× 105

1 1321 169.82 279.41 1.09 -0.03 0.39 2.32× 105

1.5 945 108.86 193.99 1.53 -0.03 0.48 2.38× 105

2 680 79.15 141.83 1.86 -0.00 0.63 2.42× 105

• DTBMPCx: Distributed implementation of the TBMPC controller where x is the value of
the agreement horizon. The following values were tested: Na = 1, 3, 5, 7, 9, 16.

• ProbMPC: Centralized MPC with a single disturbance forecast consisting on the weighted
average of all the scenarios contained in the tree based on their probability.

• MMPC: Multiple MPC, which is presented in [27]. Basically it is a MPC controller that
calculates the control vector that minimizes several scenarios at the same time. In this
case we have used this methodology with all the scenarios and corresponding probabilities
contained in the tree.

• MinmaxMPC: Min-Max MPC implemented as a quadratic programming problem as in [5].
This controller minimizes the cost of the worst possible scenario of the tree at each time
sample k.

In particular, 100 different simulations were carried out for the test. The disturbances used in the
simulations were based on real rainfall data from the Netherlands and their severity ranges over the
whole spectrum of possible scenarios. Specifically, the maximum inflow into the drainage system
of each simulation was chosen between 0 and 500 m3/s while the pumping capacity of the system
under test is only 75 m3/s. For each one of these simulations, the drainage system was controlled
in closed-loop during 25 hours by each controller. The total cumulated cost of the 25 hours was
computed according to the performance index defined in (3) and the parameters given in Table 1.
The results can be seen in Table 4 and are consistent with the expectations about the performance
of the controllers. Naturally, the PFMPC outperforms the rest of the controllers with a great dif-
ference, but as it has been said, this controller is not realistic. Then it can be seen how the TBMPC
offers the best performance of the rest of the controllers. As it was shown before, the distributed
versions of the TBMPC offer a very similar performance. The MPC controller with a probabilistic
forecast is a step behind these controllers and shows a similar performance to the next one, the mul-
tiple MPC controller. Finally, the minmax offers the worst performance of all the controllers tested.

Remark: The results given in Table 4 show a high standard deviation due to the different severity
of the stormy events that were used in the simulations. As it can be seen in Table 1, the parameter
with the highest impact in the performance index is the quadratic penalty on ezone. For this reason,
any simulation in which the water level is outside the allowed margin has a much higher cumulated
cost in general.

Conclusions
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Table 4: Total cumulated cost comparison

Controller Cumulated cost

Mean Std. Dev

PFMPC 1.42× 107 4.77× 107

TBMPC 1.56× 107 4.87× 107

DTBMPC1 1.57× 107 4.86× 107

DTBMPC3 1.56× 107 4.87× 107

DTBMPC5 1.58× 107 4.86× 107

DTBMPC7 1.57× 107 4.86× 107

DTBMPC9 1.58× 107 4.87× 107

ProbMPC 1.77× 107 5.21× 107

MMPC 1.77× 107 5.21× 107

MinmaxMPC 1.86× 107 5.46× 107

In this paper we have presented an implementation of TBMPC in a distributed fashion by means
of dual decomposition. The distributed formulation allows us to apply TBMPC to problems with
a higher number of optimization variables than traditional centralized model predictive controllers
and sets the basis for distributed TBMPC. In addition, we have carried out experiments using a
drainage water system as a benchmark in order to test how the number of iterations needed for
convergence vary as different parameters change. It has been shown that a proper choice of the
agreement horizon Na and the disagreement threshold ∆umax can reduce the number of iterations in
a significant manner, while keeping almost constant the TBMPC controller performance. Moreover,
our results suggest that the relevance of the compatibility constraints is low from a control point
of view. Nevertheless, the absence of these constraints makes the control signals calculated by the
controller unrealistic for those time steps different from the first one. Finally, the TBMPC and its
distributed versions have been compared to other controllers in the same benchmark. The results
of our simulations showed that the TBMPC outperformed the rest of the alternatives considered,
such as minmax MPC or MMPC, and it can be concluded that the TBMPC and its distributed
versions are suitable controllers to deal with the uncertain inflows that are typical for this kind of
open water systems.
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