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Achieving System-Optimal Splitting Rates

in a Freeway Network Using a Reverse

Stackelberg Approach

Noortje Groot ∗ Bart De Schutter ∗ Hans Hellendoorn ∗

∗ Delft Center for Systems and Control, Delft University of
Technology, Delft, The Netherlands (e-mail: n.b.groot@tudelft.nl)

Abstract: A game-theoretical method is proposed to achieve a system-optimal distribution of
traffic over a freeway network. In particular, the road authority is represented by a leader player
and each follower player embodies a group of drivers with the same value of time that plan to
travel between a given origin and destination. In the proposed reverse Stackelberg approach, the
leader presents a function to each follower that maps a vector of splitting rates over possibles
routes to a monetary incentive. The follower then decides upon a splitting rate and the associated
monetary incentive that yield the minimum weighted measure of travel time and monetary fees.
In this manner, the road authority can compose an optimal leader function under which the
followers will behave as desired, i.e., to achieve the system-optimal splitting rates.

Keywords: traffic control; hierarchical decision making, reverse Stackelberg game

1. INTRODUCTION

It is well-known that the uncontrolled behavior of in-
dividual vehicles in a freeway network in general does
not result in an optimal distribution of traffic over the
available routes (Wardrop, 1952). Several methods aim
at bringing this so-called user equilibrium closer to the
system-optimal traffic distribution. One of such methods
consists in providing travel time information on dynamic
route information panels (DRIPs) (Deflorio, 2003), which
can be integrated with variable speed limits (van den Berg
et al., 2004) and ramp metering (Karimi et al., 2004).
Other methods assign tolls to different freeway stretches,
either as fixed, time-dependent tolls (Joksimovic et al.,
2005) or as flow-dependent tolls (Staňková et al., 2009).

In the DRIP-based approaches however, the indicated
travel times on the alternative routes should be similar
for drivers to deviate from the shortest, popular routes.
This causes inefficiency because congestion should apply
in order for some routes to sufficiently increase in average
travel time. The same holds for the time-dependent tolls
on individual highway stretches, which will in general not
yield a system-optimal distribution either.

Hence, in order to optimize the use of alternative routes
in a traffic network by minimizing the total time that
traffic spends in the system, we propose a reverse Stack-
elberg game approach with monetary incentives. Here,
we treat the traffic control problem as a leader-follower
game where the road authority as a leader provides the
drivers (followers) with a leader function that assigns a
monetary incentive, positive or negative, to each possible
combination of splitting rate values that the followers can
choose. The leader does so based on her computation of the
desired, system-optimal equilibrium state. By composing
an optimal leader function, the rational follower response
will be to adopt system-optimal splitting rates.

The motivation for this reverse Stackelberg approach to
deal with splitting rates is as follows. In previous work,
we have proposed a reverse Stackelberg approach in which
a follower’s decision variable is the travel time in which
he aims to reach his destination (Groot et al., 2012).
While this yields a system-optimal distribution in case the
players make fully rational decisions, the difficulty is in
realizing the drivers’ desired individual travel times in case
they differ from the optimal, rational response.

Hence, in order to more easily deal with such deviations,
in this paper a method is proposed in which a follower
group of motorists decides upon a certain splitting of traffic
over the different routes, where any (suboptimal) splitting
rate can be realized in practice. In other words, instead of
the leader determining the optimal splitting rate and the
according leader functions to achieve this situation, now,
we adopt the splitting rate as a follower decision variable.
This means that a homogeneous group of drivers needs to
make a collective decision on how to distribute this group
over the available routes. This division of individual drivers
of the follower group over the alternative routes according
the splitting rates is a separate, lower-level problem that
we leave for further research. Here, we can assume that
vehicles are equipped with an on-board unit that allows
for communication between the vehicles.

The remainder of the paper is built up as follows. First, the
reverse Stackelberg game is described in Section 2. After a
statement of the traffic control problem, we describe how
the game can be translated to fit the traffic situation in
Section 3. Here, first the basic elements of the game are
linked to the context, and then the dynamic framework is
explained. In Section 4 a simple case-study is presented
to clarify the performance of the proposed reverse Stack-
elberg approach as compared to the use of DRIPs. The
paper is concluded in Section 5.



2. THE REVERSE STACKELBERG GAME

The basic reverse Stackelberg game is a hierarchical game
that can be described as follows. A leader player proposes
a leader function γL : ΩF → ΩL, with the leader decision
variable uL ∈ ΩL ⊆ R

nL and the follower decision variable
uF ∈ ΩF ⊆ R

nF . Based on this leader function γL(uF), the
follower determines his optimal response u∗

F ∈ ΩF, which
yields the associated leader decision variable uL = γL(u

∗
F).

Here, the leader aims to achieve the desired reverse Stack-
elberg equilibrium or her globally optimal solution

(ud
L, u

d
F) := arg min

uL∈ΩL,uF∈ΩF

JL(uL, uF),

where JL : ΩL × ΩF → R denotes the follower’s cost
function. Similarly, given the leader function γL(uF), the
follower optimizes his objective function JF(γL(uF), uF).

A well-known special case of this leader-follower game is
the original Stackelberg game (von Stackelberg, 1952).
In this game, the follower player determines his optimal
decision variable uF ∈ ΩF as a direct response to the
leader’s – constant – decision variable uL ∈ ΩL, thus
not to the more general leader function γL(uF). The
reverse Stackelberg game has an important advantage to
the regular Stackelberg game, as there, the leader cannot
sufficiently influence the follower’s response in case it is
not unique. The following simple example illustrates the
reverse Stackelberg concept:

Example 1. (Adopted from Olsder (2009)). Consider the
following simple static, single-leader single-follower situa-
tion as also depicted in Fig. 1. Let the objective functions
of leader and follower be respectively:

JL(uL, uF)=(uF − 5)2 + u2
L,

JF(uL, uF)=u2
L + u2

F − uLuF,

with decision variables uL ∈ R, uF ∈ R. The leader’s global
optimum is (ud

L, u
d
F) = (0, 5). In the original Stackelberg

game formulation, the follower’s response to the desired
variable ud

L = 0 would be the suboptimal u∗
F = 1/2uL = 0.

However, under the leader function

uL = γL(uF) = 2uF − 10,

the follower’s response will be:

argmin
uF

JF(uF)=argmin
uF

(2uF−10)2+u2
F+(2uF−10)uF=5.

In Fig. 1 several level curves of JF are plotted; the leader’s
optimum (ud

L, u
d
F) is in the center of the dotted level curves

for JL. The contours centered around the four corners of
the plotted decision space represent the level curves of
JF. The follower’s optimal response to ud

L and γL(uF) are
respectively u∗

F and ud
F for the original versus the reverse

Stackelberg game.

3. THE REVERSE STACKELBERG ROUTING
APPROACH

3.1 Problem Statement

The aim of the control problem of our interest is to achieve
a system-optimal distribution of traffic over a network,
i.e., to make optimal use of the available routes in the
sense that the total time spent (TTS) of traffic in the
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Fig. 1. Graphical representation of Example 1

particular network is minimized. As has been indicated
in the introduction, some current methods cannot bring
the user equilibrium traffic assignment to coincide with
the system-optimal assignment. In the remainder of this
section, we propose a method based on game theory that
can accomplish this.

First, we model the traffic network as a directed graph with
a set of origin and destination nodes O and D respectively.
Homogeneous freeway stretches are represented by links
ℓ ∈ L, that connect origins, destinations, and internal
nodes of the set N . We define the node sets such that O∩
N = ∅ and D∩N = ∅. Since O∩N = ∅, w.l.o.g. we assume
that each origin o ∈ O has a single outgoing link ℓout(o).
In case of multiple outgoing links out of a given origin,
a single virtual link can be created with zero length and
zero travel time that connects the given origin to a virtual
internal node from which the multiple outgoing links then
depart. When adopting a traffic prediction model, the links
can be further divided into road segments r ∈ R of equal
length, in order to achieve an accurate prediction of the
traffic behavior. For clarity, we however use link indices
throughout the paper.

A receding horizon approach is adopted, where kc indicates
the time instant t = kcTc, with Tc the sample or control
time step of the dynamic routing approach. Similarly, k
indicates the time instant t = kT , with T the time step
for the simulation of the traffic flow behavior based on
a prediction model; a time horizon [kT, (k + Np)T ] is
thus considered with Np the prediction horizon. Finally,
T = MTc,M ∈ N.

Further, qℓ,d(k) denotes the traffic flow on link ℓ ∈ L
traveling towards destination d. The in-flow of origins can
be written

qo,din (k) = qℓout(o),d(k), (1)

with qo,din the demand for traveling from o to d. Then, the
total inflow of node n ∈ N at time step k that has a
destination d is denoted by

Qn,d(k) =
∑

ℓ∈I(n)

qℓ,d(k), (2)

with I(n) the set of incoming links of node n. Similarly,
O(n) denotes the set of outgoing links for node n, with a
traffic flow



qℓ,d(k) = βn,ℓ,d(k)Qn,d(k), (3)

where βn,ℓ,d(k) ∈ [0, 1] represents the splitting rate for link
ℓ at node n with the destination d. We can now write the
total flow qℓ(k) on link ℓ by

qℓ(k) =
∑

d∈D

qℓ,d(k). (4)

The system-optimal traffic distribution is such that the
TTS over a given prediction horizon Np is minimized, i.e.,
the cost function can be described by

J (k) = T

Np
∑

j=1

∑

ℓ∈L

qℓ(k + j)τℓ(k + j), (5)

with τℓ(k) the mean travel time associated with link ℓ ∈ L
that is determined using a traffic prediction model. Here,
the prediction horizon is incorporated to take into account
not only the present but also the future traffic conditions.

3.2 Reverse Stackelberg Approach

In order to introduce the reverse Stackelberg approach to
the dynamic traffic assignment problem of reaching the
optimal splitting rates, we start with a definition of the
basic elements of the reverse Stackelberg game, linked to
the traffic control context.

Players and Decision Variables

• The single leader player represents the road author-
ity that aims at accomplish an optimal use of the
roads of a given traffic network.

• A follower player represents a homogeneous group
of vehicles that desire to travel according to a certain
origin-destination (OD) pair (o, d) ∈ O×D. The total
number of OD-pairs is denoted by NOD = |O| · |D|,
where |X| represents the cardinality of X.
Further, the group of drivers should be homoge-

neous in the sense that they have a similar mone-
tary value of time, as will be elaborated upon be-
low. We denote the value-of-time-class by h ∈ H :=
{1, . . . , H}, where the set of classes of drivers with a
particular OD-pair index i ∈ {1, . . . , NOD} is denoted
by Hi. Hence, the total number of follower players is

represented by NF =
∑NOD

i=1 |Hi| where we denote the
set of followers by

F={(h, i)|i∈{1, . . . NOD}, h∈Hi}.

Further, the decision variables are respectively:

• A monetary incentive θhi ∈ Ωhi
L to be paid by or

received by the follower player (h, i) ∈ F where
Ωhi

L := [θhimin, θ
hi
max] denotes the range of monetary

incentives that is accepted by the drivers.
• A choice of the vector of route selection variables
ζhi(kc) ∈ Ωhi

F that specifies fractions of the group of
drivers that constitutes the follower player (h, i) ∈ F ,
which take the different routes associated to OD-pair
index i ∈ {1, . . . , NOD}. Here,

ζhi :=
(

ζhi1 . . . ζhini

)T
,

with ni the number of possible routes associated with
the i-th OD-pair.

The Leader and Follower Objective Functions

• The leader player aims to minimize the total travel
time that the traffic spends in the system (TTS):

JL(kc) =T

Np
∑

j=1

NOD
∑

i=1

∑

h∈Hi

(

τ i(Mkc+ j)
)T

·
(

ζhi(Mkc+j) · qhiin (Mkc+j)
)

,

(6)

subject to consistency and capacity constraints (see
Section 3.4), where qhiin (kc) [veh/h] denotes the total
demand of drivers in the value-of-time class h ∈ Hi

at control time step kc for the i-th OD-pair. Further,

τ i :=
(

τ i1 . . . τ ini

)T
denotes the predicted travel time on

each of the routes associated with the i-th OD-pair.
• The followers’ objective is to minimize the average
travel cost as a function of monetary incentives and
average travel time, which is evaluated at the moment
kc of entering the traffic network:

J hi
F (kc)=αh

F

(

τ i(Mkc)
)T(

ζhi(Mkc)·q
hi
in (Mkc)

)

+θhi(Mkc),
(7)

with αh
F ∈ R+ the possibly time-variant 1 monetary

value of time (VOT). Note that this parameter could
be differentiated between given a particular car type,
or it could be determined by an iterative learning
process in which the value is adapted over time based
on the behavior of the vehicles.

Remark 1. Instead of assuming a linear mapping of travel
time to monetary value, (7) could be replaced by a more
involved, nonlinear relation as considered in e.g., DeSerpa
(1973); Blayac and Causse (2001). The consequence of
a different follower objective function is in the type of
leader function γL that is needed to reach the optimal
distribution of tolls to arrive at the system optimum, as
will be elaborated upon in Section 3.5.

3.3 The Dynamic Game

Given the classification of the road authority as a leader
and a group of homogeneous drivers as a follower, while
using the proposed decision variables and goal functions, a
dynamic, multi-stage game can be composed. The overall
process that leads to a dynamic route assignment at a
minimum TTS is illustrated in the scheme of Fig. 2. Here,
the following main steps are considered:

(1) Given the current traffic state and the demand for the
OD-pairs as indicated by the drivers on the on-board
computers, system-optimal splitting rates are
computed for the vehicles over the available routes,
with the corresponding predicted mean travel times.

(2) Given the desired distribution of vehicles and the
according travel times, the road authority associates
monetary incentives θ with the drivers’ choice of the
route selection variables ζ that specify the splitting
rates for each of the nodes and outgoing links on one
of the routes towards the desired destination. This
results in a leader function γhi

L (kc) : ΩF → ΩL for
each of the NF followers.

1 In the literature, this parameter is often taken to be constant
(Joksimovic et al., 2005; Staňková et al., 2009). However, the value
could change depending on the period of the day.
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Fig. 2. Schematic framework of the splitting rate based reverse Stackelberg approach to dynamic route assignment

(3) As a response to an optimal leader function, a rational
follower player will choose the desired combination
of monetary incentive and route selection rates, i.e.,
the pair (θ, ζ) that minimizes the follower’s objective
function will result in system-optimal splitting rates
according which the drivers will be distributed over
the traffic network.

This reverse Stackelberg approach can thus be seen as a
lower-level problem of realizing certain splitting rates, as
determined via dynamic traffic assignment.

The system-optimal or desired road selection rates ζd,hi

of the homogeneous followers (h, i) ∈ F follow from the
desired splitting rates βd

n,ℓ,d. Hence, the distribution of
traffic demand over the particular routes, leading to a
flow qj on route j ∈ {1, ..., ni} for OD-pair index i ∈
{1, ..., NOD} can be written:

qj :=
∑

h∈Hi

qhiin · ζhij , with ζhij :=
∏

n∈P
N
ij

ℓ∈P
L
ij

βn,ℓ,d(i), (8)

where PN
ij denotes the set of nodes on the path or route j

and PL
ij denotes the set of links on the path j for the i-th

OD-pair, with d(i) the associated destination. Further, for
the flow on a link ℓ ∈ L with destination d ∈ D holds:

qℓ,d =
∑

i∈Id

∑

h∈Hi

∑

j∈Ji,ℓ

qhiin ζ
hi
j , (9)

with Id the set of OD-pairs with destination node d and
Ji,ℓ the set of routes for the i-th OD-pair containing link ℓ.

3.4 Computation of the Optimal Splitting Rates

The system-optimal splitting rates can be obtained by
solving a dynamic version of the minimum cost flow
problem, through which an optimal distribution of a given
traffic flow over the network is computed which was the
problem described in Section 3.1:

min
qℓ,d

T

Np
∑

j=1

∑

d∈D

∑

ℓ∈L

qℓ,d(k + j)τℓ(k + j). (10)

Here, τℓ denotes the predicted travel time for link ℓ ∈ L.
The following constraints are needed to link the flows
through the traffic network:

∑

h∈Hi

qhiin (k) = qℓout(o),d(k) ∀i∈ {1, . . . , NOD} (11)

∑

d∈D

∑

ℓ∈I(n)

qℓ,d(k) =
∑

d∈D

∑

ℓ∈O(n)

qℓ,d(k) ∀n ∈ N (12)

∑

d∈D

qℓ,d(k) ≤ qcap,ℓ ∀ℓ ∈ L (13)

qℓ,d(k) ≥ 0 ∀ℓ ∈ L, ∀d ∈ D, (14)

where, given a driver demand pattern qhiin (k) ∀ i ∈
{1, . . . , NOD}, h ∈ Hi, a system-optimal – with respect to
the TTS – distribution of the traffic demand over the road
network can be computed, as well as the associated mean
travel times τ i(k) for each of the routes j ∈ {1, . . . , ni}.
The optimal splitting rates now follow straightforwardly
from the optimal flows qℓ,d(k) for each road stretch ℓ ∈ L
towards the destination d ∈ D, see (8)-(9).

Further, the travel time τℓ(k) for a particular link ℓ ∈
L depends on the average velocity ṽℓ(k), i.e., τℓ(k) =
Lℓ/ṽℓ(k), which is again influenced by the traffic flow and
density. The way in which the average speed is computed
determines the complexity of the above problem. If one
takes ṽℓ(k) as a constant, equal to the currently measured
speed, a linear programming problem results (Ahuja et al.,
1993).

However, if a prediction model like METANET (Messmer
and Papageorgiou, 1990), the cell transmission model (Da-
ganzo, 1994), or the link transmission model (LTM) (Yper-
man et al., 2006) is used to determine the speed at a certain
time (which is again a function of the splitting rates), a
more complex, nonlinear optimization problem should be
solved. A less accurate but computationally more efficient
alternative is to derive ṽℓ(k) from a fundamental diagram
or from the nonlinear expression

ṽℓ(k) = vfree,ℓ exp[−
1

aℓ
(
ρℓ(k)

ρcrit,ℓ
)aℓ ], (15)
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Fig. 3. The TTS resulting from different splitting rates
under three levels of demand

where vfree,ℓ denotes the free-flow speed [veh/h] and ρcrit,ℓ
[veh/km/lane] the critical density of segment ℓ ∈ L, and
where aℓ represents a model parameter (May, 1990).

3.5 Composition of an Optimal Leader Function

The decision space of the follower is multidimensional,
i.e., the decision variable of player (h, i) ∈ F represents
a vector of route selection rates ζhi. The leader function
should therefore allocate a monetary incentive to each
possible combination of the splitting rates towards one of
the road stretches that is on a route to the destination d
corresponding to the OD-pair index i ∈ {1, ..., NOD}.

An optimal leader function is such that the rational re-
sponse of the follower that minimizes his goal function (7),
brings about the system-optimal, hence desired, splitting
rates βd

n,ℓ,d ∀n ∈ N , ℓ ∈ L, and d ∈ D. As has also
been illustrated in Section 2, this leader function should
not contain any points on the sublevel curve for the de-
sired splitting rate vector, or within the sublevel set of
the follower. In these cases the follower could choose an
alternative splitting rate at the same objective function
value, or splitting rates that yield the follower a better
objective function value. This concept of an optimal leader
function is illustrated in the following example.

Example 2. (Optimal leader function). Fig. 3 shows the
TTS values for three static demand scenarios under the
possible splitting rates ζ1 towards route 1 for the simple
network with two non-overlapping routes depicted in Fig.
4. Here, we assume both routes to have a capacity qcap =
4000 veh/h and the lengths are respectively L1 = 2km and
L2 = 3 km. Whereas the TTS is minimized by routing
all traffic to the shortest route 1 in case the demand
qin ≤ qcap, i.e., at the splitting rate value ζ1 = 1, in case
of a higher demand, the flow is split over the routes.

Fig. 5 shows several level curves, i.e., combinations of
splitting rates and monetary incentives that yield the same
value of the follower’s objective function (7) for a demand
of 6000 veh/h as also applies in Fig. 3(b). Two possible
optimal leader functions are indicated, i.e., an affine (γ1)
and parabolic (γ2) mapping of splitting rates between road

Origin

Traffic direction

Destination
1

2

Fig. 4. Two-route traffic network

1 and 2 to a monetary value. For both functions, the
optimal choice of splitting rates for the follower player will
be the system-optimal ζd,1 = 0.66, which is associated
with a monetary value of 4e in this example.

4. CASE STUDY

Finally, in order to give an indication of the performance
of the reverse Stackelberg routing approach, we simulated
the traffic behavior in the simple network depicted in
Fig. 4. Here, we compared the TTS while using the
optimal splitting rates as achieved by the proposed reverse
Stackelberg game approach to the TTS that is yielded
when using DRIPs.

Recall that Example 2 shows the composition of the
optimal leader functions in the static game, i.e., for each
control time step kc. We now simulate the results over a
horizon of 1 hour. For the simulation of the traffic behavior
when using DRIP panels for route guidance, the logit
model (Cramer, 1991) is adopted to obtain splitting rates
as a function of the difference in predicted travel time
between the alternative routes.

The results of this simulation, plotted in Fig. 6, show that
in the reverse Stackelberg approach, most use is made of
the shortest route. Until the capacity flow is reached, the
proposed leader functions can drive the traffic towards
route 1, whereas the traffic is distributed over the two
alternative routes once the capacity is exceeded. In the
DRIP approach however, an increasing number of vehicles
choose the longer route as the flow on the shortest route
reaches closer to the capacity. This results in a TTS of
6.50·104 veh.h for the DRIP approach versus 6.25·104 veh.h
for the reverse Stackelberg approach. The latter number is
only slightly lower, however, in larger networks that allow
for multiple routes and larger differences in total travel
time, this difference is expected to be more apparent.
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5. DISCUSSION AND FURTHER RESEARCH

A game-theoretical method has been proposed to accom-
plish a system-optimal distribution of traffic over the avail-
able roads in a freeway network. The method is based on
a reverse Stackelberg game in which a group of drivers,
homogeneous in the value of time, chooses upon a splitting
rate according to the road authority’s proposed mapping
of splitting rates to monetary incentives.

As compared to alternative road-tolling methods or route
guidance methods that rely on travel time information
to influence the drivers’ route choice, this approach can
achieve the desired splitting rates under the assumption
that drivers make rational decisions, optimizing a combi-
nation of travel time and monetary incentives.

Here, it should be noted that the travel cost of a follower
player is still a group average, i.e., individual drivers will
follow different routes according to the group splitting
rate, which results in different travel costs between the
drivers. The actual division of the homogeneous individual
drivers over the alternative routes is therefore a lower-level
problem that will be addressed in future research.
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(b) Reverse Stackelberg approach

Fig. 6. A comparison of the distribution of traffic demand
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