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Reverse Stackelberg Games, Part I: Basic Framework

Noortje Groot, Bart De Schutter, and Hans Hellendoorn

Abstract— The class of reverse Stackelberg games, also
known as incentives, embodies a structure for sequential deci-
sion making that has been recognized as a suitable approach for
hierarchical control problems like road tolling and electricity
pricing. In this game, a leader player announces a mapping of
the follower’s decision space into the leader’s decision space,
after which a follower player determines his optimal decision
variables. Compared to the original Stackelberg game, the
reverse Stackelberg approach has several advantages that will
be emphasized in this survey. Since the reverse Stackelberg
game has been studied in different research areas, first a
comprehensive overview is provided of the definition of the
game. Further, several areas of application are stated. In the
companion paper entitled ‘Reverse Stackelberg Games, Part II:
Results and Open Issues’, main contributions are subsequently
summarized along with several characteristics of the game and
open issues that are relevant for further research, are presented.

I. INTRODUCTION

Since the introduction of the Stackelberg game in 1934 [1],

[2] this hierarchical leader-follower game has broadened its

form and application areas to show its diversity in fields from

game theory to optimization. While originally introduced

in the economic context of duopolies in which one firm

has the power to act before the other firm, in the 1970s

the Stackelberg game has been recognized as a tool for

dealing with large-scale optimization and control problems

[3], [4]. In particular, a hierarchical approach can be adopted

to distribute a complex problem into layers of sequential

problems in order to ease the problem solving, as well as

to deal with systems that contain a natural hierarchy. An

overview highlighting the relevance of hierarchical control

as an alternative to decentralized and distributed approaches

can be found in [5].

An interesting related problem is the reverse Stackelberg

game, at which the current survey is aimed. Compared to

the original Stackelberg game, in the reverse Stackelberg

game, the type of leader action is generalized from making

a direct decision to determining a function that maps the

follower’s decision space into the leader’s decision space.

Thus, although the leader remains the first to act by propos-

ing a leader function, her actual decision variables will not be

determined until the follower acts and proposes his decisions

or control inputs [6]. Most of the literature mentioned in this

survey will be on the reverse Stackelberg game as perceived

from what may be called a control-theoretic perspective [7].

There, the reverse Stackelberg game is often referred to as

an incentive problem.
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The reverse Stackelberg game can serve as a structure

for multi-level control, where in comparison to the original

Stackelberg game that poses a truly top-down hierarchical

scheme, there is more communication from the lower levels

to the higher levels [6]. In other words, instead of solely

responding to a leader input by the choice of a follower de-

cision variable, in the reverse Stackelberg game the follower

chooses a combination of optimal follower inputs and the

associated leader decision variables. Moreover, the reverse

Stackelberg game structure is capable of:

• dealing with a nonunique follower response. Whereas

in the Stackelberg game the leader can only determine

her input and therefore she has no complete control

over the (nonunique) response of the follower to this

input, in the reverse case, the leader can construct a

more advanced leader function inducing the follower to

behave as desired [6].

• inferring information on the state in case of incomplete

information, by observing the follower’s response to the

leader function [6]. Similarly, by a sudden deviation

from a certain response pattern by the follower, the

leader could detect a change in the conditions of the

follower. However, it should be noted that in multi-stage

games with incomplete information, such derivations

are complex.

• inducing multiple followers to behave cooperatively

by means of the leader function, while the followers

themselves behave noncooperatively [6], [8].

In the following, first the original Stackelberg game will

be defined in Section II, after which an overview is pro-

vided of different terminology that is used to describe the

reverse Stackelberg game. In Section III the computational

complexity of the game is considered and possible algorithms

to derive numerical solutions are briefly discussed. Several

areas of application are finally considered in Section IV, fol-

lowed by an intermediate conclusion of the current overview

in Section V.

II. BACKGROUND

The reverse Stackelberg game falls within the branch of

noncooperative game theory, which deals with players that

act individually according their own objectives. Although

cooperative game theory is sometimes adopted in control

applications [9], most often the controllers or players are

perceived as individual and rational operators that do not

voluntarily exchange information. When players act simulta-

neously, the well-known Nash equilibrium is adopted as a so-

lution concept; in such an equilibrium no player can improve

his/her situation by unilaterally deviating from the decisions



associated with the Nash equilibrium [10]. An equivalent

solution concept in the case of sequentially operating players

is the Stackelberg equilibrium. Information on general game

theory can be found in several classical books [11], [12].

A. Stackelberg Games

1) Static: The basic single-leader single-follower single-

stage or static Stackelberg game may be described as follows.

Leader and follower decision variables are denoted by uL ∈
ΩL ⊆ R

nL and uF ∈ ΩF ⊆ R
nF , with as cost functions:

Jp : ΩL × ΩF → R, p ∈ {L,F}.

In order to determine the leader’s optimal input u∗
L, she

takes into consideration the follower’s reaction curve lF :
ΩL → ΩF, i.e.,

uF = lF(uL) s.t. min
uF∈ΩF

JF(uL, uF) = JF(uL, lF(uL)).

Based on this knowledge, the leader can announce

u∗
L ∈ arg min

uL∈ΩL

JL(uL, lF(uL)).

2) Dynamic: In case of a multi-stage discrete-time game

an additional state variable x(k) ∈ X ⊆ R
nx and associated

state update equation x(k + 1) = f(x(k), uL(k), uF(k), k)
with initial state x0 = x(0) should be added that define the

global system, with k ∈ {1, 2, . . . ,K}, with K the number of

stages. The continuous-time equivalent, i.e., the differential

game, will be described in Section II-B of the companion

paper. One can also distinguish between the state space of

leader and follower, i.e., X = XL × XF. The general game

can now be denoted by a tuple

〈P,K, {Ji}i∈N , {(Ωi)
K}i∈N ,XK , f, x0,

{(Ii)
K}i∈N , {(Γi)

K}i∈N 〉,

where

• P : N → {L,F} indicates the type of player associated

with each of the N players i∈N ={1, ..., N}.

• Ii ⊆ R
ni×N denotes the information space of player i.

• Γi ⊆ {γi|γi : Ii → Ωi} denotes the strategy space.

To elaborate, ιi(k) ∈ Ii captures the knowledge that is

available to player i at stage k: it can contain information

of the other players’ decision space and objective function,

state, etc. Finally, the strategy space refers to the permissible

mappings γi(k) : Ii → Ωi that leads to a decision ui(k):
both the reverse and original Stackelberg thus fit in this

general description, depending on how one defines the inter-

action between the players. Strategies will thus be dependent

on previous actions of some (other) player(s), where:

• Open-loop decisions are a function of time and of the

initial conditions only, where the leader function in the

reverse Stackelberg game is in addition dependent on

the follower’s decision: γL(k) = gol(x0, uF(k), k).
• Closed-loop decisions are defined to be a function of

time and of the state and decision variables x(k −
α), ..., x(k), uF(k − α), ..., uF(k) of some previous –

and the current – α+ 1 stages in discrete time.

• State feedback strategies can be seen as a special type

of closed-loop decision with one-step memory, i.e., the

−1 0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

6

uFu∗
F ud

F

uL

ud
L

γL

JF = 0

JF = 4

JL = 9

JL = 29

Fig. 1. Graphical representation of Example 1.

strategies depend on the previous state and decision

variables, with γL(k) = gfb(x(k − 1), uF(k − 1), k).

Further, also cases with several players operating on a

single level can be considered, as well as cases in which the

leader has incomplete, partial information on the follower,

or on an uncertain state. For an overview of results on the

original Stackelberg game, please refer to [13].

B. Reverse Stackelberg Games in Several Fields

Briefly stated, in a reverse Stackelberg game the leader

first proposes instead of the decision uL, a function γL :
ΩF → ΩL. Thus, the associated leader decision uL is deter-

mined when the follower chooses his input uF. This strategy

mapping is based on knowledge of the follower’s reaction

curve to this function, i.e., the follower will determine his

decision u∗
F, where the superscript ∗ denotes optimality:

u∗
F ∈ arg min

uF∈ΩF

JF(γ
∗
L(uF), uF).

Keeping this information into account, the leader then deter-

mines an optimal leader function:

γ∗
L(·) ∈ arg min

γL(·)∈ΓL

JL(γL(u
∗
F(γL(·))), u

∗
F(γL(·))). (1)

Example 1: (Adopted from [14]) In order to illustrate

the Stackelberg and reverse Stackelberg games, consider the

following simple example also depicted in Fig. 1. Consider

a static, single-leader single-follower reverse Stackelberg

game. Let the objective functions be:

JL(uL, uF)=(uF − 5)2 + u2
L,

JF(uL, uF)=u2
L + u2

F − uLuF,

with decision variables uL ∈ R, uF ∈ R. The leader’s global

optimum is (ud
L, u

d
F) = (0, 5). In the original Stackelberg

formulation, the follower’s response to the desired variable

ud
L = 0 would be the suboptimal u∗

F = 1/2uL = 0.

However, under the leader function

uL = γL(uF) = 2uF − 10,



the follower’s response will indeed be:

argmin
uF∈ΩF

JF(uF)=argmin
uF∈ΩF

(2uF−10)2+u2
F+(2uF−10)uF=5.

This situation is depicted in Fig. 1 where several level

curves are plotted; the leader’s optimum (ud
L, u

d
F) is in

the center of the dotted level curves for JL. The contours

centered around the four corners of the plotted decision space

represent the level curves of JF. The follower’s optimal

response to ud
L and γL(uF) are respectively u∗

F and ud
F for

the original versus the reverse Stackelberg game.

1) Generalized and Inverse Stackelberg Games: The first

step towards the reverse Stackelberg game formulation may

be found in [15] where a generalized strategy is introduced

that leads to the best solution the leader can achieve in

case the follower’s response to the original Stackelberg

decision uL is nonunique. In the original Stackelberg game,

uniqueness of the follower response is usually assumed at a

loss of generality, in order to simplify the problem. Formally,

if for every uL ∈ ΩL, the follower’s reaction set

Ω∗
F(uL)={u∗

F∈ΩF|JF(uL, u
∗
F) ≤ JF(uL, uF)∀uF∈ΩF}

is not empty, and if ∃u∗
Lgen ∈ ΩF s.t.

sup
uF∈Ω∗

F
(u∗

Lgen
)

JL(u
∗
Lgen, uF)= min

uL∈ΩL

sup
uF∈Ω∗

F
(uL)

JL(uL, uF)=J ∗
L ,

then u∗
Lgen is called a generalized Stackelberg strategy, i.e.,

it leads to the least upper bound on JL [15].

It should be noted that the generalized strategy basically

results in a reduced set of possible Stackelberg solutions for

the leader that constitute an upper bound to her objective

function value. The generalized strategy thus deals with the

problem of a nonunique follower response by accepting

a solution that leads to a reduced performance for the

leader. In contrast, the reverse Stackelberg game deals with

a nonunique response by substituting the leader strategy uL

with a more complex function γL.

The term reversed Stackelberg game first appeared in [6]

where it was chosen to explain the order of first announcing

the leader strategy γL (rather than her action uF as in the

original Stackelberg formulation), followed by the follower’s

actual action or decision uF, from which uL follows. Instead

of approaching only an upper bound on JL by using the

generalized strategy, the leader may in fact be able to reach

exactly her desired equilibrium.

As additional reasons for adopting a reverse structure, it

is mentioned [6] that (1) the leader may infer information

on the state from knowing the follower’s decision first,

especially in a stochastic setting in which the leader does

not possess the follower’s full information, and that (2) the

follower’s decision may directly affect the leader’s objective

function value. However, to the latter argument it should

be added that also in the original Stackelberg game JL is

dependent on uF. The reverse structure however provides

more power to the leader to enforce her desired solution, as

compared to providing only the decision uL.

Most recently, the game in which the leader announces a

strategy as a mapping ΩF → ΩL has been studied as the

‘inverse Stackelberg game’ [14], [16], [17].

2) Theory of Incentives: Theory of incentives, also known

as contract theory, involves principal-agent problems in

which some quantity produced by the agent or follower is ex-

changed for a (monetary) transfer by the principal or leader.

A new element of information is considered, i.e., the so-

called type of an agent that refers to e.g., skills or opportunity

cost. The agent may not reveal his type to the principal or he

may even provide false characteristics. Therefore, an aspect

of paramount importance within this area is uncertainty due

to a lack of information. The three main types of principle-

agent problems can be divided into moral hazard, adverse

selection, and signaling. Here, the agent has either (1) private

information concerning actions that occur after the signing

of a contract, (2) private information concerning his type

before the composition of the contract, or (3) the ability to

send information to the principal during the game [18].

Although controller agents are usually assumed to provide

their available information truthfully, results from incentives

theory concerning incomplete information can provide use-

ful insight to the reverse Stackelberg game formulation in

control settings [19].

Another important part of the problem definition in incen-

tives theory is the participation constraint or bail-out option

of the follower, which allows him to withdraw from partic-

ipating in the game in case the leader proposes a contract

that leaves the follower with insufficient performance. This

constraint does not directly appear in the reverse Stackelberg

game formulations mentioned in Sections II-B.1 and II-B.3.

3) Incentive Strategies: From a control-theoretic rather

than economic perspective, the leader strategy is often called

incentive [7], [19]; as in Section II-B.2, the term is chosen

to indicate the problem of how the leader can incentivize

the follower to perform as desired. Different from the leader

function as described in Section II-B.1, the incentive strategy

is not always a mapping ΩF → ΩL; some authors define

the incentive strategy more generally as a function of the

available information [19], or solely of the state variables x
[7], [20], [21]. In fact, in [21] the use of state feedback is

motivated by argument that it is unrealistic to have access

to the follower’s decision variables in a real-life dynamic

setting. At the same time however, some authors consider

such state-dependent leader function as a regular (feedback

or closed-loop) Stackelberg strategy without mentioning the

concept of incentives [3], [4], [22].

The incentives information structure has also been con-

sidered as a fourth alternative along with the open-loop,

closed-loop, and feedback information structure in a multi-

stage context [23]. Although the last three patterns are

indeed only relevant in a dynamic framework, the reverse

Stackelberg game or incentives structure with uL = γL(uF)
can however very well occur in a single-stage context without

the introduction of a state variable.

A link has also been made between incentives and social

choice theory [7]. In social choice theory, agents need to



propose an ordering of preferences (e.g., in the voting for

elections) based on which a final listing (the solution or

election outcome) is developed, depending on a predeter-

mined choice rule [24]. In order to make people reveal their

true preferences, the choice rule should be strategy-proof.

In [7] the equivalence is stated between a leader function

γL of a reverse Stackelberg game and the social choice

rule that allocates a final ordering (solution) to a preference

ordering (decision variables) of the agents in a strategy-

proof manner. However, there is no desired outcome (election

order) that the leader strives after in social choice theory, as

opposed to in the reverse Stackelberg game where the leader

optimizes JL, which is directly dependent on uF. Therefore

the proposed resemblance with a reverse Stackelberg game

does not completely fit.

In order to put the different terms in perspective, the

incentive problem of determining the leader function γL to

induce the follower to behave as desired can be seen as a

part of the overall reverse Stackelberg game described at the

start of Section II-B.

III. COMPUTATIONAL COMPLEXITY AND SOLUTION

APPROACH

The general reverse Stackelberg or incentive problem

is difficult to solve analytically [14], [16], [25]. Reasons

mentioned are the occurrence of composed functions, i.e.,

intertwined expressions as in (1), and the existence of mul-

tiple solutions and nonunique follower responses. The latter

problem is eased by taking the determination of the desired

solution of the leader as a separate problem that should

be solved a priori [4], [6], [7]. In the original Stackelberg

game it is often assumed that additionally, the follower has

a unique response or that the leader is indifferent between

the possible follower responses. While the former assumption

can be made without loss of generality, the latter assumption

is exactly what we like to circumvent by considering the

reverse Stackelberg game.

As for the formal complexity of the reverse Stackelberg

game, it should be noted that the Stackelberg game can be

written into a bilevel programming problem, in which the

follower’s lower-level optimization problem is considered as

a constraint to the higher level optimization problem [26],

[27]. Different from the perspective of the Stackelberg game,

bilevel programming is focused rather on the computation

of a Stackelberg solution, where the sequential nature of

the game is translated into constraints. Similarly, cases of

incomplete information should be translated into a formal

multilevel mathematical program: in the original bilevel

program, perfect information is assumed [28]. While the

resemblance with the original Stackelberg game is often

mentioned in the literature on multilevel programming, a

link with the reverse game does not appear. Nonetheless,

the reverse game is subject to the same hierarchical structure,

where in addition the relation between uL and uF is captured

by γL. In other words, the Stackelberg game is a special

case of the reverse game: for a relation γL : ΩF → ud
L, the

reverse game reduces to a Stackelberg game. Hence, results

on multilevel programming [29], [27] could prove useful for

the analysis of the reverse Stackelberg game.

In general, linear bilevel hence multilevel programming

is proven NP-hard [30] and later strongly NP-hard [31]. A

more elaborate complexity analysis of multilevel program-

ming can be found in [32]. In other words, it is generally

assumed that no polynomial-time algorithm exists that can

solve the general problem to optimality. Hence, the problem

instance should be sufficiently small in order to find a global

optimum, or one should adopt heuristic methods. In Section

III-B below an overview of possible algorithms for multilevel

programming problems is presented.

A. Analytic Solution Approach

In order to do be able to solve the reverse Stackelberg

game, a common, indirect approach is the following [4], [6],

[7]. Given a desired solution that the leader seeks to achieve,

i.e., a globally optimal solution in case of minimization:

(ud
L, u

d
F) ∈ arg min

uL∈ΩL,uF∈ΩF

JL(uL, uF),

the reverse Stackelberg problem reduces to finding a function

γL : ΩF → ΩL such that the follower’s unique response

coincides with the desired decision variable. Thus, (1) ud
L =

γL(u
d
F) and (2) ud

F = argminuF∈ΩF
JF(γL(uF), uF). This

optimum is often referred to as ‘team optimum’ according

the theory of teams [33] where it refers to the best the

leader can obtain if the other players support her. The term

team optimum is therefore slightly misleading as a substitute

for the leader’s global optimum. Further, it should be noted

that it may be difficult to compute such a globally optimal

equilibrium point in the case of incomplete information on

e.g., the follower’s decision space.

If the leader is able to induce the follower to arrive at

the desired solution (ud
L, u

d
F) (by an affine function γL), the

problem is called (linearly) incentive-controllable [7]. This

term stems from the theory of incentives, where it is used to

indicate whether the follower can be induced to reveal his

true information in case the leader is unable to observe his

actions. Similarly, ‘incentive compatibility’ indicates whether

a game or strategy is strategy-proof, i.e., whether the players

are induced to act truthfully in spite of asymmetric infor-

mation [18]. It should thus be noted that the term is used

differently in the context of reverse Stackelberg games in

which the leader may have full information concerning the

follower.

B. Numerical Solution methods

While research on the reverse Stackelberg game from a

game-theoretical or even control-theoretical perspective has

focused rather on obtaining analytical solutions of the leader

function, for available numerical solution methods, inspira-

tion can be gained from multilevel programming. Available

solution methods for such problems can be categorized as ex-

treme point algorithms, branch-and-bound algorithms, com-

plementary pivot algorithms, descent methods, and penalty

function methods [26]. More references to algorithms for

multilevel programming can be found in [34].



Alternatively, genetic programming can be adopted, as

described for the case of incomplete information in Section

II-D of the companion paper. An overview with references

on genetic algorithms for multilevel programs can be found

in [34]. Here, a genetic algorithm was developed for general

multilevel Stackelberg games in which players on a single

level play a noncooperative simultaneous (Nash) game, with-

out assumptions regarding linearity, convexity, continuity and

differentiability. Here, however, both the follower’s response

is assumed to be a singleton and the leader is assumed to be

indifferent in case her response is nonunique; the relaxation

thereof leads exactly to the need for a reverse Stackelberg

formulation as explained in Section I. Although the method

is able to find a global optimum for the general game, the

approach is computationally still rather inefficient.

A more recent development is in using multi-parametric

programming methods for multilevel optimization [35], in

which each subproblem is stated as a multi-parametric pro-

gramming problem with parameters linked to other sub-

problems. The complexity of the overall problem is thus

broken down to the computation of the reaction set of each

subproblem. Under study of the linear quadratic case, this

approach results in a single-level convex optimization prob-

lem; efficient methods for general nonlinear and nonconvex

multilevel problems are however far from widespread.

IV. APPLICATION AREAS

Hierarchical control can be roughly divided in cases in

which a natural division in multiple levels exists and those

where a hierarchical structure is adopted as an alternative

to strictly distributed optimization in order to facilitate the

problem solving [5]. The latter approach arises in large-

scale control problems where information is not automat-

ically available to all controllers and difficult or costly to

communicate. Hence, the overall problem is decomposed

where the higher-level controller acts as a coordinator.

Looking into more specific applications of the reverse

Stackelberg game; next to contracting and pricing problems

as studied in the area of incentives and management science

(Section II-B.2, [36]) the following application areas have

been considered:

• Network pricing. In [37] a reverse Stackelberg game is

used to model a situation in which an internet service

provider is considered as a leader that sets a price for

the bandwidth used by followers, where the price is

dependent on the actual bandwidth used. Both complete

and incomplete information on the type of users as

denoted by a constant parameter w ∈ R is studied, both

for which ǫ−optimal, nonlinear strategies are obtained,

with ǫ an arbitrarily small constant. Such strategy will

lead to an equilibrium that is within an ǫ deviation from

the leader’s optimal solution. The ǫ-optimal solutions

are obtained by making a small deviation in the leader

function from the desired but unattainable optimum, i.e.,

by substituting (ud
L, u

d
F) by (ud

L, u
d
F−ǫ), which becomes

the new equilibrium point.

For the rather specific instance of the problem with

uL, uF scalar and JF = w log(1 + uF) −
1

1−uF
− uL,

it is shown in [37] that such approximate solutions

can always be found, e.g., for a function γL(uF) =
a1uF + a2u

2
F, a1, a2 constants. It should be noted

that the proposed ǫ−optimal solution is therefore not

feasible in general, i.e., for vectors uL, uF.

• Road tolling. In [17] a dynamic toll design problem is

considered on a three-link highway network where one

of the links is not subject to a toll. In order to minimize

total travel time and thus reduce congestion, a toll

proportional to the traffic flow is proposed. It is shown

that this reverse Stackelberg game formulation yields a

better performance for the road authority compared to a

constant or time-varying toll. However, the three links

have the same origin and destination, where the route

choice of the homogeneous traffic considered is solely

based on the tolls. Hence, the road authority does not

face any uncertainties in the studied setting.

• Electricity pricing. In [38] reverse Stackelberg games

are used to model the pricing of electricity in a stochas-

tic peak load problem where the leader proposes an

electricity price p consisting of a fixed charge c and

a unit price cvar that is based on the varying demand d
that represents the follower’s decision, i.e., p := uL =
γL(uF) = cvaruF + c. As opposed to the previous

application, now the game is played for several cycles

n, each consisting of an m-stage game. The values of

cvarnm and cnm are computed as functions of the values

of d, p, and the randomly distributed state ξ of previous

stages in the current cycle, or in the previous cycle.

When the load adaptive pricing strategy is adopted

within a dynamic infinite-horizon setting, stability of

the system to small disturbances in uL and uF is

proven as well as the convergence of the coefficients

that determine p and c within γL.

It should be noted that a large number of publications

is available in the areas enumerated above that consider

a standard hierarchical game, i.e., that adopt the original

Stackelberg structure. An overview of applications of Stack-

elberg (differential) games in supply chain management and

marketing settings can be found in [39]. Also the areas of

road pricing [40] and electricity markets [41] are considered.

Overall, while the use of Stackelberg games in large-scale

control systems is proposed [3], [4], not many results actually

consider this; applications are rather adopted as a means to

illustrate the Stackelberg concept. Nonetheless, as indicated

in [5] hierarchical methods can indeed pose a viable approach

to structure also large-scale control problems. We therefore

see potential in applying the reverse Stackelberg game also in

those areas to which the original Stackelberg game is applied,

while real-life application remains a challenge for both the

Stackelberg and reverse Stackelberg framework.

V. CONCLUSION

An overview has been presented to clarify the concept of

the reverse Stackelberg game within several research areas,



as well as to emphasize its potential for application in the

field of control, while taking into account the complexity

of the game. An overview of main results in the literature

concerning reverse Stackelberg games as well as an analysis

of open issues for further research is provided in the com-

panion paper ‘Reverse Stackelberg Games, Part II: Results

and Open Issues’.
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[40] M. Labbé, P. Marcotte, and G. Savard, “A bilevel model of taxation
and its application to optimal highway pricing,” Management Science,
vol. 44, no. 12, pp. 1608–1622, 1998.

[41] B. Hobbs and S. Nelson, “A nonlinear bilevel model for analysis of
electric utility demand-side planning issues,” Annals of Operations

Research, vol. 34, no. 1, pp. 255–274, 1992.


