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Reverse Stackelberg Games, Part II: Results and Open Issues

Noortje Groot, Bart De Schutter, and Hans Hellendoorn

Abstract— A reverse Stackelberg game formulation can be
adopted as a means to structure hierarchical control problems.
Here, a leader player announces a mapping of the follower’s
decision space into the leader’s decision space, after which a
follower player determines his optimal decision variable. In the
companion paper of this survey entitled ‘Reverse Stackelberg
Games, Part I: Basic Framework’, an introduction to the game
has been provided with a clarification of the description of this
game as it is studied in different research areas. In the current
paper, an overview is provided of several main developments
in the field. These contributions are categorized according to
several aspects that are inherent to the formulation of the game,
and they are briefly analyzed. Finally, several open issues are
brought forward that are relevant for further research.

I. INTRODUCTION

Hierarchical control approaches can be applied to large-

scale problems that are too complex to solve in a centralized

manner, or to problems in which a natural hierarchy exists

[1]. In order to deal with such problems, the Stackelberg

game [2] can be used as a framework for optimization. In

this game, a leader and follower player act sequentially in

determining their decision variables. An example of such

hierarchical control problems can be found in road tolling

where vehicles make their route choices based on the tolls

set by a road authority.

The current survey is particularly aimed at the reverse

Stackelberg game [3], which is also known as incentives

[4], [5] in a control-theoretic framework and more recently

as an inverse Stackelberg game [6], [7]. Compared to the

original Stackelberg game, in the reverse game, the type of

leader action is generalized from making a direct decision

to determining a function that maps the follower’s decision

space into the leader’s decision space1. Thus, although the

leader remains the first to act by proposing a leader function,

her actual decision variable will not be determined until the

follower acts and proposes his decision or control input [3].

This game is useful for applications like road tolling, where

in order to minimize congestion, the road authority (leader)

determines a toll function that is dependent on the actual flow

of vehicles (followers) on the relevant road sections [8]. In

this way, the leader has a larger influence over the followers

to reach her objective. Nonetheless, in order to apply the –

in general complex – reverse Stackelberg game to real-life

control problems, several steps still need to be made.

N. Groot, B. De Schutter, and H. Hellendoorn are with the Delft
Center for Systems and Control, Delft University of Technology, Delft, The
Netherlands. E-mail: n.b.groot@tudelft.nl

1Since the Stackelberg game is a special case of the reverse Stackelberg
game, i.e., in case the leader function is a constant, several remarks made
in this survey regarding the reverse game also hold for the original game.

In the companion paper entitled ‘Reverse Stackelberg

Games, Part I: Basic Framework’, the appearance of the

reverse Stackelberg game in the field of control as well as in

e.g., an economic context was pointed out and several areas

of application were provided. The aim of the current paper

is to give a coherent overview of the main results in this

particular game. Moreover, we bring forward several open

issues that point at the potential for continued research on

the reverse Stackelberg game.

This paper is structured as follows. In Section II an

overview is provided of main results in current literature,

classified along several characteristics that are inherent to the

definition of a reverse Stackelberg game, i.e., contributions

are considered that (1) involve either static or dynamic cases;

(2) look into continuous-time differential games; (3) deal

with stochastic scenarios; (4) consider partial, nonnested

information; (5) perform a sensitivity analysis; and that (6)

consider multi-level games with multiple players on each

layer. Finally, an elaborate listing of open issues is presented

in Section III.

II. AN OVERVIEW OF RESULTS

In the current section, an overview of contributions in the

area of reverse Stackelberg games is provided, categorized

into several aspects as is also depicted in Fig 1. Each reverse

Stackelberg game includes with the general description as

provided in Section II of the companion paper a specification

of (1) time elements, e.g., the duration of the game, (2)

leveling, and (3) information and uncertainty [4], [5].

A. Static Versus Dynamic

There are not so many results from a control theoretic

perspective that consider the static reverse Stackelberg game.

As is also mentioned in [7], a legitimate reason for studying
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Fig. 1. Overview of characteristics within the reverse Stackelberg Game



the dynamic case is that it more often occurs in the real-life

settings that represent the intended application areas of the

game. On the contrary, results within the theory of incentives

and especially multilevel programming are often based on

single-stage problems [9], [10].

Nonetheless, an introduction to the static reverse Stack-

elberg game can be found in [4], as well as in [11] where

a static affine leader function is presented, motivated by a

situation with the regulating government as a leader that

strives to achieve Pareto optimality2 while multiple followers

(firms) play according to their Nash strategies3. Since ob-

jective functions in [11] are assumed to be quadratic hence

strictly convex, an optimal affine strategy can be computed.

Although the static leader functions in [4] are of the

form γL : ΩF → ΩL, in the multi-stage case the follower

decision variable is replaced by a state-dependent leader

function, which is only indirectly dependent on the follower

input. Also in [14] derivations of such state-dependent leader

strategies that are nonetheless called incentives can be found.

As explained in the companion paper, such strategies could

be seen as closed-loop or feedback strategies of the original

Stackelberg game, i.e., they are different from the leader

function as defined in the reverse Stackelberg game.

For the static and dynamic, open-loop case, a sufficient

condition was derived in [15] for the existence of an optimal

affine leader

uL = γL(uF) = ud
L +B(uF − ud

F), (1)

with B : ΩF → ΩL a linear operator, i.e.:

B∗∇uL
JF(u

d
L, u

d
F) = −∇uF

JF(u
d
L, u

d
F), with B∗ : ΩL →

ΩF the adjoint of B. An operator B now exists if

∇uL
JF(u

d
L, u

d
F) 6= 0. However, these results are restricted

to games where JF is convex and locally strictly convex as

well as twice continuously differentiable.

Further, in [16] the optimal affine leader function is proven

to be unique for LQ dynamic games with uF scalar; for nF >

1, a unique strategy can be found under some conditions

regarding the system matrices additional to those in [15].

Algebraic expressions for this unique optimal affine function

are derived for both the static and dynamic case.

More recently, in [17] the analysis of the affine incen-

tive structure for a linear-quadratic discrete-time system is

continued (both for the finite and infinite horizon case) but

instead of using a leader function that is in fact dependent

on uF, also there, state feedback is applied for both players.

We therefore do not consider this case as a truly reverse

Stackelberg game. Such dynamic state-feedback strategies

in linear-quadratic (LQ) settings have been studied before in

continuous time in e.g., [18].

It should be noted that the dynamic game with a linear

state equation and quadratic cost functions is widely used as

an illustrative example, e.g., amongst several other references

2No player in the Pareto equilibrium is able to unilaterally deviate from
the Pareto optimal decisions without making another player worse off [12].

3When players act simultaneously, in the Nash equilibrium no player
can improve his/her situation by unilaterally deviating from the decisions
associated with the Nash equilibrium [13].

stated in this survey, in [11], [14], [17]. Moreover, existence

results for an optimal (affine) leader function also rely on

this specific LQ case, as in [15].

B. Continuous-Time Differential Games

While so far the discrete-time reverse Stackelberg game

has been considered in this survey, the results can also be

extended to the continuous-time differential game. Also in

(Stackelberg) differential games, the LQ problem structure is

a popular one [19], [20], [21]; it can be written as follows:

ẋ(t) = A(t)x(t)+BL(t)uL(t)+BF(t)uF(t), x(t0)=x0

Ji(uL, uF) =
1

2
xtf (tf)Qi,tfx(tf) +

1

2

∫ tf

t0

(x(t)tfQix(t)

+ ui(t)
TRiiui(t) + uj(t)

TRijuj(t)) dt,

i, j ∈ {L,F}, i 6= j, t ∈ [t0, tf ], where the matrices are

of appropriate dimension, and Qi,tf ≥ 0, Qi ≥ 0, Rij ≥
0, Rii > 0.

In [22] conditions are developed under which the reverse

Stackelberg game with memory from stage τ ∈ [t0, t] at

stage t ∈ [t0, tf ], has the following optimal solution:

uL(t)=γL(uF)(t)=ud
L(t)+

∫ t

t0

R(t, τ)(uF−ud
F)(τ)dτ,

(2)

which is the continuous-time equivalent to the affine function

(1). However, in order to find a matrix ||R|| < ∞ as

required for a leader function, a necessary condition is that

||∇uF
JF(u

d
L, u

d
F)(t)|| < c(tf − t), t → tf , with c a constant

[22].

In order to relax this requirement, in [20] the leader strat-

egy with memory is instead defined by using the Lebesgue-

Stieltjes integral:

uL(t)=γL(uF)(t)=ud
L(t)+

∫ t

t0

[dθη(t, θ)](uF − ud
F)(θ),

(3)

with θ ∈ [t0, t], t ∈ [t0, tf ] and where η : [t0, tf ] × R →
R

(nx+nF) represents the vector of available information.

Analytically solvable necessary and sufficient conditions are

obtained for the optimality of this strategy in case of convex

cost functions. Different representations of η(t, θ) are consid-

ered in [20]; however they are dependent on the initial state

x0 rather than explicitly on uF(t), for which the authors state

that stringent conditions on the game parameters would be

needed. Likewise, in [23] strategies dependent on uF(t) and

past values of x are suggested. However, the dependence on

uF(t) is not explicitly adopted in the derivation of (sufficient)

conditions of [23].

In [20] also time-delay strategies are considered in which

γL(t) depends linearly on uF(θ), t − δ ≤ θ ≤ t − σ, δ ≤
σ, with δ > 0, σ ≥ 0 constants, where the integral in γL
according (3) is evaluated from t−δ to t−σ. The necessary

and sufficient existence conditions are shown to extend to this

time-delay case, where the strategy γL(t) for t ≤ t0+ δ, and

t > t+σ is distinguished between, hence γL is discontinuous.

Also in [21] conditions are developed for the existence

of an optimal affine strategy in a continuous-time LQ game.



There, not only the leader function is taken to be dependent

on uF; the same strategy applies to the second player in the

game:

γi(uj) = ud
j +Dj(ui − ud

i ), i, j = 1, 2, i 6= j,

with Dj : Ωi → Ωj , Dj 6= 0, j = 1, 2 for scalar variables

u1, u2. Although the derivation of this strategy is useful for

the leader in the reverse Stackelberg game, it does not follow

a true Stackelberg setting but rather a cooperative game with

equivalent players.

C. Deterministic Versus Stochastic

Under stochastic reverse Stackelberg games we usually

consider the case in which the state variable of the game

includes random components; in general, the state variable

is assumed to have a known distribution, often Gaussian with

zero mean [3], [24].

In [3] the two-player, static reverse Stackelberg case

has been analyzed with a randomly (Gaussian) distributed

variable ξ. The leader’s cost function is now defined as

JL = E[LL(γL, uF, ξ)], with LL : ΩL × ΩF × X → R, i.e.,

now, the expected value E[LL] is optimized; JF is defined

accordingly.4

The static LQG case is examined in detail in [3] and

sufficient conditions are obtained under several additional

assumptions on the game parameters. In the description

of how the results translate to a multistage version of the

game, however, a state feedback strategy is adopted, i.e., the

leader’s strategy is no longer formulated as a function of the

follower’s decision as is applicable in a reverse Stackelberg

game.

In [24] a stochastic closed-loop reverse Stackelberg game

is considered with a leader function directly dependent on the

current or previous value of uF, or on the partial information

that the follower signals to the leader. It is shown that the

three problems can be solved in a similar way, and they lead

to an optimal solution in case a LQG problem is studied.

Several results on the stochastic case consider also incom-

plete information, as will be shown in Section II-D below.

D. Incomplete Information

Another variant of uncertainty is in the lack of complete

information; in particular within the theory of incentives,

different types of information asymmetry are studied.

In [3], [4] both a nested and nonnested stochastic reverse

Stackelberg game is considered, where the random variable

ξ is assumed to follow a Gaussian distribution. While in the

nested case, the follower’s information is a subset of the

information that the leader possesses, in the nonnested case,

the leader does not have access to all follower knowledge.

In the latter case, the leader is generally unable to compute

her globally optimal solution. In order to arrive at a feasible

desired equilibrium, the restrictive assumption is made that

4It should be noted that ξ is presented as a state vector in [3], defined
to represent some unknown elements of the game in both the static and the
dynamic case. This state vector ξ should therefore not be confused with the
system state variable we use solely in the dynamic, multi-stage game.

LL is in fact independent of uL [4]. Assuming that ΩF is

known, the desired leader solution is now defined as a γL :
ΩF → ΩL such that

argmin
uF∈ΩF

E[LF(γL(uF), uF, ξ)] = argmin
uF∈ΩF

E[LL(uF, ξ)].

Also in [5] an overview is provided of possible incomplete

information structures in a stochastic setting, both for a static

and a dynamic game. There, the leader strategy is taken to

be a function of the available information, which does not in

all cases include uF. In other words, the case is analyzed in

which the leader cannot observe the follower’s decision. The

focus of [5] is therefore, as in the theory of incentives, on

the follower not acting truthfully in the case of incomplete

information.

In a setting with multiple followers, a stochastic, random

state reverse Stackelberg game is considered in [25] where

the leader has access to a linear combination of the followers’

actions. Here, the followers’ cost functions are again strictly

convex and continuously differentiable. An affine leader

function is computed that is based on this random linear

combination; it is shown that the performance yielded by

the leader is equivalent to the performance that applies in

case she would be able to observe the followers’ individual

actions. In [26] this result is expanded to deal with more than

two levels of hierarchy, according to the technique from [4]

described in Section II-F below.

In case no knowledge is available of JF or of the fol-

lower’s reaction curve, an iterative learning procedure may

have to be adopted to arrive at a close-to optimal leader

decision [27] or leader function in the reverse case [28].

For this purpose the use of a genetic algorithm is proposed

and compared with a standard gradient approach for off-line

computation of an incentive strategy [28].

It should be noted that, when adopting this iterative proce-

dure, the game would have to be repeated until convergence

is reached and the resulting strategy yields a sufficient

performance for the leader. This requires a setting in which a

start-up period with suboptimal policies for the leader would

be possible. Further, it may be more realistic in real-life

control settings to enforce the follower to communicate JF

to the leader rather than to perform several off-line iterations

of the game in order to make up for the missing information.

Additionally, it may take many iterations to reach the true

optimum that is verified according known solutions to rather

simple problem instances. Finally, when using the genetic

approach, in general no analytical suboptimality bounds can

be obtained for the leader’s neither for the the follower’s

performance.

E. Sensitivity Analysis

Since the set of possible optimal (affine) leader functions

is often nonsingular, a minimum sensitivity approach to

incentive strategies is developed in [29]. In case the leader

does not exactly know one or several of the parameters of JF,

she assumes some nominal values of the unknown parameters

and based on these, a robust leader function is computed, i.e.,

the deviation from the nominal values is minimized. Based



on the results from [15], it is known that for each possible

value of the unknown parameters, there exists an optimal

affine leader function under the assumption of strictly con-

vex cost functions and rational follower behavior. Next to

the proposed affine leader function, additional degrees of

freedom in the reduction of sensitivity can be introduced

by considering also nonlinear terms in the affine strategy

[29]. The least-sensitive optimal strategy is taken to belong to

the twice continuously differentiable functions with bounded

first and second derivatives with respect to uF. It should

however be noted that in [29] no explicit analysis is provided

of the performance of the leader in case the assumed nominal

values characterizing JF are incorrect.

In [30] the work of [29] is extended to include stochastic

incentive schemes, again where some parameters characteriz-

ing the unknown part of JF vary around some nominal value

and where the state is now a random variable. A smooth strat-

egy is found that results in the desired leader solution, which

solution is again based on the assumed nominal values under

the assumption of strictly convex and twice continuously

differentiable cost functions. Compared to the deterministic

case, in the stochastic setting the follower’s optimal response

is proven to be minimally or even completely insensitive to

variations in the unknown parameter values with respect to

the nominal values. It should be noted though that this result

is only possible in case the leader is assumed to have full

access to the follower’s information, including uF.

F. Multi-Player, Multi-Level

The static reverse Stackelberg game with multiple leaders

or followers is considered in [6], where it is mentioned

that not much theory is available with respect to multi-

player extensions to the reverse Stackelberg game. Indeed,

most cases with multiple followers assume that these play

a noncooperative simultaneous Nash game amongst them-

selves and act as one follower group in response to the

single leader [11], where the leader strategy is of the form

γL : ΩF,1 × · · ·×ΩF,n → ΩL for n followers [5], [31]. This

setting is also considered in [6], where in case of multiple

leaders, also these are assumed to announce their leader

function simultaneously according the Nash equilibrium.

However, in [31] an alternative to multiple followers

playing a simultaneous Nash game is presented. There, con-

ditions are developed for the existence of a leader function

γL(uF,1, ..., uF,n) under which the n followers’ objective

functions become identical except for a constant; the problem

then reduces to a single-leader single-follower game. The

results are however based on the assumption of strict con-

vexity and continuous differentiability of the cost functions.

The same idea of identical follower cost functions is also

discussed by means of a specific numerical example in earlier

work [4]. Here, the leader has one decision variable for

each of the n followers, and proposes for each follower i =
1, ..., n a different leader function uL,i = γL,i(uF,1, ..., uF,n).

True multi-hierarchy settings in which players perform

as a leader and follower simultaneously with respect to

the upper respectively lower levels have also been briefly

studied in [4]. Sufficient conditions are derived such that the

lower-level players are induced to perform as desired for the

higher level players, by successively substituting the leader

functions in the order of announcement. For a three-level

system with player 1 being the upper level leader and with

γi : ×
3
i=1Ωi → R, i = 1, 2, 3:

(ud,1
1 , u

d,1
2 , u

d,1
3 ) = arg min

u1,u2,u3

J1(u1, u2, u3),

(ud,2
2 (γ1), u

d,2
3 (γ1)) = arg min

u2,u3

J2(u2, u3; γ1),

and u
d,3
3 (γ2, γ1) = argmin

u3

J3(u3; γ2, γ1).

However, to the authors’ best knowledge, cases with

multiple leader and multiple followers simultaneously where

the Nash concept is not adopted, have not been looked into.

III. DISCUSSION AND OPEN PROBLEMS

An overview has been presented to integrate results on

reverse Stackelberg games from its origin in the 1970s with

more recent contributions to the field. While the reverse

Stackelberg game can be adapted w.r.t. several aspects de-

picted in Fig. 1, which allows it to be flexible in various

settings, there are still unresolved problems. In general, these

problems stem from the fact that the game is difficult to

solve analytically (especially if asymmetric and imperfect

information applies) as well as numerically, as shown in the

companion paper. In the following, open issues are enumer-

ated to emphasize the potential of the reverse Stackelberg

for further research and application in the field of control.

• Convexity assumptions:

There is a large body of literature available on dynamic

reverse Stackelberg games with linear state equations

and quadratic cost functions, for which the affine strat-

egy or leader function has been proven to solve the

game to optimality [15], [20], [21], [24]. Although this

result is said to be applicable to a ‘sufficiently large’

number of cases, a (strictly) convex and differentiable

cost function and linear constraints will not generally

be found in real-life applications. A relaxation of these

assumptions should therefore be made.

• Computational tractability and optimality bounds:

Another gap may be found in the lack of focus on

numerical tractability of reverse Stackelberg problems,

whereas this is important especially in the context

of real-life control or optimization applications, given

that large-scale control or optimization problems are

often mentioned as a reason for studying Stackelberg

strategies [32], [33]. Especially in the largely untouched

case of nonconvex cost functionals, approximate or

suboptimal solutions may be required. However, there

is little focus on establishing bounds on the quality

of suboptimal solutions for the leader; similarly, the

quality of the solution for the follower is not taken into

account, whereas bounds on the performance of lower-

level controllers would be a relevant addition.

• Robustness:



Even in case a simple (affine) leader function suf-

fices for attaining the leader’s desired equilibrium, it

would be interesting to investigate how sensitive it

is to changes in the game parameters. As mentioned

in Section II-E, in [29] nonuniqueness of the optimal

leader function is used to consider the minimization

of the deviation from an estimated nominal parameter

value as a secondary objective. Similarly, robustness to

unintentional deviations of the follower to the optimal

response should be considered, as discussed in [14] for

the closed-loop Stackelberg game. Here, the problem

is addressed by adopting discontinuous state-dependent

closed-loop strategies that are however developed for

very particular numerical problem instances; also, it is

not clear how much worse the leader is off by punishing

the follower from a deviation from his optimal response.

Further, the stability of (ǫ-optimal) Stackelberg solu-

tions has been considered [34]; however no similar

results can currently be found in the context of reverse

Stackelberg games.

• Desired leader solution:

Generally it is assumed that the leader strives after

obtaining her – single – global optimum. Irrespective

of whether this solution can be obtained by a particular

leader function, cases could be investigated in which the

leader strives after a broader set of possible solutions.

This becomes even more relevant in case the leader

solves a multi-objective problem and thus has to find

a trade-off between several optima. Similarly, instead

of cardinal solutions that follow from optimization of

a real-valued objective function, discrete orderings of

preferred solutions could be considered. Such ordinal

solutions for regular Stackelberg games have also been

advocated in [35].

• Stability:

A stability analysis has been made for the continuous-

time [18] and later for the discrete-time [17] LQ

Stackelberg game with no-memory state feedback. For

time-invariant weighting matrices that occur in the cost

functions and state equation of the Stackelberg game,

sufficient conditions are developed for a leader function

that leads to an asymptotically stable system for the

infinite-time game. However, it is not guaranteed that

such a leader function exists, nor is a direct approach

available for the computation of this function due to the

complexity of the problem. Nonetheless, similar guar-

antees on the system stability for the dynamic reverse

Stackelberg game have not yet been investigated.

• Leader-follower role:

In most cases the positions of leader and follower are

taken to be known in advance and fixed. While recent

research in Stackelberg games allocates more flexibility

to this role, no similar results can currently be found

for the reverse Stackelberg game, to which this flexible

role should also be applicable.

In the original Stackelberg framework, the leader-

follower role has been analyzed in [36]. There, it

is shown that if two players act sequentially rather

than simultaneously as in a Nash game, both players

may obtain better, but not worse, results. Note that

this provides another benefit of adopting a hierarchical

design for decision making as opposed to the alternative

solution concept of the Nash equilibrium. Further, the

leader role is preferred to the follower role in a closed-

loop Stackelberg game, which is however not the case

if feedback information applies [37].

In [38] a discrete-time dynamic Stackelberg game is

considered where players in one of two groups take

the position of the leader in turns. There, players are

allocated to two fixed groups and they take a switching

position of leader respectively follower at each stage

of the game. Finally, in [39] an open-loop differential

Stackelberg game is considered with mixed leadership,

meaning that a player can be both leader and follower at

the same time, depending on the subset of control vari-

ables that are associated with a particular role a-priori.

After announcement of the leader decisions, the optimal

follower responses are determined simultaneously, i.e.,

here, the Nash equilibrium concept is adopted.

• Nonlinear leader functions:

While several options are given for possible shapes

of leader functions [4], nonlinear function structures

are hardly considered in the reverse Stackelberg game,

except from those that occur in specific numerical

examples [6], [7], [40]. Discontinuous, state-dependent

closed-loop Stackelberg strategies are considered in

[14]; in case the follower played suboptimally during

the previous stage, a leader strategy is adopted that dif-

fers from the normal mode. However, it is not analyzed

how much the leader’s performance is reduced in case

of the ‘punishment’ strategy that follows suboptimal

follower behavior. Moreover, although it is considered

an incentive strategy, the leader strategies in [14] are

not directly dependent on the follower´s decisions as

required for the reverse Stackelberg game.

• Approximate solutions:

Most research is focused on achieving the leader’s

desired, global, optimum, for which often an optimal

affine leader function can be derived. On the other

hand, the case in which this is not possible is not much

studied. In particular, suboptimal or ǫ-optimal strategies

could be investigated, as is done for specific numerical

examples in [6], [7].

• Applications:

As has been mentioned in the companion paper, rela-

tively many applications have been considered for the

original Stackelberg game. Similar to the flexible leader-

follower role, it should however be no problem to apply

the reverse game to these problems. Moreover, as also

stated in the companion paper, while adopting a reverse

Stackelberg approach, the leader player may be able to

achieve a better performance then in the original case.

• Constraints:

Most results on incentive Stackelberg strategies do not



take into account constraints, i.e., except for trivial

boundary constraints like γL(·) ≥ 0 and γL(0) = 0.

This prevents from considering general control applica-

tions and should therefore be considered as well.
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