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Identification of Distributed-Parameter Systems with Missing Data

Z. Hidayat A. Núñez R. Babuška B. De Schutter

Abstract— In this paper we address the identification of linear
distributed-parameter systems with missing data. This setting
is relevant in, for instance, sensor networks, where data are
frequently lost due to transmission errors. We consider an
identification problem where the only information available
about the system are the input-output measurements from a set
of sensors placed at known fixed locations in the distributed-
parameter system. The model is represented as a set of coupled
multi-input, single-output autoregressive with exogenous input
(ARX) submodels. Total least-squares estimation is employed
to obtain an unbiased parameter estimate in the presence of
sensor noise. The missing samples are reconstructed with the
help of an iterative algorithm. To approximate the value of
the variables of interest in locations with no sensors, we use
cubic B-splines to preserve the continuity of the first-order and
second-order spatial derivatives. The method is applied to a
simulated one-dimensional heat-conduction process.

I. INTRODUCTION

Advances in the microelectronics technology have enabled

the development of wireless sensor networks with appli-

cations in a variety of fields including industrial process

control, greenhouse climate monitoring and control, traffic

management systems, etc. An advantage of wireless sensor

networks is the reduction of the clutter of wires in the case of

large and complex processes with many measurement points.

However, the use of wireless sensors is susceptible to the

following problems:

• Intermittent measurements, where the cause of missing

data can be faults in sensors or in the signal transmis-

sion.

• Asynchronous sampling due the absence of globally

synchronized clocks.

• Different noise levels at different sensor locations.

These problems cause difficulties in control-related tasks,

such as system identification and state estimation, which

use input-output measurements to model the process. In this

case, it is necessary to develop approaches that are able

to deal with the above issues. In this paper we consider

the identification of linear distributed-parameter dynamic

systems with missing data.

For lumped-parameter systems, methods of system iden-

tification with missing data can be found in the literature.

These methods generally extend similar approaches known

from statistics. Isaksson [1] presented a method based on

expectation maximization and used a Kalman filter to recon-

struct the missing data for the ARX model structure. Ragha-

van et al. [2] proposed another expectation-maximization
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approach to identify state-space models with irregular output

sampling, while Ding and Ding [3] developed a recursive

least-squares approach using outputs of auxiliary models to

substitute the missing data.

Several techniques for the identification of distributed-

parameter systems with unknown structure and parameters

have been proposed [4], assuming that the data are com-

plete. One of the methods is the identification based on

a Green’s function1. This method has been used by, e.g.,

Gay and Ray [5] who applied the singular value decom-

position to estimate a time-invariant Green function. Zheng

et al. [6] combined the singular value decomposition and

the Karhunen-Loève expansion to estimate a time-varying

Green function, and Doumanidis and Fuorligkas [7] used a

spatially discretized Green function estimation for a thermal

processing system. The disadvantage of the Green function

approximation is that the Green function is estimated only

for a given working point. Therefore, the function has to be

approximated again for different working points.

Another approach is based on a finite-difference method

that converts a partial differential equation into a set of dif-

ference equations with unknown parameters by partitioning

the spatial variables using a grid [8]. Each of the differ-

ence equations corresponds to a grid point. The unknown

parameters are computed using optimization methods that

minimize an error equation criterion. Voss et al. [9] proposed

a parameter estimation method based on the alternating

conditional expectation for a pre-selected structure. Guo and

Billings [10] presented the use of implicit integration to

form the unknown algebraic equations and used optimized

polynomial basis functions to estimate the structure and

parameters.

The discretization by the finite-difference method can re-

sult in a class of lattice dynamical systems2 [4]. Identification

of such systems has been investigated by Parlitz and Merk-

wirth [11] and Mandelj et al. [12] who used parametric statis-

tical methods for parameter estimation. Orthogonal forward

regression was used to estimate the parameters of a nonlinear

autoregressive model with exogenous inputs, as proposed

by Guo and Billings [13] and Coca and Billings [14]. The

main drawback of the finite-difference approaches is the

high model order and high complexity for nonlinear systems.

Interested readers may refer to [4] for a recent survey on the

identification of distributed-parameter systems.

1Green’s functions are a class of kernel functions used to solve inhomoge-
neous differential equations subject to specific initial conditions or boundary
conditions.

2A lattice dynamical system consists of subsystems that are arranged as
a lattice and each of the subsystems is coupled to nearby subsystems.



To the best knowledge of the authors, the identification

methods for distributed-parameter systems in the literature

assume that the data are complete. Therefore in this paper,

an identification method for linear distributed-parameter sys-

tems with missing data is proposed. The method uses an

iterative scheme to impute the missing data based on a multi-

variable prediction model identified from measurements of

neighboring sensors. A cubic B-spline-based function ap-

proximator is used to obtain predictions in the spatial lo-

cations where no sensors are present.

The rest of the paper is organized as follows: Section II

formulates the identification problem of linear distributed-

parameter systems with missing data. In Section III, the

proposed identification method is presented. Simulations and

analysis are given in Section IV, and Section V concludes

the paper.

II. PROBLEM FORMULATION

Consider a distributed-parameter system described by a

linear partial differential equation with an unknown structure

and parameters. For simplicity and without loss of generality,

we assume a 1D first-order temporal partial differential

equation. Higher-order systems can be tackled similarly. The

system is described as follows:

∂g(z, t)

∂ t
= f

(

g(z, t),
∂g(z, t)

∂ z
, · · · ,

∂ ng(z, t)

∂ zn
,u(z, t),w(z, t)

)

(1)

where g(z, t) is the variable of interest, z ∈ Z ⊂ R is the

spatial coordinate variable, n is the highest order of the

spatial derivative, w(t) is the process noise, and u(z, t) is the

input vector. The input uuu(t) and the noisy output vector of the

process yyy(t) = ggg(t)+ vvv(t) are defined at discrete locations:

uuu(t) =







u(z1, t)
...

u(zNu , t)






, ggg(t) =







g(z1, t)
...

g(zNs , t)






, vvv(t) =







v(z1, t)
...

v(zNs , t)







where zi is the location coordinate of the i-th sensor, Nu is

the number of inputs, Ns is the number of sensors, and vvv is

the measurement noise vector. When a measurement is not

available from sensor i, the corresponding element of yyy(t) is

assigned a special value, such as NaN (not a number). The

boundary conditions at the set of boundaries Zb are

h

(

g(z, t),
∂g(z, t)

∂ (z)
, · · · ,

∂ n−1g(z, t)

∂ zn−1

)

= 0, ∀z ∈Zb,∀t (2)

and the initial condition is

g(z,0) = g0(z), ∀z ∈Z . (3)

Given the discrete spatial locations of the sensors and

inputs and the sampling period Ts, the measurement data

from (1) are sampled for every t = kTs,k ∈ N∪ {0} from

every sensor. In the sequel, we denote the discrete time

instant with k to simplify the notation. The spatial domain

is discretized at grid points zg ∈Mg, where Mg is the set of

grid point coordinates. Sensors and point inputs are placed in

locations zs ∈Ms and zu ∈Mu respectively, where Ms ⊂Mg

is the set of sensor locations and Mu ⊂ Mg is the set of

input locations. Note that the grid spacing is not necessarily

uniform, but it always coincides with the location of the

sensors and inputs.

For the sake of identification, we assume that the only

available information about the system are input-output

measurements of variables obtained through sensors placed

at specific locations in the system. However, due to faults

in the sensors or in the data transmission, some samples

are missing randomly. In addition, we have missing data

in space, because the measurements are only available at

the specific sensor locations. These measurements represent

partial information that we have about the value of the

distributed variable in space.

To illustrate this setting, Figure 1 shows the available

and missing measurements at discrete time steps k. Grid

points are shown as the intersections between the horizontal

dashed lines and the discrete time step vertical lines, whereas

sensors/actuators are placed at the labeled grid points. The

available measurements are marked by circles, while the

missing measurements are marked by squares.

Fig. 1. Missing data in the measurements.

The goal is to construct a model of the underlying

distributed-parameter system by using the incomplete data.

III. PROPOSED IDENTIFICATION METHOD

We start with a view that the solution of (1) at a particular

discrete time instant k is a manifold (a curve in 1D) in

the space approximated by the values at the corresponding

grid points. The measurements available at time instant k

can be seen as spatial samples of the solution and will be

used to compute the approximation of the curve at the grid

points where no sensors are placed. At the same time, the

measurements at sensor i can be seen as temporal signals

and they can be modeled using system identification. The

spatial and temporal view of the measurements complement

each other and for the identification both views can be

used sequentially or simultaneously. In this paper, we take

the sequential approach, i.e., we start from the temporal

identification to model measurements in the sensors and

continue with the spatial approximation.

A. System identification with missing data

A common approach to identify a system when the input-

output measurements are not complete is to reconstruct

the missing data first. Data reconstruction methods are



presented, e.g., in [1]–[3]. In this paper, the missing data

are initially extrapolated from the available measurements

of the previous step, using the zero-order-hold principle

(assuming for simplicity and without loss of generality that

the first measurement is available). In Figure 1, the missing

values yi(k− 2) and yi(k− 1) are imputed from the value

of the previous measurement, yi(k− 3). Other methods can

be applied at this step as well. In the sequel these initial

reconstructed values will be improved iteratively.

Once the missing data have been imputed, we can proceed

to identify the model of yi(k). Each sensor measurement is

predicted using a multiple-input, single-output (MISO) linear

ARX model with the neighboring measurements as inputs.

There are two ways to determine which neighboring inputs

to use: 1) based on prior knowledge about the system, i.e.,

the knowledge of the spatial order of the PDE (10); 2) by

using a suitable input selection method [15]. In this paper

the neighbors are determined using prior knowledge.

Fig. 2. An example of sensors/actuator configuration

For the ease of notation, we consider two neighboring

sensors to sensor i, sensor i− 1 and sensor i+ 1 according

the configuration shown in Figure 2. However, the approach

can be adapted to other configurations. Define the following

regression vectors for the ARX model:

ϕϕϕ⊤i (k) =
[

ϕ⊤y,i(k) ϕ⊤u,i(k)
]

ϕ⊤y,i(k) =
[

yi(k) . . . yi(k−m) yi−1(k) . . .

yi−1(k−m) yi+1(k) . . . yi+1(k−m)
]

ϕ⊤u,i(k) =
[

ui(k) . . . ui(k−m)
]

(4)

where yi(k) and ui(k) are the output and the input at grid

point i, respectively, ⊤ denotes the matrix transpose, and

m is the order of the model. The model order m can be

determined by using prior knowledge about the process or the

Akaike information criterion [15]. Without loss of generality,

we take the same order for the input and output polynomials.

The prediction of model yi(k) is written as:

ŷi(k) = ϕϕϕ⊤i (k−1)θθθ i (5)

where θθθ i is the parameter vector of model i. This vector is

estimated as the total least-squares approach [16] solution of

the following set of linear equations

ΦΦΦiθθθ i = YYY i (6)

where ΦΦΦi and YYY i contain the measurements in their rows:

ΦΦΦi =







ϕϕϕ⊤i (1)
...

ϕϕϕ⊤i (N)






, YYY i =







yi(1)
...

yi(N)






(7)

for N the number of samples. A brief overview on the total-

least squares is presented in Appendix I.

In the first iteration, i.e., after identifying all the models in

the spatial domain, we simulate the each model to get the es-

timates of the measurements and replace the initial estimates

of the missing data with the output of the simulations

y
j
i (k) =

{

ϕϕϕ⊤i (k−1)θθθ j
i if yi(k) missing

yi(k) otherwise
(8)

where the superscript j is the iteration index and y
j
i (k)

the measurement yi(k) at iteration j. The identification, the

simulation, and the missing data estimates replacement are

repeated again until the estimates of the parameters converge.

As yi(k) is then available for all sensors, in which the

missing samples are replaced by ŷi(k), the spatial function

approximation can be performed next. We denote by ỹyy(k) the

vector containing the measurements and the imputed values.

The identification step of the proposed method is outlined

in Algorithm 1. Note that this algorithms does not only

produce the estimate of the parameter vector θθθ i, i= 1, . . . ,Ns,

but also a modified data set {ỹyy(k)}N
k=1 in which the missing

samples are replaced by the model predictions.

Algorithm 1 Temporal identification with missing data

Input: {uuu(k),yyy(k)}N
k=1,ε

j← 1

for each step k and each sensor i do

y
j
i (k)←

{

yi(k−1) if yi(k) is missing

yi(k) otherwise

end for

5: repeat

for each sensor i do

Form ΦΦΦi and YYY i according to (7)

Compute θθθ
j
i using total least-squares method (15)

end for

10: for each step k and sensor i do

y
j
i (k)←

{

ϕϕϕ⊤i (k−1)θθθ j
i if yi(k) missing

yi(k) otherwise

end for

j← j+1

until ‖θθθ j
i −θθθ

j−1
i ‖< ε

15: ỹyy(k) = yyy j(k) ∀k
Output: θθθ i, i = 1, . . . ,Ns, {ỹyy(k)}

N
k=1

The proposed method is an off-line method yielding a

model that can be used for monitoring and prediction.

However, the method can easily be extended to an on-line

method by using recursive identification techniques.

B. Spatial approximation with splines

This is the last step of the algorithm. As mentioned in

the previous section, we can view the grid point locations

that are not measured as missing samples in space. This is

the dual view of the missing data for distributed-parameter

systems. The available methods in system identification allow

us to use them to model the temporal data with missing

samples and for the missing spatial data we can use function

approximators.



Let the solution of (1) at a discrete time instant k be

approximated by a suitable function approximator υ as:

ĝ(z,k) = υ
(

z,y1(k), . . . ,yNs(k)
)

(9)

where ĝ(z,k) is the approximated solution curve, and yi(k)
the measurements. When the measurement yi(k) is not avail-

able, we can use its estimate that has been calculated from

the temporal model (8).

Consider a heated bar as an example for Figure 2, where

sensors are placed to measure the temperature. Plotting the

measurements as a function of discrete-time k results in

Figure 1 if there are missing samples in the measurement

data. The unlabeled horizontal dashed lines are grid points

that have no sensors and whose temperature values are

approximated using a function approximator.

There are different function approximators that can be

used to approximate the unmeasured grid points, for instance,

splines. For the heated bar we can use, e.g., cubic B-splines.

The cubic B-splines fulfill the conditions of the solution of

the 1D heat conduction equation: the heat function and its

first and second derivatives are continuous [17]. For other

cases, other function approximators can be used. A brief

overview on splines as function approximators is presented

in the appendix. The spatial approximation step is presented

in Algorithm 2.

Algorithm 2 Spatial approximation

Input: {ỹi(k)}
N
k=1, for i = 1, . . . ,Ns, z

Compute B-spline model according (16) in the appendix

for ỹi(k)
Calculate coefficients of the B-spline to minimize (19)

Compute ĝ(z,k) using (20)

Output: ĝ(z,k)

IV. SIMULATION EXAMPLE

A one-dimensional heat conduction process is taken as

an example to illustrate the effectiveness of the proposed

approach. The equation of the process is:

∂T (z, t)

∂ t
=

1

ρCp

[

κ
∂ 2T (z, t)

∂ z2

]

(10a)

T (0, t) = Tb,1 T (L, t) = Tb,2 (10b)

T (z,0) = T0 (10c)

where T is the temperature of the rod, ρ the density of

the rod, Cp the heat capacity, κ the thermal conductivity,

and z the spatial coordinate of length. Equations (10b) and

(10c) are the boundary conditions and the initial condition

respectively. The rod’s parameters are listed in Table I.

In order to generate the data for our simulation, we

proceed as follows: the partial-differential equation (10a) is

discretized in space, by using the central approximation of

the second-order spatial derivative:

∂ 2g(z, t)

∂ z2

∣

∣

∣

∣

z=i

≈
gi+1(t)−2gi(t)+gi−1(t)

(∆z)2
(11)

TABLE I

ROD PARAMETERS

Parameters Values Units

ρ 8700 kgm−3

κ 400 Wm−1 K−1

Cp 385 Jkg−1 K−1

L 0.6 m
T0 35 ◦C
Ts 1 s
∆z 0.02 m

with ∆z the spatial discretization interval. The spatial dis-

cretization results in an equidistant grid. Applying (11) to

(10a) and simplifying the notation with respect to the grid-

point index, (10a) becomes the following ordinary partial

differential equation:

dTi(t)

dt
=CzTi−1(t)−2CzTi(t)+CzTi+1(t) (12)

with i the grid point index and

Cz =
κ

ρCp∆2
z

.

Model (12) is also discretized temporally to get the model

that is used to generate the simulation data.

The 1D heat conduction equation is simulated for a bar

with length 0.6 m. The bar is divided into 31 grid points and

the first and the last grid points are boundary conditions,

which are used as inputs. A number of 3000 measurements

from each sensor are generated using the discretized model.

The missing measurements are chosen randomly and in-

dependently for each sensor and the events of the missing

measurements are generated with random permutation using

Matlab function randperm. The simulations use four sets

measurement data, each of which has a different percentage

of missing measurements: 10% (data set 1), 20% (data set

2), 30% (data set 3), and 40% (data set 4). We arrange the

data sets such that the percentage of missing measurements is

increasing and such that the data set with a larger percentage

of missing sample includes missing samples from the data set

with a smaller percentage of missing samples. This way, we

can see the influence of the increase of the missing samples

consistently.

From all grid points, it is assumed that temperature at

nodes 4, 7, 10, 13, 16, 19, 22, 25, and 28 is measured and

corrupted with Gaussian noise of mean value 0 and standard

deviation 0.3. The sensor at node 4 is denoted as sensor 1,

the sensor at node 7 as sensor 2, and so on. Nodes 1 and 31

are boundary conditions. System (10) does not have inputs;

however, we vary the values of the boundary conditions

randomly such that they act as inputs. It is assumed that

the boundary condition data are complete.

The temperature at sensor i is approximated using an

ARX model. The orders of the models can be determined

by following the model determination method in system

identification. In our case, we set the order of 1 for the input

polynomials and the output polynomials, because we know

from the prior knowledge that the system is a first order



system. We use the adjacent measurements as input since

we know that the temperature at a grid point depends on the

measurements at the adjacent grid points (see (12)).

First, we analyze the convergence of the parameter es-

timate throughout the iterations of Algorithm 1. Figure 3

shows the difference ‖θ̂c,i − θ̂
j

i ‖2 between the parameters

estimated from the incomplete data and from the complete

data plotted against the iteration number for sensors 1, 3, 5,

7, and 9. Here, θ̂c,i denotes the parameter vector estimated

from the complete data at location zi, and j is the iteration

number. We can see that the parameters estimated from the

incomplete data converge to the parameters estimated from

the complete data already after the second iteration for all

different percentages of missing data. It can also be seen that

in the first iteration, the parameter deviations increase as the

percentage of the missing sample increases.
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Fig. 3. The parameters estimated from the incomplete data converge rapidly
within three iterations of Algorithm 1.

Figure 4 shows snapshots of the simulated spatial profile

using the model identified from the complete data and from

the incomplete data for 20% and 40% of missing samples.

The outputs of the temporal model at the sensor locations are

used to compute the spline, using Matlab function spap2,

which provides a least-squares estimate of the B-spline

parameters. It can be seen that the estimates are close to

the measurements.

V. CONCLUSIONS AND FUTURE WORK

A method of identification of linear distributed-parameter

systems with missing data has been presented in this paper.

The method is based on a spatiotemporal discretization of a

partial differential equation. The spatial domain discretiza-

tion uses a finite-difference method to represent the values

of the variables at grid points in space while the temporal

domain uses zero-order hold discretization. Measurements

are assumed at some specific grid points. In the method, we

do system identification with missing data to get models in

the temporal domain. We subsequently use a least-squares

spline function approximator to estimate the unmeasured

values of the variables on grid points in the spatial domain.

In a simulation with a 1D heat conduction equation we have
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Fig. 4. Snapshots of the spatiotemporal estimation at the whole grid at
discrete time step 2, 120, and 200.

shown that the obtained model works well. The estimates

obtained from the model are able to follow the measurement

data.

The proposed method is a general framework. There are

several extensions that can be considered. Currently we have

dealt with a simple linear problem and as the next step

we will consider nonlinear systems. The use of the finite-

difference method requires a relative large number of sensors

at the grid points. Therefore, it will be useful to find a lower

bound of the number of sensors and also the sensor locations

to obtain a sufficiently accurate model. In this paper we

considered the uniform grid. The use of non-uniform grids

is also an important topic for investigation.
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APPENDIX I

TOTAL LEAST-SQUARES METHOD [16]

The total least-squares is an approach of solving a set of

N linear equations:

a1x j1 + · · ·+amx jm = y j (13)

where ai, i = 1, . . . ,m are the parameters and x ji, j = 1, . . . ,N
and y j are known. In matrix form, (13) can be written as

ΦΦΦθθθ = YYY (14)

where

ΦΦΦ =







x11 · · · x1m

...
. . .

...

xN1 · · · xNm






, θθθ =







a1

...

am






, YYY =







y1

...

yN







Assuming that there are errors in both sides of (14), (ΦΦΦ+
∆ΦΦΦ)θθθ = YYY + ∆YYY , the total least-squares method solve the

following optimization problem:

min
∆ΦΦΦ,∆YYY

‖(∆ΦΦΦ,∆YYY )‖F

s.t. (ΦΦΦ+∆ΦΦΦ)θθθ = YYY +∆YYY
(15)

where ‖ · ‖F is the Frobenius norm. The Frobenius norm

of matrix A is defined as
√

tr{AA∗}, for the superscript *

denotes the complex conjugate operation of a matrix.

APPENDIX II

LINEAR LEAST-SQUARES WITH SPLINES [17]

A spline function s(·) defined on interval an [a,b] consists

of connected piecewise polynomials, each of which is defined

on an interval [λi,λi+1] with λi < λi+1, i = 0, . . . ,r;(λ0 =
a,λr+1 = b) for a strictly increasing sequence λi, called

knots. A spline s(·) has degree p > 0 if it satisfies:

1) Between each knot interval [λi,λi+1], s(·) is given by

a polynomial that has a maximum degree p

2) s(·) and its derivatives up to order p−1 are continuous

on [a,b]

B-splines are a class of splines that have been used for

identification of nonlinear systems in, e.g., [18]. A B-spline

Di,p+1 of degree p whose knots are λi, . . . ,λi+p+1 can be

expressed as the following recursion

Di,p+1(l) =
l−λi

λi+p−λi

Di,p(l)+
λi+p+1− l

λi+p+1−λi+1
Di+1,p(l),

Di,1(l) =

{

1 if l ∈ [λi,λi+1)

0 if l /∈ [λi,λi+1)
(16)

Any spline s(·) can be expressed as a linear combination of

B-splines. Given a set of knots λi, i = 0, . . . ,r+1, a number

of r− p+1 linearly independent B-splines of degree p can

be constructed, i.e., Di,p+1, i = 0, . . . ,r− p [17].

Using the B-splines Di,p+1(l), any spline s(·) has a unique

representation:

s(l) =
r

∑
i=−p

ciDi,p+1(l) (17)

where ci are the B-spline coefficients of s(·). The basis has

a sum of unity property on [a,b]:

r

∑
i=−p

Di,p+1(l) = 1, ∀l ∈ [a,b] (18)

Given a set of data points (l j,d j), j = 1, . . . ,N, with a ≤
l j ≤ l j+1 ≤ b, we can formulate a least-squares problem to

fit the spline to the data. In other words, we want to find

a spline s(·) of degree p on [a,b] with given knots λi, i =
0, . . . ,r+1(λ0 = a,λ j = b) such that the cost function

JS =
N

∑
i=1

(

d j−
r

∑
n=−p

ci Di,p+1(l j)

)2

(19)

is minimized using linear least-squares. The estimated value

at l j can be calculated as

d̂ j =
r

∑
i=−p

ciDi,p+1(l j) (20)


