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Abstract: A switching max-plus-linear system can operate in different modes. In each mode
the system is described by a max-plus linear system equation. The switching may depend on
the previous mode, on the state, and on the input. Stochastic switching max-plus-linear systems
may include two types of stochastic uncertainty, namely stochastic parametric uncertainty and
stochastic mode switching uncertainty. For both types of uncertainty results have appeared in
the literature. In this paper we will consider stochastic switching max-plus-linear systems with
parametric uncertainty and mode switching uncertainty in one single unified framework. First
we derive a (general) model that includes both types of stochastic uncertainty. Next a model
predictive control method is used to control the system, and we distinguish between the case
where the two types of uncertainty are dependent or independent.
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1. INTRODUCTION

Recently, perturbed max-plus-linear (MPL) systems have
drawn some considerable attention. MPL systems are a
subclass of discrete event systems (DES). In general DES
are man-made systems that contain a finite number of
resources (such as machines, communication channels, or
processors) that are shared by several users (such as prod-
uct types, information packages, or jobs) all of which
contribute to some common goal (the assembly of prod-
ucts, the end-to-end transmission of a set of information
packages, or a parallel computation) (Baccelli et al., 2001).
The class of MPL systems consists of DES with syn-
chronization but no choice. DES are in general nonlinear
in conventional algebra. However, the subclass of MPL
systems can be written in a linear form in the max-plus
algebra (Cuninghame-Green, 1979). In (van den Boom and
De Schutter, 2006) the class of MPL systems has been
extended to the class of switching MPL systems. This
class consists of DES that can switch between different
modes of operation. In each mode the system is described
by a max-plus-linear state equation and a max-plus-linear
output equation, with different system matrices for each
mode.

In contrast to conventional linear systems, where noise
is often considered to be additive, the influence of noise
and disturbances on MPL systems is multiplicative (in the
max-plus-algebraic sense). This results in perturbed sys-
tem matrices, and as a consequence the system properties
may change over the events. For perturbed MPL systems,
the perturbations are in general related to processing and
transportation times, which in this paper are assumed
to be stochastic quantities. This allows us to use more
information about the uncertainties.

For uncertain switching MPL systems (van den Boom
and De Schutter, 2011) the mode switching depends on
a switching mechanism that is modeled with probabilities
that may depend on (a combination of) the following four
variables: the previous mode, the previous state, the input
signal, or an (auxiliary) control signal.

In (De Schutter and van den Boom, 2001; van den Boom
and De Schutter, 2006), the methodology from model
predictive control (MPC) (Rawlings and Mayne, 2009;
Maciejowski, 2002) has been applied and translated to
(switching) MPL systems. MPC depends on the availabil-
ity of a prediction model. The MPC controller solves an
optimization problem at each event step, which results in
the optimal control action. Current literature has already
investigated several subclasses of perturbed MPL systems.
In fact, we can distinguish two main research directions.
In the first one, we assume that some parameters (usually
time-based parameters) vary over the events (Farahani
et al., 2010; van den Boom and De Schutter, 2004). In
the other direction, we consider a system that can switch
between several modes of operation (van den Boom and De
Schutter, 2006, 2010, 2011). In this paper we incorporate
both the parametric uncertainty (van den Boom and De
Schutter, 2004) as the mode switching uncertainty (van
den Boom and De Schutter, 2011) simultaneously.

This paper proposes a unified setting for stochastic switch-
ing MPL systems, viz. a setting that includes both types
of uncertainty. This approach allows us to use more infor-
mation about the uncertainties, resulting in a less conser-
vative controller (since it no longer assumes the worst-case
scenario at every event step, but rather the average-case
scenario). First, we define an extended MPL model that in-
cludes both uncertainties in a stochastic setting. Then, we
will analyze the design of the model predictive controller.



The main computational issue with this approach will be
computing the cost function. Since the model contains two
types of uncertainty, we need to determine the joint density
function. We propose several classifications for which the
computation of the expectation of the output cost function
can be simplified. However, even for the simplified opti-
mization problem, the computation time is still a limiting
factor (since we need to perform numerical integration
over all the uncertainties). Therefore, we will use some
approximation methods that reduce the computation time
significantly (at the cost of introducing a small error in
obtaining the optimal control action).

This paper is organized as follows. In Section 2, we give
a concise introduction to stochastic MPL systems. In
Section 3, we analyze how we can transform the principles
of MPC to stochastic switching MPL systems, and the
main difficulties that are encountered. In Section 4, we
elaborate on the computation of the expectation of the
cost function.

2. MAX-PLUS ALGEBRA AND MAX-PLUS-LINEAR
SYSTEMS

2.1 Max-Plus Algebra

The mathematical framework behind MPL systems is
the max-plus algebra (Cuninghame-Green, 1979; Baccelli
et al., 2001; Heidergott et al., 2006). Define ε = −∞ and
e = 0 as the max-plus algebraic zero and identity element
respectively. Define the set Rmax = R ∪ {ε}. Then, for
a, b ∈ Rmax, the operators are defined as:

a⊕ b = max(a, b)

a⊗ b = a+ b

The corresponding matrix operators are defined as:

[A⊕B]ij = aij ⊕ bij = max(aij , bij)

[A⊗ C]ij =
n
⊕

k=1

(

aik ⊗ bkj
)

= max
k=1,...,n

(aik + bkj)

for A,B ∈ R
m×n
max and C ∈ R

n×p
max .

2.2 MPL Systems and Uncertainty

DES with synchronization (which requires the availability
of several resources at the same time) but no choice
(which appears when some user must choose among several
resources) can be modeled as (Cuninghame-Green, 1979;
Baccelli et al., 2001; Heidergott et al., 2006):

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k) (1a)

y(k) = C ⊗ x(k) (1b)

where the index k is called the event counter. Here, x(k)
contains time information about the internal events, while
u(k) and y(k) contain time information about the input
and output events respectively.

A switching MPL model was introduced in (van den Boom
and De Schutter, 2011):

x(k) = Aℓ(k) ⊗ x(k − 1)⊕Bℓ(k) ⊗ u(k) (2a)

y(k) = Cℓ(k) ⊗ x(k) (2b)

where we denote the mode of the system at the k-th event
as ℓ(k) ∈ {1, . . . , nL}, where nL is the number of modes.

This means that for each mode ℓ, the system behavior is
described by an MPL state equation (2a) and an MPL
output equation (2b) with system matrices Aℓ, Bℓ, and
Cℓ.

2.3 Stochastic Switching MPL Systems

In stochastic switching MPL systems we consider two
stochastic phenomena:

(1) uncertainty in the switching behavior (van den Boom
and De Schutter, 2011),

(2) parametric uncertainty in the system parameters (van
den Boom and De Schutter, 2004).

Up to now we have always considered the two types of
uncertainty separately. The most obvious path to include
both uncertainties will be to enhance (1) with the mode
switching uncertainty first, and then to include the para-
metric uncertainty for each mode independently, resulting
in a model of the form

x(k) = Aℓ(k)(e(k))⊗ x(k − 1)⊕Bℓ(k)(e(k))⊗ u(k) (3a)

y(k) = Cℓ(k)(e(k))⊗ x(k) (3b)

where Aℓ(k)(e(k)), Bℓ(k)(e(k)), and Cℓ(k)(e(k)) are the
system matrices that correspond to mode ℓ(k) and where
the stochastic random vector e(k) represents the stochastic
parametric uncertainty at the k-th event step. Since the
model description (1) is written in the max-plus algebra,
the noise and modeling errors are max-plus multiplica-
tive 1 .

The switching between the different modes can be modeled
with so called switching probabilities (van den Boom and
De Schutter, 2011):

P
[

L = ℓ(k) | ℓ(k − 1), x(k − 1), u(k), v(k), e(k)
]

where L is a stochastic random variable, ℓ(k) is its value
(in fact the mode that the model will switch to), ℓ(k−1) is
the previous mode (the mode that the system will switch
from), x(k − 1) is the previous state, u(k) is the current
input, and v(k) is an auxiliary control signal that directly
affects the switching behavior. Note that the switching
probability may depend on the parametric uncertainty
vector e(k).

3. MODEL PREDICTIVE CONTROL

In (De Schutter and van den Boom, 2001), the MPC
framework had been extended to deterministic MPL mod-
els. Assume we have a model as in (3), with system
matrices Aℓ(k)(e(k)) ∈ R

n×n
max , Bℓ(k)(e(k)) ∈ R

n×nu
max , and

Cℓ(k)(e(k)) ∈ R
ny×n
max , where n is equal to the internal state

dimension, while ny and nu are equal to the number of
outputs and inputs respectively.

1 In contrast to conventional linear systems, where noise and distur-
bances are usually modeled by including an extra term in the system
equations (i.e., the noise is considered to be additive), the influence
of noise and disturbances in MPL DES appear as an additional term
to the system parameters, i.e. the entries of the system matrices.
Addition in conventional algebra means multiplication in max-plus
algebra. Hence, noise and disturbances in MPL systems are not max-
plus-additive, but max-plus-multiplicative.



3.1 Cost Function

Since we will consider a stochastic system, the cost crite-
rion is given by an expectation:

E
[

J(k)
]

=

Np−1
∑

j=0

ny
∑

i=1

E
[

κi(k + j)
]

− λ

Np−1
∑

j=0

nu
∑

l=1

ul(k + j)

(4)

where E
[

·
]

denotes the expectation of some random
variables and κi = max(yi(k) − ri(k), 0) is the tardiness
error for the i-th output at the k-th event step. This
tardiness error penalizes the late (but not the early)
deliveries for the i-th output at the k-th event step, where
r(k) is a given vector of reference (due date) signals. The
second term in cost function (4) maximizes the input
instants, which results in minimum input buffer levels.

3.2 Prediction Model

As observed in the previous subsection, we need to express
the future output y(k + j) as a function of the future
input u(k + j), for j = 0, . . . , Np − 1. Since the model
(3) is available, it is quite straightforward to compute the
future output signal by successive substitution. Note that
switching MPL systems are different from conventional
time-driven systems in the sense that the event counter
k is not directly related to a specific time. So far we have
assumed that at event step k the state x(k) is available
(recall that x(k) contains the time instants at which the
internal activities or processes of the system start for the
k-th cycle). Let t be the time instant when a prediction
has to be done. In this paper we can define the initial cycle
k as follows:

k = argmax
{

l|xi(l − 1) ≤ t , ∀i ∈ {1, 2, . . . , n}
}

This means that state x(k− 1) is completely known. Now
consider the following vectors:

x̃(k) =
[

xT (k) . . . xT (k +Np − 1)
]T

ũ(k) =
[

uT (k) . . . uT (k +Np − 1)
]T

ỹ(k) =
[

yT (k) . . . yT (k +Np − 1)
]T

ẽ(k) =
[

eT (k) . . . eT (k +Np − 1)
]T

ℓ̃(k) = [ℓ(k) . . . ℓ(k +Np − 1)]
T

Define the matrices:

C̃(ℓ̃(k), ẽ(k))=







C̃1(ℓ̃(k), ẽ(k))
...

C̃Np
(ℓ̃(k), ẽ(k))







D̃(ℓ̃(k), ẽ(k))=







D̃1,1(ℓ̃(k), ẽ(k)) · · · ε

...
. . .

...

D̃Np,1(ℓ̃(k), ẽ(k))· · ·D̃Np,Np
(ℓ̃(k), ẽ(k))







where

C̃m(ℓ̃(k), ẽ(k)) = Cℓ(k+m−1)(e(k+m−1))

⊗Aℓ(k+m−1)(e(k+m−1))⊗ . . .⊗Aℓ(k)(e(k))

D̃m,n(ℓ̃(k), ẽ(k)) = Cℓ(k+m−1)(e(k+m−1))

⊗Aℓ(k+m−1)(e(k+m−1))⊗ . . .⊗Aℓ(k+n)(e(k+n))

⊗Aℓ(e(k+n−1)(e(k+n−1))

Using the recursion from (3), we can rewrite the future
output y(k + j) as a function of u(k + i) for i = 0, . . . , j
and x(k − 1):

ỹ(k) = C̃(ℓ̃(k), ẽ(k))⊗ x(k − 1)⊕ D̃(ℓ̃(k), ẽ(k))⊗ ũ(k)

3.3 Constraints

Since MPC solves an optimization problem, it becomes
fairly easy to incorporate constraints on the (predicted)
model. Since the inputs u(k+j) corresponds to consecutive
event times, we should have:

∆u(k + j) = u(k + j)− u(k + j − 1) > 0

for j = 0, . . . , Np − 1. Furthermore, in order to reduce the
number of decision variables (and thus the computational
complexity), we introduce a control horizon Nc (6 Np).
We impose that the input rate should be constant from
the point k +Nc − 1 on:

∆2u(k + j) = ∆u(k + j)−∆u(k + j − 1) = 0

for j = Nc, . . . , Np − 1. Additionally, we can add con-
straints on the future input and output event times as
well.

3.4 Optimization Problem

The aim of the optimization problem is to compute an
optimal control signal ũ(k) that minimizes E [J(k)] subject
to linear constraints defined in the previous subsection.
The final optimization problem at event step k can now
be defined as:

min
ũ(k)

Npny
∑

i=1

E [max(ỹi(k)− r̃i(k), 0)]− λ

Npnu
∑

i=1

ũi(k)

subject to

ỹ(k) = C̃(ℓ̃(k), ẽ(k))⊗ x(k − 1)⊕ D̃(ℓ̃(k), ẽ(k))⊗ ũ(k)

∆u(k + j) > 0 for j = 0, . . . , Nc − 1

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1

Aconũ(k) +BconE[ỹ(k)] 6 ccon(k)

This optimization problem can be solved in various ways.
The computational complexity of this optimization prob-
lem depends on the complexity of the computation of
expectation of the cost function. This will be discussed
in the next section.

4. EXPECTATION OF THE COST FUNCTION

The most extensive computation problem in the previous
section is the computation of the expectation of the cost
function. Since we have a finite number of modes (nL),
there is a finite number of possible mode switching se-
quences over the whole prediction horizon (in fact we have

(nL)
Np possibilities), and thus the mode switching uncer-

tainty is a discrete random variable. On the other hand,
the parametric uncertainty is related to processing and
transportation times, which means that the parametric
uncertainty is a continuous random variable. This means
that for the computation of the expectation of the cost
function we need to perform a combination of integration
over the stochastic variable ẽ(k) and summation over the

stochastic variable ℓ̃(k).



4.1 Joint Probability Density Function

So, since we will need to compute the expectation of
a function (J(k)) which is a function of two types of
random variables, we need to find an expression for the
joint probability density function (jdf). However, this jdf
is not available directly. Therefore, we can use conditional
probability theory to write it in a more usable way. The jdf
is denoted by fL,E , where L is the (discrete) sample space

of all the mode switching sequences ℓ̃(k), and E is the
(continuous) sample space of the parametric uncertainty
ẽ(k).

We assume that the pdf of the uncertainty ẽ(k) does

not depend on the discrete mode sequence ℓ̃(k) and the
continuous probability density function (pdf) of ẽ(k) is
given by fE(ẽ(k)). With use of conditional probability
theory (Kingman and Taylor, 1966), we now have

fL,E(ℓ̃(k), ẽ(k)) = fE(ẽ(k))P̃
[

L = ℓ̃(k) | E = ẽ(k)
]

where P̃
[

L = ℓ̃(k) | E = ẽ(k)
]

is the probability that we

have mode switching sequence ℓ̃(k), given the parametric
uncertainty ẽ(k).

When both the continuous pdf fE(ẽ(k)) and the mode

switching probability P̃
[

L = ℓ̃(k) | E = ẽ(k)
]

are known,
we can define an expression for the expectation of the cost
function:

E
[

J(k)
]

=
∑

ℓ̃(k)∈L

[

∫

E

J(ℓ̃(k), ẽ(k))fE(ẽ(k))

P̃
[

L = ℓ̃(k) | E = ẽ(k)
]

dẽ(k)
]

(5)

4.2 Switching Probability

However, we still need to obtain an expression for the mode
switching probability, denoted here by P̃ . Recall that the
mode switching probability for a single mode may depend
on the previous mode ℓ(k−1), the previous mode x(k−1),
the current input u(k), and an auxiliary control signal
v(k). Hence,

P̃
[

L = ℓ̃(k) | ℓ(k − 1), x(k − 1), ũ(k), ṽ(k), ẽ(k)
]

=
Np−1
∏

j=0

P
[

L = ℓ(k + j) | ℓ(k + j − 1),

x(k + j − 1), u(k + j), v(k + j), e(k + j)
]

We are interested in computing the expected value E
[

J(k)
]

in the optimization phase of the MPC algorithm. In every
optimization step we may assume the values ℓ(k − 1),
x(k − 1) to be known, just as the values of ũ(k) and
ṽ(k), which are proposed by the optimizer. Note that the
dependence on these “known” values is sometimes dropped
in the definition of the mode switching probability, just for
brevity, and we write

P̃
[

L = ℓ̃(k) | ℓ(k − 1), x(k − 1), ũ(k), ṽ(k), ẽ(k)
]

= P̃
[

L = ℓ̃(k) | E = ẽ(k)
]

4.3 Case 1: Completely Independent Random Variables

In this case we assume that the mode switching uncer-
tainty ℓ̃(k) does not depend on the parametric uncertainty

ẽ(k), so P̃
[

L = ℓ̃(k) | E = ẽ(k)
]

= P̃
[

L = ℓ̃(k)
]

. Represent
the set L of all possible consecutive mode switching vectors
as L = {ℓ̃1, ℓ̃2, . . . , ℓ̃M} for M = (nL)

Np . Now, we can
compute the cost function in a more efficient way.

Theorem 1. If the parametric uncertainty ℓ̃(k) and the
mode switching uncertainty ẽ(k) are independent, we can
rewrite the expectation of the cost function as:

E
[

J(k)
]

= Eẽ,ℓ̃

[

J(k)
]

=
∑

ℓ̃(k)∈L

[

P̃
[

L = ℓ̃(k)
]

Eẽ

[

J(ℓ̃(k), ẽ(k)
]

]

(6)

=

M
∑

m=1

[

P̃
[

L = ℓ̃m(k)
]

Eẽ

[

J(ℓ̃m(k), ẽ(k)
]

]

where Eẽ

[

J(ℓ̃m(k), ẽ(k)
]

is the expectation of the cost
function after substitution of a given mode switching
sequence ℓ̃m(k) ∈ L.

Proof. Since ℓ̃(k) does not depend on ẽ(k), we have:

P̃
[

L = ℓ̃m(k) | E = ẽ(k)
]

= P̃
[

L = ℓ̃m(k)
]

Thus, after substitution, we obtain:

E
[

J(k)
]

=

M
∑

m=1

[

∫

E

J(ℓ̃m(k), ẽ(k))fE(ẽ(k))

P̃
[

L = ℓ̃m(k)
]

dẽ(k)
]

Since the mode switching probability P̃ does not depend
on ẽ, we can write it outside the integral.

E
[

J(k)
]

=

M
∑

m=1

[

P̃
[

L = ℓ̃m(k)
]

∫

E

J(ℓ̃m(k), ẽ(k))fE(ẽ(k)) dẽ(k)
]

where the integral is equal to Eẽ

[

J(ℓ̃m(k), ẽ(k)
]

. ✷

We can observe that we have split the problem up in
two sub-problems, involving respectively an expected value
computation over a discrete stochastic variable and an
expected value computation over a continuous stochastic
variable. The above derivations show how we can deal
with the mode switching uncertainty in the first place.
Secondly, we have to compute the expectation over the
parametric uncertainty only. This approach simplifies the
computation of the expectation of the cost function sig-
nificantly. However, we are still facing the computational

complexity of both sub-problems. Since there are (nL)
Np

possible mode switching sequences, the size of the set L
grows very fast as we increase either nL or Np. On the
other hand, we need to (numerically) integrate over all the
uncertainties dẽ(k) ∈ E . This is very time-consuming as
well. However, since by Theorem 1 we have split the com-
putation of E

[

J(k)
]

into two sub-problems, we can apply
approximations to each of these sub-problems separately.

At first, we can reduce the computational complexity of
the mode switching uncertainty. In general, we may know
that some mode switching sequences are more likely to
occur than others. Therefore, we can choose to neglect
some mode switching sequences that are not likely to
occur, resulting in a reduced set Lred that should be used



in (6) instead of L. In (van den Boom and De Schutter,
2010) this approximation approach is presented. In fact,
in this way we can often significantly reduce the number
of terms in the sum in (6), and thus the computational
complexity as well, while still maintaining an adequate
cumulative probability of these mode switching sequences
to occur.

On the other hand, we can approximate the numerical
integration over all the uncertainties with the use of vector
norms. Since within Eẽ

[

J(ℓ̃m(k), ẽ(k)
]

we will be com-
puting the expectation of the maximum of some random
variables (cf. (4)), we can use the following approximation
(Farahani et al., 2010):

E
[

max(x1, . . . , xn)
]

≤ E
[

max(|x1|, . . . , |xn|)
]

≤ E
[

(|x1|
p + . . .+ |xn|

p)1/p
]

≤





n
∑

j=1

E
[

|xj |
p ]





1/p

for some positive integer p. If we drop the absolute value
sign, assuming p to be an even number, the term E

[

|xj |
p ]

is equal to the p-th moment of a random variable. There
are several probability distributions for which the random
variables have finite moments and a closed-form expression
of these moments exists (such as the uniform distribution,
the normal distribution, the Beta distribution, etc.). More
details, and the exact derivation can be found in (Farahani
et al., 2010). In (Farahani et al., 2010; van den Boom
and De Schutter, 2004), it has been proved that both
the full problem as well as the approximation are convex
optimization problems 2 .

Case 2: Dependent Random Variables

In case the mode switching uncertainty ℓ̃(k) depends on
the parametric uncertainty ẽ(k), the problem becomes
much more difficult since then we have to use the expres-
sion given in (5), which is repeated here for easy reference:

E
[

J(k)
]

=
M
∑

m=1

[

∫

E

J(ℓ̃m(k), ẽ(k))fE(ẽ(k))

P̃
[

L = ℓ̃m(k) | E = ẽ(k)
]

dẽ(k)
]

The approximation theory from the previous section can-
not be applied now. However, if we assume that the condi-
tional mode switching probabilities P as well as the prob-
ability density function fE are modeled or approximated 3

as multi-variable piecewise polynomial functions, possibly
multiplied by an exponential, that are defined on polyhe-
dral regions, then we can proceed as follows. Recall that
J is a summation of maximum operators and linear terms
(cf. (4)). Hence, J is a piecewise affine function (defined
on polyhedral regions) of ẽ(k) and as a consequence, it is
thus of the same (but more simple) form as P and fE . So if
we combine the regions of P , fE , and J and multiply the
piecewise polynomial and piecewise affine functions and

2 Since the sum-operator and the expectation are additive operators,
the convexity is preserved.
3 Note that by considering enough regions we can in general approx-
imate the real probabilities or the real probability density function
arbitrarily close.

the exponentials, we find that there exists a polyhedral
partition 4 {Ri}

nR

i=1 of E such that

J(ℓ̃m(k), ẽ(k)) fE(ẽ(k)) P̃
[

L = ℓ̃m(k) | E = ẽ(k)
]

= ζim(ẽ(k)) when ẽ(k) ∈ Ri

where ζim is a function of the form

ζim(ẽ) =

nim
∑

j=1

ξimj

(

nẽ
∏

l=1

ẽ
kimjl

l exp(νimjlẽl)

)

for some real-valued constants ξimj and νimjl, some pos-
itive integers nim, and some non-negative integers kimj,,
and where nẽ is equal to the number of components of ẽ.
As a result we find

E
[

J(k)
]

=
M
∑

m=1

nR
∑

i=1

∫

Ri

ζim(ẽ(k))dẽ(k)

Since each Ri is a polyhedron, we can do a substitution
of variables by expressing an arbitrary point ẽ(k) ∈ Ri as
a linear, non-negative, and/or convex combination of the
central generators 5 , extreme rays, and finite vertices of Ri

(which can be computed using, e.g., the double-description
introduced by Motzkin et al. (1953)). As a result

∫

Ri

ζim(ẽ(k))dẽ(k)

reduces to the repeated integration of a polynomial func-
tion, possibly multiplied by an exponential. This integra-
tion can be done analytically.

5. DISCUSSION

In this paper we have studied switching max-plus-linear
systems with both stochastic parameter uncertainty and
stochastic switching uncertainty in a unified framework.
To describe the stochastic behavior of the system we
have considered the joint probability distribution with
both continuous and discrete random variables. For the
computation of the expectation of the cost function of the
model predictive control problem we can distinguish two
cases. In the first case we assume the two random variables
to be completely independent. In this case we can split the
joint probability function into two parts, and we can use
previously derived approximation methods to compute the
expectation of the cost function. In the second case the
switching probability depends on the parametric random
variable and the computation becomes more complicated.
If the switching probability is a piecewise polynomial
function, possibly multiplied with an exponential, and
the same holds for the probability density function of
the parametric random variable, we can determine an
expression for the computation of the expected value cost
function using repeated analytic integration.
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