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Dynamic Optimal Routing Based on a Reverse Stackelberg Game

Approach

Noortje Groot, Bart De Schutter, and Hans Hellendoorn

Abstract— A game-theoretic approach to dynamic routing is
proposed in order to maximize the traffic throughput on a
freeway network. While existing methods of informing drivers
of the approximate travel times for the alternative routes do
not in general yield the system optimum, we can achieve
a better performance by introducing a leader-follower game
with monetary incentives. In particular, a control strategy is
proposed in which the traffic authority (the leader) proposes
a function that maps the possible travel times for a certain
destination to positive or negative monetary incentives. Based
on this function that is communicated via on-board computers,
the drivers (followers) will rationally choose those travel times
associated with an optimal distribution over the available
routes. Finally, in return for the associated monetary value,
the drivers are presented with a route that they should follow
to the desired destination.

I. INTRODUCTION

A significant number of traffic networks around the world

suffer from congestion caused by a disbalance between traffic

demand and road capacity. Dynamic traffic routing aims at

addressing this problem by guiding traffic to make use of

alternative routes in the network [1]. Here, one strives after

a system-optimal state of the network, e.g., in which the

total travel time is minimized or throughput is maximized,

respectively. However, when the individual drivers choose

the route with the lowest cost, which can measured in travel

time or distance, a different, user-equilibrium assignment

is obtained in which the costs of the alternative routes are

equally high [2].

In order to spread the traffic flow over the alternative

routes to reach the system optimum, a possible approach is

to adopt dynamic route guidance information panels (DRIP)

that indicate the travel times when taking alternative routes

[3], which can be integrated with ramp metering [4] and

variable speed limits [5]. The assumption of the adoption

of these panels is that traffic indeed spreads accordingly.

However, there is inefficiency caused by the fact that the

travel time between the alternative routes should be similar

for drivers to deviate from the – originally shorter – route.

The majority of traffic will thus choose the popular, shortest

route until congestion applies and – due to the now equal

or even shorter travel time of the alternative route on the

DRIP – traffic will start to use the alternative route. This
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process leads to the user equilibrium under dynamic routing

by providing information on the DRIPs.

In order to prevent this suboptimal behavior from ap-

pearing and to achieve an optimal distribution of traffic

over the network, in this paper a hierarchical game-theoretic

approach is proposed in which traffic is routed by the road

authority based on monetary incentives. In this so-called

reverse Stackelberg game [6], also known as ‘incentives’

[7] or as the ‘inverse Stackelberg game’ [8], the leader

(road authority) is able to propose a function that maps

the follower decision space into the leader decision space,

i.e., that proposes a monetary incentive (the leader’s decision

variable) for a certain choice of desired travel time by the

drivers (the followers).

This hierarchical game has been applied in traffic control

before, in assigning tolls to roads in order to accomplish

a certain traffic assignment [9], [10]. However, there either

the tolls are taken to be time-variant but fixed, i.e., constant

according to the regular Stackelberg game [9], or tolls are a

function of the traffic flow on the corresponding road [10].

Since the individual driver cannot know nor significantly

influence this flow by his individual route choice, also in the

latter case, the drivers basically make their route decision

based on a fixed toll. Moreover, by tolling specific road

stretches, the splitting rate of traffic at a specific intersection

is influenced, but this is essentially a greedy approach and it

does not necessarily lead to an optimal distribution of traffic

flow over the alternative routes, as was also the case with

the DRIP panels.

In order to do enforce a user equilibrium that coin-

cides with the system optimum with respect to the overall

throughput of traffic, we suggest a novel reverse Stackelberg

approach to dynamic traffic routing. In this approach (i) more

general monetary incentives are adopted that can also assume

negative values, i.e., rewards instead of penalties; (ii) drivers

decide upon their desired travel time rather than upon the

route to travel, and (iii) complete routes rather than individual

roads are associated with a monetary value.

The paper is organized as follows. After an introduction

to the reverse Stackelberg game in Section II, the routing

problem at hand is described in Section III. Subsequently,

the reverse Stackelberg approach to routing is explained in

Section IV, by first defining the basic elements of the game,

followed by the overall dynamic framework. An illustrative

case study is presented in Section V and the paper is

concluded in Section VI.



Traffic direction

Destination

Origin

DRIP
to destination

6 min
3 min

1

2

Fig. 1: Traffic network of Example 1.

II. THE REVERSE STACKELBERG GAME

The basic reverse Stackelberg game can be described as

follows. A leader player proposes a leader function uL =
γL(uF), i.e., γF : ΩF → ΩL, after which the follower

determines his optimal response uF ∈ ΩF ⊆ R
nF with the

associated leader decision variable uL ∈ ΩL ⊆ R
nL .

Here, the leader aims to achieve a desired equilibrium

(ud
L, u

d
F) ∈ arg min

uL∈ΩL,uF∈ΩF

JL(uL, uF),

where JL(uL, uF) : ΩL × ΩF → R. Similarly, given the

leader function γL(uF), the follower optimizes his objective

function JF(γL(uF), uF) : ΩL × ΩF → R.

A well-known special case of this hierarchical leader-

follower game is the original Stackelberg game [11]. In this

game, the follower player determines his optimal decision

variable uF ∈ ΩF as a response to the leader’s (constant) de-

cision variable uL ∈ ΩL, thus not to the more general leader

function γL(uF). The reverse Stackelberg game therefore has

an important advantage to the regular Stackelberg game, as

there, the leader cannot control the follower’s response in

case it is not unique [6].

III. THE ROUTING PROBLEM

We now focus on achieving a system-optimal distribution

of vehicle flows over a traffic network with respect to the

throughput. In order to optimize the use of the available

routes in a traffic network by drivers, we will strive after

congestion avoidance by keeping the flow on a route below

the bottleneck capacity or critical density as long as possible.

The current approach of guiding traffic by means of

predicted travel times to reach a certain destination, shown

on panels along the nodes of a highway network, does not

in general lead to an optimal spread of traffic. The following

simple example shows this scenario:

Example 1 (Reverse Stackelberg approach versus DRIP):

Consider an origin-destination (OD) pair for which

two routes are available as depicted in Fig. 1, and a

traffic demand dOD [veh/h]. The two alternative routes

contain homogeneous road segments of total length

l1 = 6 km, l2 = 10 km and speed limits v1max = 120 km/h,

v2min = 100 km/h, leading to minimum travel times of

τ1 = l1/v1max = 3min and similarly τ2 = 6min.

Let qrcrit [veh/h] and ρrcrit [veh/lm/lane] be the critical flow

(capacity) and density of a freeway segment r. If the demand

is high enough such that the flow and density on route 1

exceed the critical flow or capacity qrcrit: qcrit < q1 ≤ qmax,

and the density ρ1 ≤ ρ1crit the unstable traffic state causes

a reduction in speed, hence an increase in total travel time.

In order for the traffic to consider the alternative route, the

predicted travel time for route 1 should be at least as high

as the – originally longer – travel time for route 2. If this

is indeed the case, i.e., if the average speed on route 1 is

reduced to 60 km/h, the flow on route 1 is highly suboptimal,

yielding a throughput for the OD-pair of

ζ = dOD · (6/60) · t−1
tot [veh/h]

with ttot [h] the time window or horizon during which

the traffic flow is considered. Note that for simplicity we

assumed that traffic splits evenly over the two alternative

routes of similar perceived travel time. For the likelihood of

changing the driver’s preferred route based on a difference in

travel time, see e.g., [12]. By indicating predicted travel times

on the DRIP instead of the current, instantaneous times, the

drivers will deviate to the alternative road earlier, leading to

a quicker convergence to the equilibrium assignment.

If instead drivers are assigned to one of the alternative

routes before the traffic conditions on the main route lead

to a suboptimal travel time, the system-optimal distribution

with total throughput

ζ = (d1 · ζ1 + d2 · ζ2) · t−1
tot

=
(

(3/60)q1crit + (6/60)(dOD − q1crit)
)

· t−1
tot [veh/h]

could be reached. A monetary incentive can accomplish such

a distribution (d1, d2) as will be shown in Section IV below.

IV. THE REVERSE STACKELBERG ROUTING APPROACH

The problem of reaching a maximal throughput of traffic

over a network is modeled by means of a reverse Stackel-

berg game approach. The scheme of Fig. 2 illustrates the

process that leads to a dynamic route assignment, using a

leader-follower approach where the road authority associates

monetary incentives θ with the driver’s choice of the time τ
in which he desires to reach his destination. Based on the

drivers’, i.e., follower’s choice of the pair (θ, τ) according to

the relation θ = γL(τ) proposed by the leader, the drivers are

assigned to a route. The leader’s aim is therefore to compose

a leader function γL such that a system-optimal distribution

of traffic can be achieved. The characteristics of the drivers

as well as the incentive functions and travel time choice of

the drivers are communicated via an on-board computer.

Before the overall approach is elaborated upon, first the

basic elements of the reverse Stackelberg game are translated

to the traffic domain. Here it should be noted that a receding

horizon approach is adopted, where kc indicates the time

instant t = kcTc, with Tc the sample or control time step

of the dynamic routing approach. Similarly, k indicates the

time instant t = kTs, with Ts the time step for the simulation

of the traffic behavior based on a prediction model that will

be described in Section IV-B.1. Finally, Tc = MTs,M ∈ N.

A. Basic Elements of the Reverse Stackelberg Approach

1) The Players and Their Decision Variables:

• The single leader player represents the road authority

responsible for accomplishing an optimal use of a given

traffic network.
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• A follower player represents a homogeneous group

of vehicles that desire to travel according to a certain

origin-destination (OD) pair (o, d)∈O×D, with O,D
the set of origin and destination nodes, respectively. The

total number of OD-pairs is denoted by NOD= |O|·|D|,
with |X| the cardinality of X . The number of alter-

native routes, i.e., paths without cycles, for the origin

destination-pair i ∈ {1, ..., NOD} is denoted by ni ∈ N.

Alternatively, each individual driver could be treated

as a separate follower player. However, this involves a

more computationally demanding configuration, while

it is intuitively more clear to characterize a follower

player as a group of drivers with the same properties.

Further, the group of drivers should be homogeneous

in the sense that they have a similar monetary value

of time, as will be elaborated upon in Section IV-

A.2 below. We denote the value-of-time-class by h ∈
{1, . . . , H}, withHi the set of classes of drivers with a

particular destination i∈{1, . . . , NOD}.

It should be noted that in the reverse Stackelberg ap-

proach, the road authority will want to distribute drivers

over different available routes. Therefore we also add

the property of a follower group to represent a specific

route j ∈ {1, . . . , ni} which the leader desires the

drivers of the group to take. The leader can accomplish

this by presenting a different leader function γL to

ni fractions of the drivers within value-of-time-classes

h ∈ {1, . . . , H} and OD-pair i ∈ {1, . . . , NOD}, as

explained in Section IV-B.3 below.

The total number of follower players is denoted by

NF =
∑NOD

i=1 ni · |Hi| where we can represent the set

of followers by

F={(h, i, j)|i∈{1, . . . NOD}, j∈{1, . . . , ni}, h∈Hi}.

Further, the decision variables represent respectively:

• A monetary incentive θhij(kc) ∈ Ωhij
L in $ to be paid

by or received by the follower player (hij) ∈ F where

Ωhij
L := [θhijmin, θ

hij
max] denotes the range of monetary

incentives that is accepted by the drivers.

• A choice of desired travel time τhij(kc) ∈ Ωhij
F in

minutes for follower player hij ∈ {1, . . . , NF} to

reach the associated destination d, where Ωhij
F (kc) :=

[τhijmin(kc), τ
hij
max(kc)] denotes the range of possible, i.e.,

realizable travel times for a specific OD-pair at the

current time step kc, that is provided by the leader.

2) Leader and Follower Objective Functions:

• The leader player aims to maximize traffic throughput:

JL(kc) =

NOD
∑

i=1

∑

h∈Hi

ni
∑

j=1

(

dhij(kc) · τ
hij(kc)

)

t−1
tot, (1)

where dhij(kc) ∈ R+ denotes the part of the total de-

mand di(kc) [veh/h] for the OD-pair i ∈ {1, . . . , NOD}
that involves the vehicles from one of the h ∈ {1, .., H}
classes of drivers with a certain monetary value of time,

that is distributed over route j ∈ {1, . . . , ni}. Recall that

Hi denotes the set of value-of-time classes that apply to

vehicles for the particular OD-pair i ∈ {1, . . . , NOD}.

In case the class H is not relevant in the context, super-

script h will be disregarded, i.e., dij :=
∑

h∈Hi
dhij .

Instead of optimizing JL at each control time step,

the leader can also consider a time horizon, as will be

described in the dynamic framework in Section IV-B.2.

• The followers’ aim is to minimize the travel cost as a

function of monetary incentives and travel time:

J hij
F (kc) = αh

F · τhij(kc) + θhij(kc), (2)

with αh
F ∈ R+ the possibly time-variant monetary value

of travel time also known as value of travel time savings

(VTTS).

Remark 1: Here, we assume a linear mapping of travel

time to monetary value as is often adopted in the literature,

e.g., in [9], [10]. However, (2) could be replaced by a

more involved, nonlinear relation as considered in e.g., [13],

[14]. The only consequence of a different follower objective

function is in the type of leader function γL that is needed to

reach the optimal distribution of tolls to arrive at the system

optimum, as will be elaborated upon in Section IV-B.3.

Note that the monetary value of time of the driver classes

could be differentiated between given a particular car type,

or it could be determined by an iterative learning process in

which the monetary value of time is adapted over time based

on the choice (τ, θ) of the particular driver.

B. The Dynamic Game Framework

The dynamic reverse Stackelberg routing approach con-

sists of the following main steps:

• Given the current traffic state and the demand for the

OD-pairs as indicated by the drivers, a system-optimal

distribution of the new vehicles over the available



routes is computed, together with the corresponding

predicted mean travel times.

• Given the desired distribution of vehicles and the

according travel times to the respective destinations,

leader functions γhij
L (kc) : ΩF → ΩL for each of

the (hij) ∈ F followers are computed. Thus, in order

for the leader to achieve an optimal distribution dij(kc)
with associated travel times τ ij(kc), a specific fraction

of the drivers for the i-th OD-pair and with a monetary

value of time-class h ∈ Hi will be associated with one

of the j ∈ {1, . . . , ni} routes.

• As a response to the optimal leader functions, the fol-

lower will choose a combination of monetary incentive

and travel time, which the leader associates with a

certain route that the follower is obliged to follow.

1) The Prediction Model: In order to capture the behavior

of traffic over time, a prediction model is used to track

the traffic states, i.e., to analyze the impact of a traffic

routing assignment. Based on the current and future state

of the network and future demand, the desired traffic flow

distribution can be determined and the associated decision

variables that can lead to this state.

Here, the routes are further divided into homogeneous

freeway stretches or road links r1, . . . , rnij
, rl ∈ Rl, l ∈

{1, . . . , nij}, i ∈ {1, . . . , NOD}, j ∈ {1, . . . , ni} – poten-

tially overlapping with alternative routes of the same or

another OD-pair – of length Ll [km], capacity qlmax [veh/km],

and maximum speed vlmax [km/h]. Here, Rl denotes the set

of links present in route l, where R represents the set of all

links in the network. By N we denote the set of internal

nodes that connect the links.

For each link r ∈ R the flow of vehicles at time step k
traveling towards destination d is denoted by qr,d(k). Then,

the total inflow Qn,d(k) of node n ∈ N with a destination

d can be computed by

Qn,d(k) =
∑

r∈I(n)

qr,d(k),

with I(n) the set of incoming links for node n. Similarly,

the set of outgoing roads is denoted O(n), with the traffic

flow represented by

qr,d(k) = βn,r,d(k)Qn,d(k)

where βn,r,d(k) denotes the splitting or turning rate for link

r at node n with destination d. The total flow on link r can

be summed

qr(k) =
∑

d∈D

qr,d(k).

In particular, we chose to adopt the macroscopic

METANET traffic flow model [15], [16]; the reader is

referred to the literature for details. In order to be able to

accurately model the traffic behavior, the road links r ∈ R
that are part of the possible routes of one or more OD-pairs

are further divided into Nr segments of equal length Lr,

typically between 300-1000 m. Further, the number of lanes

in link r is denoted by λr. The state of the traffic network

is now described by the following macroscopic variables,

where the evolution is described by the respective update

equations:

• average traffic density ρr,i(k) [veh/km/lane] in segment

i of link r at time t = kTs;

• mean speed vr,i(k) [km/h] of vehicles in segment i of

link r at time t = kTs;

• traffic flow qr,i(k) [veh/h] leaving segment i of link r
in time interval [kTs, (k + 1)Ts].

Note that for the static game, it suffices to make use of

a static prediction model that is based on the fundamental

diagram of traffic flow, which represents the equilibrium

relation between speed and density [17].

2) Optimal Distribution of Traffic Flow: Using the pre-

diction model, given a driver demand pattern dhiin (k) ∀ i ∈
{1, . . . , NOD}, h ∈ Hi in veh/h, a system-optimal – with

respect to the throughput – distribution of traffic flow dij(k)
over the road network can be computed, as well as the

associated mean travel times τ ij(k) for the routes j ∈
{1, . . . , ni}.

This can be done by solving a dynamic version of the

minimum cost flow problem, where the following constraints

are needed to correctly represent the flows of the traffic

network:
∑

h∈H(o,d)

d
h,(o,d)
in (k) = qrout(o),d(k) ∀(o, d)∈ O×D (3)

∑

d∈D

∑

r∈I(n)

qr,d(k) =
∑

d∈D

∑

r∈O(n)

qr,d(k) ∀n ∈ N (4)

∑

d∈D

qr,d(k) ≤ qcap,r ∀r ∈ R (5)

qr,d(k) ≥ 0 ∀r ∈ R, ∀d ∈ D, (6)

where rout(o), d denotes the single outgoing road segment

to node o; in case of multiple outgoing roads, a virtual road

can be created with zero length and travel time.

Finally, in order to optimize the throughput the following

cost function is adopted at time step k:

min
qr,d

Np
∑

j=1

∑

d∈D

∑

r∈R

qr,d(k + j)tr(k + j)t−1
tot, (7)

for j = 1, . . . , Np with Np the prediction horizon that is

incorporated to take into account not only the present but

also the future traffic conditions. The desired distribution

of traffic flow dij(k) over the road network now follows

straightforwardly from the optimal flows qr,d(k).
Note that the travel time for a particular road depends

on the current density and flow, i.e., we assume the av-

erage travel time tr(k) of road r ∈ R to be Lr/ṽr(k),
with ṽr(k) the desired speed according to the METANET

model or according to the fundamental diagram expression

ṽr(k) = vfree,r exp[−
1
ar
(ρr(k)
ρcr,r

)ar ] with vfree,r the free-flow

speed, ρcr,r the critical density, and ar a model parameter.

Alternatively, one could assume the average speed to be

(I) the maximum or free-flow speed that applies during



uncongested traffic conditions, or to be (II) the mean speed

that is currently measured, which leads to a simplified linear

programming problem (3)-(7) in both cases.

3) Optimal Distribution of Monetary Incentives: Given

the desired traffic flow distribution dhij at the control time

step kc, the leader can associate with each feasible travel time

a fee or incentive θhij(kc) such that the optimal response of

the follower (hij) ∈ F coincides with the desired travel time

of the respective i-th OD-pair and j-th route of the follower,

τhijd (kc). The optimal leader functions are those that cause

the followers to choose the associated desired travel time

τhijd (kc) that has the same value for the followers of each

class Hi.

In Fig. 3, several level curves are plotted of the travel cost

function (2) for αF = 0.5, i.e., each point on the straight lines

results in a same objective function value for the follower.

The optimal response of the follower to one of the two

leader functions γ1
L(τ

1), γ2
L(τ

2) is respectively τ1d , τ
2
d with

the associated monetary incentives θ1d, θ
2
d.

In order to achieve the desired distribution of travel times

τ ij(kc) associated with the distribution of flow dij(kc) over

the ni alternative routes for OD-pair i ∈ {1, . . . , NOD},

multiple, i.e., NF leader functions are necessary that reach

the associated monetary incentives for each of the Hi classes

of drivers, i.e., θhij(kc)∀(hij) ∈ F . Hence, it may occur that

due to the different leader functions γhij
L (kc) posed to drivers

with a different value of time, a different monetary value is

set on the same travel time.

Remark 2: As it could be deemed unfair to associate

different monetary incentives with the same travel time value,

one can prevent this by adopting a single leader function that

leads to the same optimal response for all followers with

the same OD-pair and associated route. Due to the similar

– affine – shapes of the level curves of (2) for all classes

h ∈ H, it is indeed possible to adopt a function γij
L (kc)

that leads to the same follower behavior. Moreover, if the

classes of drivers with a homogeneous value of traffic time

are categorized by the type of vehicle (personal car, bus,

motorcycle), such a distinction in monetary incentive may

be accepted.
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Fig. 3: Optimal leader functions: An example.

Finally, in this context it should be noted that the leader

may accomplish any desired amount θ(kc) ∈ ΩL by con-

structing the leader function γL(kc) in such a way that

the optimal follower response τd(kc) is associated with the

desired toll θd(kc). Thus, the vertical axis in Fig. 3 can be

shifted for both leader functions separately such that for both

τ1d and τ2d , e.g., θ1d = θ2d = 0 is the associated toll.

4) Taking Care of Deviations: The proposed approach to

dynamic routing relies on several models, i.e., the traffic

model, an approximation of the drivers’ monetary value of

travel time, and the assumption that the drivers respond in

a fully rational manner to the proposed incentive function.

As a result, several inaccuracies and possible unpredicted

behavior should be taken into account, e.g.:

• Inaccurate estimate of the monetary value of travel time.

In order to make drivers conscious of their perceived

value of time, they may be asked to indicate this value

through the on-board computers.

• Deviation of drivers from the optimal response (θ, τ).
In case of a leader function that is symmetric around

the desired pair (θ, τ), we can assume the deviations

from the rational follower response to γL to be random

and independent and identically distributed, spreading

symmetrically around the optimum. Further, an adapted

speed measure can be taken to speed up or slow down

the follower group. Next to a suboptimal response of

the drivers to the leader function, one can use such

speed measure or another traffic control measure to take

care of a misestimation in the required travel time for

a certain route.

• Deviation of drivers from the imposed route. In order

to induce the drivers to follow the particular route as is

instructed by the leader, a posterior monetary penalty

term can be implemented:

θhijpen := αpen|τ
hij(kc)− τhijdev|+ cpen,

with τhijdev, (hij) ∈ F the travel time resulting from the

deviated route. Here, αpen ∈ R+ is a weighting factor

and cpen ∈ R+ represents a constant monetary penalty

that applies in case of route deviation. Note that this

involves the implementation of the game, not the game

set-up itself.

V. CASE STUDY

A. Set-up

In order to illustrate the performance of the reverse Stack-

elberg approach as compared to route guidance methods

based on travel time information or road tolls, we adopt the

simple network of two non-overlapping routes and a single

OD-pair as depicted in Fig. 1. Recall that a three-lane 3 km

freeway splits into a two-lane freeway of 10 km and a one-

lane freeway of 6 km. These routes join again in a three-way

freeway of 2 km length. For the sake of simplicity, we only

consider the two alternative freeways, both with a capacity

qcrit = 4000 veh/h.
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(b) DRIP

Fig. 4: A comparison of traffic assignment.

We simulated the traffic behavior for 100 min for a demand

scenario with three levels of demand as depicted in Fig. 4,

i.e., where the highest demand results in congestion on the

shortest route. Here we adopted the METANET model with

the parameter values taken from [16]. Finally, the distribution

of demand when using the DRIP approach is determined by

the logit model [18], in which the difference in the predicted

total travel time between the routes influences the split rate.

B. Results

The distribution of demand over the two routes in receding

horizon is shown in Fig. 4. While in the reverse Stackelberg

case the traffic is allocated to the shortest route as long as

the flow remains below the capacity, in the routing based on

DRIP, a part of the flow splits to the longer route, which

influences the average travel time. The methods lead to a

total throughput of 1.2466 ·105 versus 6.4077 ·104 veh/h for

the reverse Stackelberg and the DRIP approach respectively.

Basically, this simple case-study shows that route guidance

based on a difference in travel time does not yield the system-

optimal throughput, which can be achieved by using the

suggested reverse Stackelberg approach. This benefit should

become more clear when a larger network is considered with

several overlapping routes, where the optimal throughput

may not be realized by influencing the split-rates at the

individual nodes.

VI. DISCUSSION AND FUTURE WORK

From the traffic guidance point of view, methods like dy-

namic route guidance information panels are not able to make

optimal use of the available routes in traffic networks. While

monetary incentives are recognized as a tool to accomplish

traffic states that are closer to the system optimum with

respect to total travel time [9], [10], the current methods of

time-variant and flow-dependent road tolls do not in general

achieve the optimal distribution either. However, with the

advancement of intelligent vehicles equipped with on-board

computers, a reverse Stackelberg approach can be adopted

to make optimal use of the traffic network while satisfying

the users’ individual preferences. Here, the road authority

can communicate monetary incentives associated with certain

travel times to the driver, who – upon the choice of a travel

time and monetary value – is presented with a certain route

to the desired destination. The proposed approach can be

extended e.g., by considering also the separate lanes. Finally,

a more elaborate case study will be considered, including an

analysis of computational efficiency and a comparison of the

method not only to the information-based DRIP approach but

also to methods in which time-varying road tolls are adopted.
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