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1 Introduction

In [3, 4] we have introduced a model that can be used to solve micro-ferry scheduling problems.
It is a variant of the travelling salesman problem with a focus on scheduling pick-ups and
deliveries of passengers for micro-ferries in a harbour. This problem distinguishes itself from
other variants by the use of variable speeds of the vehicles, and the explicit consideration of
the energy consumption of the ferries. Based on a mixed-integer programming description of
the travelling salesman problem [1, 6], the micro-ferry scheduling problem is formulated using
additional variables and constraints. The result is a non-linear mixed-integer optimisation
problem that can be approximated by a mixed-integer linear program. In this paper a method
is introduced to solve this optimisation problem based on constraint optimisation, and its
improvement in computation time compared to the method of [3, 4] is shown by simulations.

2 Micro-ferry scheduling problems

At first a brief description of the micro-ferry scheduling problem is provided; more details
on the modelling of this problem can be found in [3, 4]. With micro-ferries we denote small,
autonomous water-taxis that can travel at different speeds within a certain range.

Throughout the paper the index j is used to denote the transportation request of interest,
and the index i to denote its predecessor. A network with M micro-ferries and N unscheduled
transportation requests is considered, and combining the requests currently handled by the
micro-ferries with the new requests results in R = M + N requests in total. Furthermore,
without loss of generality, we use the sets

M = {1, . . . ,M}, N = {M + 1, . . . ,M +N}, R = {1, . . . ,M +N}, (1)

to denote the currently handled request, the new requests, and all requests respectively.

2.1 Objectives of the problem

The problem of scheduling a group of micro-ferries takes into account a trade-off between

• minimising the energy consumption,

• minimising the difference between scheduled and desired pick-up times,

• minimising the empty-travel distance of the micro-ferries,

• minimising the travel time for passengers.



The objectives can be achieved by minimising the objective function

J = αecJec + αtwJtw + αetJet + αttJtt, (2)

where αec, αtw, αet, αtt ≥ 0 are weights1. The energy consumption is given by

Jec =
∑

i∈R

∑

j∈R

(p2uj + p1 + p0
1

uj
)Cijxij =

∑

j∈R

(p2uj + p1 + p0wj)
∑

i∈R

Cijxij , (3)

where p0, p1, p2 ≥ 0 are parameters of the function

P (uj) = p2u
2
j + p1uj + p0, (4)

describing the instantaneous power (in [W]) of the micro-ferries as a function of the speed uj .
The constant Cij reflects the distance the micro-ferry has to travel if it would perform request
j directly after request i; the binary variable xij shows whether (xij = 1) or not (xij = 0)
transportation request j will be handled directly after request i. The variable wj = u-1j is the
reciprocal of the speed, referred to as the pace of the micro-ferry [5].

For each request j there is a desired time-window [ta,j , tb,j ] for the pick-up time. The
variable sj ≥ 0 gives the amount of time the pick-up time is scheduled outside the time-
window (the misfit). Therefore, the time-window misfit becomes

Jtw =
∑

j∈R

sj . (5)

The empty-travel distance (i.e. the distance without passengers aboard) gives undesired costs
for the operator, and it can be obtained by

Jet =
∑

i∈R

∑

j∈R

cijxij , (6)

where cij equals the distance from the delivery location of request i to the pick-up location
of request j, referred to as the relocation distance. The travel time can be considered as
a measure for the quality of service towards the customers; lower travel times mean faster
arrivals. The total travel time is given by

Jtt =
∑

j∈R

cjj

uj
=

∑

j∈R

cjjwj , (7)

with cjj the distance from the pick-up location to the delivery location of request j, referred
to as the transportation distance. The constant Cij in (3) equals the sum of cij and cjj .

2.2 Constraints on the optimisation variables

Besides the optimisation variables xij , uj , wj , and sj introduced in the previous section, we
also use the following variables to describe the micro-ferry scheduling problem:

• ej : energy level of the micro-ferry after completion of request j,

• tj : pick-up time for the passengers of request j,

• kj : index number of the micro-ferry that handles request j,

• yj : indicator of whether (yj = 1) or not (yj = 0) to charge at the end of request j,

• τj : charging time associated with request j,

• ǫj : energy consumed during request j.
1For the objectives that are to be taken into account, the corresponding weight should be strictly positive.

If some objectives are not important, e.g. the empty travel distance or the total travel time, the associated

weights can be set to zero.



2.2.1 Constraints for the exact problem description

Using the variables defined above, the micro-ferry scheduling problem can be stated as [3, 4]

minimise αecJec + αtwJtw + αetJet + αttJtt (8a)

subject to
∑

i∈R
xij = 1;

∑

i∈R
xji = 1 ∀ j∈R (8b)

ti − tj + ciiwi + cijwj + τi + tchyi + Txij ≤ T− tde ∀ i∈R, j∈N (8c)

ta,j − sj ≤ tj ≤ tb,j + sj ∀ j∈R (8d)

E(xij−1) ≤ ei − ej + rchτi − ǫj ≤ E(1−xij) ∀ i∈R, j∈N (8e)

E(xij−1) ≤ ǫj − Cij (p2uj+p1+p0wj) ≤ E(1−xij) ∀ i, j∈R (8f)

εyj ≤ rchτj ≤ Eyj ∀ j∈R (8g)

ej + rchτj ≤ E ∀ j∈R (8h)

ki − kj + (M−1)(xij+xji) ≤ M−1 ∀ i, j∈R (8i)

tj = to,j ; ej = eo,j ; kj = ko,j ∀ j∈M (8j)

ujwj = 1 ∀ j∈R (8k)

xij , yj ∈ {0, 1} ∀ i, j∈R (8l)

where E is the upper bound on the energy levels ej , and T should be chosen larger than the
latest expected pick-up time (conform the big-M method [7]). The constants rch, tch, and tde
represent the charging rate, the fixed charging time, and the disembarking plus embarking
time respectively. The initial conditions for the pick-up times, the energy levels, and the
index numbers of the micro-ferries are represented by to,j , eo,j , and ko,j respectively.

Equalities (8b) are the assignment constraints ensuring that every request is handled
once and only once, (8c) ensures consistency in the pick-up times, and (8d) assigns val-
ues to the slack variables sj representing the misfit to the desired time-window [ta,j , tb,j ].
Inequalities (8e) set the energy levels after delivery for request j equal to the energy level
after delivery for request i, plus the charged energy during request i, minus the energy con-
sumption during request j, when xij = 1. By using (8f) the energy consumption variables ǫj
are enforced to satisfy

ǫj = (p2uj + p1 + p2wj)
∑

i∈R

Cijxij ∀ j∈R, (9)

by providing an upper bound and lower bound that both equal the energy consumed when
request i precedes request j, since then xij = 1. This method to enforce equality constraints
such as (9) with multiplications between continuous variables (uj and wj) and binary variables
(xij) is based on the methods described in [2]. Inequalities (8g), with ε > 0 the minimum
amount of energy to charge, ensure the relationship yj = 0 ⇔ τj = 0, and (8h) prohibits
the micro-ferries from over-charging. Due to (8i) each request is assigned a unique index
number, and the initial conditions are set by (8j). Equality constraint (8k) forces wj to be
the reciprocal of uj .

For the formulation above to hold the assumption is made that the maximum energy a
single transportation request can cost will be smaller than the maximum energy a micro-ferry
can contain. More specifically, for the constraints (8f) we assume that

Cij (p2uj + p1 + p0wj) ≤ max
i,j∈R

Cij ·max{p2u+ p1 + p0u
-1; p2u+ p1 + p0u

-1} ≤ E, (10)

where it is noted that the function p2u+ p1 + p0u
-1 is convex for p0, p1, p2 > 0, and hence it

reaches its maximum value at one of the bounds u or u. Solving the optimisation problem (8)
results in feasible schedules with respect to the energy levels. If initially the energy level of
a micro-ferry is not sufficient to execute a request, it is either not scheduled to handle the
request, or it is scheduled to charge before handling the request.



2.3 Speed approximation

Notice that (8k) is a non-linear constraint, as it contains the multiplication of two optimi-
sation variables. The optimisation problem can be transformed into a mixed-integer linear
programming (MILP) problem by approximating the speed uj > 0 based on the value of
wj > 0, i.e., we want to approximate the convex function

uj = w-1j . (11)

This function can be approximated using multiple affine functions, where an arbitrary preci-
sion can be obtained by increasing the number of affine functions.

2.3.1 Piece-wise affine approximation

The first method to approximate (11) is by using a piece-wise affine (PWA) function, as is
used in [3, 4]. Figure 1 shows an example where uj ∈ [1, 5] (wj ∈ [0.2, 1]) with P = 3 segments.
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Figure 1: Graphical example of approximating the speed function (11) by a PWA function

Using ω0 and ωP to denote the lower and upper bound on wj respectively, and constants
scalars ωp satisfying ωp < ωp+1 for all p ∈ {1, . . . , P−1} for an approximation with P segments,
the approximation ûj of the speed uj can be written as

ûj =











a1wj + b1, ω0 ≤ wj ≤ ω1

...
...

aPwj + bP , ωP−1 ≤ wj ≤ ωP

(12)

The constants ω1, . . . , ωP−1, a1, . . . , aP , and b1, . . . , bP can be found by minimising the error
uj − ûj in a least-squares sense. The PWA function (12) can be transformed into a single
function by introducing R · P binary variables zjp satisfying

[zjp = 1] ⇔ [wj ≤ ωp]. (13)

The relation (13) can be enforced by the linear constraints

wj − ωp≤W(1− zjp) ∀j ∈ {1, . . . , R} , p ∈ {1, . . . , P} , (14a)

ωp − wj ≤Wzjp ∀j ∈ {1, . . . , R} , p ∈ {1, . . . , P} , (14b)



with W := ωP − ω0. The PWA function (12) can then be written as

ûj = (A1zj1 + A2zj2 + · · ·+ AP zjP )wj + (B1zj1 + B2zj2 + · · ·+ BP zjP ), (15)

= (A1wj + B1)zj1 + · · ·+ (APwj + BP )zjP =
P
∑

p=1

(Apwj + Bp)zjp,

where A1, . . . ,AP and B1, . . . ,BP are constants given as

Ap = ap − ap+1 ∀p ∈ {1, . . . , P − 1}, AP = aP , (16a)

Bp = bp − bp+1 ∀p ∈ {1, . . . , P − 1}, BP = bP . (16b)

2.3.2 Constraint-based approximation

An alternative to the piece-wise affine approximation discussed above is to minimise the values
of the optimisation variables uj , constrained by equations that depend on the value of wj .
Figure 2 gives an example of this method, based on the same values as before.
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Figure 2: Graphical example of approximating the speed by constraint minimisation

To obtain the approximate value of uj , we integrate the optimisation problem

minimise ûj (17a)

subject to apwj + bp ≤ ûj ∀ p ∈ {1, . . . , P} (17b)

u ≤ ûj ≤ u (17c)

with the original optimisation problem, where the parameters ap and bp are the same as
defined in (12), and u and u denote the minimum and maximum allowed speed respectively.

Note: Since the variables ûj are already minimised due to the energy consumption term (3)
—with the approximate speed ûj substituted for the real speed uj— there is no need to add
an extra objective function for minimising the variables of ûj as stated in (17a). Therefore,
the objective functions for both the PWA-based approximation method and the constraint-
based approximation method are the same, as will be the values for ûj since their minimum
values —given a value of wj— will coincide with the values from (12). For an optimal value
of ûj , the active lower bound for wj in Figure 2 corresponds to the affine function that is used
when ωp−1 ≤ wj ≤ ωp in Figure 1.



3 Simulation Results

The method based on speed approximation using PWA functions as described in Section 2.3.1
adds binary variables to the optimisation problem, which in general increases the computation
time. Furthermore, it requires the use of several additional constraints (see [4] for more details)
that are based on the big-M method, notorious for its poor performance in combination with
branch-and-bound methods as used in MILP solvers.

The constraint-based approximation method described in Section 2.3.2 does not introduce
additional binary variables, and the constraints in (17) are expected to produce strong cuts
(i.e. cuts that are efficient in branch-and-bound algorithms). Therefore, the constraint-based
method is expected to solve problems faster than the PWA-based method.

To compare the computation time of both methods, the CPU time2 it takes to solve both
MILPs to optimality is determined for an example problem with 4 locations and 3 micro-
ferries. The used requests with their associated pick-up and delivery location, the desired
time-window, and the transportation distance, are given in Table 1.

Table 1: Requests that need to be scheduled
request 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

pick-up s1 s4 s4 s1 s4 s2 s2 s4 s2 s1 s3 s1 s2 s3 s4 s2 s1 s4

delivery s1 s2 s3 s2 s3 s1 s4 s2 s1 s3 s4 s3 s3 s4 s2 s1 s4 s2

ta,j -120 -60 0 0 180 240 360 720 720 660 780 960 1020 1080 1080 1440 1440 1500

tb,j -60 0 60 60 240 300 420 780 780 720 840 1020 1080 1140 1140 1500 1500 1560

transp. dist. 0 450 350 400 350 400 450 450 400 500 350 500 250 350 450 400 300 450

To determine the influence of the average number of requests per micro-ferry, and the
number of sections P used to approximate (11), both parameters are varied. Figure 3 shows
the resulting CPU times in seconds on a logarithmic scale; in the appendix more details on the
obtained results are given. Simulations are stopped when reaching 1 hour of real computation
time, visible in the figure as the black bars representing 10.000 [s].
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Figure 3: CPU times for the constraint-based method (thick, blue bars) and PWA-based method
(thin, red bars) when using different numbers of requests N and sections P

The results show that using the constraint-based method results in improved computation
times compared to the PWA-based method, up to several orders of magnitude. The former
method never reaches the 1 hour time limit, whereas the latter method reaches it for larger
numbers of requests and larger numbers of sections. The influence of adding more sections
when using the constraint-based method is small; adding more requests results in increased
CPU times for both methods.

2A desktop computer is used with an Intel Core2 Quad Q8400 processor and 4GB of RAM, running 64-bit

versions of SUSE Linux Enterprise Desktop 11, MATLAB R2012a, and TOMLAB 7.8 using CPLEX 12.2.



4 Conclusions

A method for scheduling transportation requests, while taking into account the energy con-
sumption of micro-ferries has been presented. By using the speed of a micro-ferry as an
optimisation variable, the scheduler has the flexibility to minimise energy consumption while
also serving the passengers on time. The resulting optimisation problem becomes non-linear,
but two methods to approximate the problem (with arbitrary precision) by a mixed-integer
linear program are provided.

The piece-wise affine approximation method introduces additional binary variables, result-
ing in a problem that is computationally expensive. The constrained-based approximation
method does not introduce additional binary variables, while providing the same solution.
Using the latter method, speed improvements of several orders of magnitude have been ob-
tained. The speed approximation can be improved by using more segments to model it,
without notable increases of computation times.

Appendix

Table 2 contains the values of the simulation results for the example discussed in Section 3.
The results are ordered by the number of new requests N and the number of segments P of
the speed approximation. The table contains several measures:

• Jec: total energy consumption (3) in [W · s],

• Jet: total empty travel distance (6) in [m],

• Jtt: total travel time (7) in [s],

• Jtw: total time-window misfit (5) in [s],

• Tr: real simulation time in [s],

• Tc: CPU simulation time in [s],

• δ: binary variable indicating whether (δ = 1) or not (δ = 0) optimality is reached.

For the measures above the approximation method that is used is indicated by a superscript,
using c for the constraint-based approach and p for the PWA-based approach. The differences
between the two approaches while solving the same optimisation problem are indicated by
the following error terms:

• x̃: difference in the schedule given by x̃ =
∑

i∈R

∑

j∈R |xcij − x
p
ij |,

• ũ: difference in the speeds given by ũ =
∑

j∈R |ucj − u
p
j |,

• s̃: difference in time-window mismatch given by s̃ =
∑

j∈R |scj − s
p
j |,

• t̃: difference in pick-up times given by t̃ =
∑

j∈R |tcj − t
p
j |.

The results show that similar results are obtained for both the PWA-based approach and
the constraint-based approach; the cost functions are all the same whenever both methods
reach the optimum (i.e. when δc = δp = 1), indicating that both methods reached a solution
with the same, minimal value for the objective function. However, the optimum is not always
unique, as can be seen by the non-zero error terms under x̃ and t̃.

Non-uniqueness of the variables xij for the optimal solution means that either the order of
handling the requests can be changed or that some of the requests can be handled by different
micro-ferries, without influencing the values of the objective functions. Non-uniqueness of the
pick-up times is to be expected, as the values of the pick-up times do not influence the values
of the objective functions, as long as the pick-up time is within its desired time-window. Since
there is no preference for the pick-up time within the time-window, it is to be expected that
the pick-up times can differ for each simulation run, even when using the same approach.



Table 2: Simulation results for the example of Section 3
N P J

c
ec J

c
et J

c
tt J

c
tw T

c
r T

c
c δ

c
J
p
ec J

p
et J

p
tt J

p
tw T

p
r T

p
c δ

p
x̃ ũ s̃ t̃

6 2 309 1100 951 0 0 0 1 309 1100 951 0 0 1 1 8 0 0 120

6 3 311 1100 1039 0 0 1 1 311 1100 1039 0 1 3 1 0 0 0 120

6 4 311 1100 951 0 0 0 1 311 1100 951 0 2 4 1 8 0 0 120

6 5 311 1100 1011 0 0 0 1 311 1100 1011 0 3 7 1 0 0 0 10

6 6 311 1100 1004 0 0 1 1 311 1100 1004 0 3 8 1 0 0 0 120

6 7 311 1100 982 0 0 0 1 311 1100 982 0 3 10 1 0 0 0 120

6 8 312 1100 1019 0 0 0 1 312 1100 1019 0 5 15 1 8 0 0 126

6 9 312 1100 990 0 0 1 1 312 1100 990 0 6 17 1 0 0 0 60

6 10 312 1100 968 0 0 1 1 312 1100 968 0 9 30 1 0 0 0 60

9 2 394 950 1334 0 2 4 1 394 950 1334 0 2 5 1 0 0 0 185

9 3 397 950 1466 0 3 5 1 397 950 1466 0 9 25 1 0 0 0 120

9 4 397 950 1334 0 3 5 1 397 950 1334 0 14 45 1 0 0 0 272

9 5 397 950 1425 0 3 6 1 397 950 1425 0 34 122 1 8 0 0 143

9 6 397 950 1414 0 3 6 1 397 950 1414 0 83 308 1 0 0 0 77

9 7 397 950 1381 0 3 7 1 397 950 1380 0 81 298 1 0 0 0 104

9 8 397 950 1436 0 3 5 1 397 950 1436 0 247 898 1 0 0 0 185

9 9 397 950 1393 0 3 6 1 397 950 1407 0 64 228 1 0 0 0 157

9 10 397 950 1360 0 3 6 1 397 950 1360 0 343 1249 1 0 0 0 185

12 2 468 950 1642 0 8 17 1 468 950 1642 0 9 24 1 8 0 0 33

12 3 471 950 1815 0 7 15 1 471 950 1815 0 93 338 1 0 0 0 141

12 4 471 950 1642 0 5 10 1 471 950 1642 0 653 2438 1 8 0 0 231

12 5 471 950 1761 0 6 13 1 471 950 1761 0 3603 13446 0 0 0 0 190

12 6 471 950 1746 0 6 12 1 471 950 1746 0 3856 8086 0 0 0 0 183

12 7 471 950 1703 0 7 13 1 471 950 1703 0 3604 13348 0 8 0 0 184

12 8 472 950 1775 0 6 11 1 472 950 1775 0 3604 13820 0 8 0 0 125

12 9 471 950 1720 0 5 11 1 471 950 1720 0 3604 13429 0 8 0 0 210

12 10 472 950 1675 0 6 12 1 472 950 1675 0 3603 13894 0 0 0 0 73

15 2 572 1250 1965 0 25 69 1 572 1250 1965 0 120 444 1 8 0 0 300

15 3 577 1250 2176 0 20 55 1 577 1250 2183 0 2727 10513 1 0 0 0 112

15 4 577 1250 1966 0 15 38 1 577 1250 1966 0 3603 13498 0 0 0 0 180

15 5 577 1250 2114 0 18 47 1 577 1250 2114 0 3647 12788 0 8 0 0 284

15 6 577 1250 2096 0 20 48 1 577 1250 2096 0 3602 13520 0 8 0 0 164

15 7 577 1250 2042 0 18 45 1 577 1250 2041 0 3602 13492 0 8 0 0 224

15 8 578 1250 2130 0 16 41 1 578 1250 2132 0 3602 13868 0 0 0 0 186

15 9 578 1250 2063 0 26 75 1 578 1250 2063 0 3719 11590 0 8 0 0 146

15 10 578 1250 2007 0 17 41 1 578 1250 2007 0 3713 12041 0 0 0 0 145

18 2 684 1450 2412 0 48 137 1 684 1450 2412 0 3602 13917 0 0 0 0 279

18 3 689 1450 2695 0 117 398 1 689 1450 2695 0 3602 13558 0 0 0 0 277

18 4 689 1450 2413 0 53 160 1 689 1450 2413 0 3602 13606 0 0 0 0 240

18 5 689 1450 2606 0 35 99 1 689 1450 2606 0 3602 13516 0 8 0 0 340

18 6 689 1450 2582 0 90 294 1 689 1450 2582 0 3661 12170 0 8 0 0 124

18 7 690 1450 2512 0 41 124 1 690 1450 2511 0 3601 13281 0 0 0 0 307

18 8 690 1450 2629 0 47 142 1 690 1450 2629 0 3801 10749 0 0 0 0 240

18 9 690 1450 2539 0 51 152 1 690 1450 2539 0 3601 13282 0 0 0 0 374

18 10 690 1450 2466 0 51 160 1 690 1450 2467 0 3601 13469 0 0 0 0 319
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