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Abstract: We provide an overview on the application of distributed and hierarchical model
predictive control (MPC) algorithms for the power reference tracking problem of the HD-MPC
Hydro Power Valley (HPV) system (Savorgnan and Diehl, 2011). Serving as a case study
for distributed and hierarchical MPC, the HPV benchmark has various challenging features,
including nonlinear, non-smooth, and coupled cost function and nonlinear coupled subsystem
dynamics. We propose different approaches to address these challenges and summarize our
recently developed hierarchical and distributed MPC frameworks that could be applied to the
HPV control problem. A comparison of distributed MPC based on a state-of-the-art distributed
optimization method (Giselsson et al., 2012) with centralized and decentralized MPC is provided
via numerical simulations. It is shown that by using a dynamic division of total power reference
to deal with the coupling in the cost function and a specific formulation of the dual optimization
problem, distributed MPC achieves almost the same tracking performance as centralized MPC,
with the advantage of being implementable in a distributed setting.

Keywords: Distributed Model Predictive Control, Hydro Power Valley Control, Power
Reference Tracking MPC

1. INTRODUCTION

Hierarchical and distributed Model Predictive Control
(MPC) has been an active research area, with the aim to
design suitable methods for controlling large-scale indus-
trial processes and infrastructure systems involving inter-
acting subsystems and critical operational constraints that
must be enforced (Scattolini, 2009). The control problems
in such systems are often approached using MPC (Ma-
ciejowski, 2002; Camacho and Bordons, 1999; Rawlings
and Mayne, 2009; Qin and Badgwell, 2003), due to its
ability to handle important process constraints explicitly.
MPC relies on solving finite-time optimal control problems
repeatedly online, which may become prohibitive for large-
scale systems due to the computational or communica-
tion limitations, thus hierarchical and distributed MPC
methods have been investigated to deal with these issues.
Recent developments in the field can be found in Scattolini
(2009); Alessio et al. (2011); Alvarado et al. (2011); Doan
et al. (2011a); Maestre et al. (2011); Scheu and Marquardt
(2011); Stewart et al. (2011) and the references therein.

In this paper we consider the HD-MPC Hydro Power
Valley (HPV) system (Savorgnan and Diehl, 2011) and
investigate the applicability of hierarchical and distributed
MPC approaches, while providing an overview of available
alternative control strategies. An HPV may contain several
rivers and lakes, spanning a wide geographical area and
exhibiting complex dynamics. There are several hydro-
power plants placed along the rivers and the control ob-
jective is to coordinate the whole plant to track a total
power-production reference by regulating the water flows

in the system. Decentralized MPC methods for the con-
trol of open water systems, especially irrigation canals,
have been studied by Fawal et al. (1998); Georges (1994);
Sawadogo et al. (1998); Gomez et al. (2002); Sahin and
Morari (2010). Distributed MPC approaches based on
coordination and cooperation for water delivery canals
were presented by Georges (1994); Negenborn et al. (2009);
Igreja et al. (2011); Anand et al. (2011). The typical
control objective in these studies is to regulate water levels
and to deliver the required amount of water to the right
place at some time in the future, i.e., the cost function can
be considered rather standard with penalties on states and
inputs. In contrast, for the hydro power control problem
considered in this paper, there are output penalty terms
in the cost function, which represent the objective of
manipulating power production. Recent literature taking
into account this different type of cost function includes
centralized nonlinear MPC with a parallel version of the
multiple-shooting method using continuous-time nonlin-
ear dynamics (Savorgnan et al., 2011), and a software
framework that formulates a discrete-time linear MPC
controller with the possibility to integrate a nonlinear
prediction model and to use commercial solvers to solve
the optimization problem (Petrone, 2010).

In this paper, we summarize our recently proposed hi-
erarchical and distributed MPC frameworks that could
be applied to the HPV control problem. We also present
techniques to deal with the couplings in the dynamics (i.e.,
subsystems that dynamically interact with each other),
and the coupling in the cost function due to the require-
ment that the whole system must track a total power refer-



ence. Our distributed MPC design approach is enabled by
a state-of-the-art distributed optimization algorithm that
has recently been developed together with our co-authors
in Giselsson et al. (2012). This optimization algorithm
is designed for a class of strongly convex problems with
coupled constraints and mixed 1-norm and 2-norm terms
in the cost function, which perfectly suits the power ref-
erence tracking objective in HPV control. The underlying
optimization algorithm has a fast convergence rate thanks
to the use of an accelerated proximal gradient algorithm
with the optimal step size. We will show the advantage of
the proposed distributed MPC approach by simulations in
an HPV case study.

The remaining parts of the paper are organized as follows.
Section 2 describes the Hydro Power Valley system and the
control problem. The modeling of the HPV system is dis-
cussed in Section 3. In Section 4, the MPC control problem
is formulated, then we summarize the control architectures
for applying MPC in the HPV control problem, with the
focus on distributed MPC and the methods to deal with
the couplings in the dynamics and in the cost function.
The simulation results of applying distributed MPC in the
HPV case study are presented in Section 5, in comparison
with centralized and decentralized MPC. Through various
aspects of the comparison including performance, compu-
tational efficiency, and communication requirements, the
advantages of the distributed MPC algorithm will be high-
lighted. Section 6 concludes the paper and outlines future
work.

2. HYDRO POWER VALLEY CONTROL PROBLEM

In this section, we provide a summary of the HD-MPC
Hydro Power Valley benchmark (Savorgnan and Diehl,
2011) and then discuss the main control challenges.

2.1 Hydro power valley system

We consider a hydro power plant composed of several
interconnected subsystems, as illustrated in Figure 1. The
plant is divided into 8 subsystems, of which subsystem S1

is composed of the lakes L1, L2, the duct U1 connecting
them, and the ducts C1, T1 that respectively connect L1

with the reaches R1, R2, where a reach is a river segment
between two dams. Subsystem S2 is composed of the lake
L3 and the ducts C2, T2 that connect L3 to the reaches
R4, R5, respectively. There are 6 other subsystems each
of which consists of a reach and the dam at the end of
the reach. These six reaches R1 to R6 are connected in
series, separated by the damsD1 toD5. The large lake that
follows the dam D6 is assumed to have a fixed water level,
which will absorb all the discharge. The outside water flows
enter the system at the upstream of the reach R1 and at
the middle of the reach R3.

There are structures placed in the ducts and at the dams
to control the flows. These are the turbines placed in the
ducts T1, T2 and at each dam for power production. In the
ducts C1, C2 there are composite structures that can either
function as pumps (for transporting water to the lakes) or
as turbines (when water is drained from the lakes).

The whole system has 10 manipulated variables, which are
composed by six dam flows (qD1, qD2, qD3, qD4, qD5, qD6),

Fig. 1. Overview of the HD-MPC hydro power valley
system (Savorgnan and Diehl, 2011)

two turbine flows (qT1, qT2), and two pump/turbine flows
(qC1, qC2).

The detailed setup of the HPV system is given in (Sa-
vorgnan and Diehl, 2011), with the continuous-time non-
linear model constructed by using the Saint Venant partial
differential equations and employing spatial discretization
for obtaining a system of ordinary differential equations.

2.2 Power reference tracking problem

The control problem is to track a power production profile
on a daily basis with the following cost function:
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subject to the nonlinear dynamics and the operational
constraints on water levels and flows, which are denoted by
the variables x and u, respectively. The weights Qi, Ri, i =
1, . . . , 8, γ, and the testing period T are the parameters of
the benchmark. The first term in the cost function repre-
sents the absolute value of the power tracking error and it
reflects the economical cost, with pr the power reference
and pi the power produced by subsystem i ∈ {1, . . . , 8}.
The quadratic terms in the cost function represent the
penalties on the state deviation from the steady state xss

and the energy used for manipulating the inputs.

Remark 1. There are several challenges posed by this con-
trol problem, of which the most critical ones are the rel-
atively large size and the non-smoothness of the problem,
which includes the absolute value term in the cost function
and the power produced by the composite structures in the
ducts C1 and C2. Moreover, the constraints on the control
inputs and outputs complicate the problem, preventing the
choice of most classical control methods, such as PID or
LQR approaches.

In order to enforce the constraints while optimizing the
cost function, we choose a model predictive control ap-
proach that is well-suited and efficient for control of
constrained multi-input multi-output systems (Qin and
Badgwell, 2003). In MPC, the controller solves an opti-
mization problem online, which can be a computationally



demanding task when the size of the problem is large.
Nowadays state-of-the-art solvers are capable of solving
convex problems with thousands of decision variables in
a matter of seconds. Following the modeling approach
described in Section 3, it turns out that in terms of
problem size alone, the HPV benchmark under study falls
in the class of problems that can be “managed” using
centralized solver routines. However, besides computa-
tional complexity, gathering all sensor measurements and
communicating actuation and coordination information in
such geographically widely spread large-scale systems can
be problematic. These limitations might favor a differ-
ent approach, where the computations (for local control
actions) are distributed over the subsystems, and only a
sparsely connected communication network is utilized to
share information among them. This approach presents a
need for an optimization algorithm that, while being fast,
is able to utilize the computational resources available at
every subsystem locally. As a consequence, although our
problem size alone would not necessitate a departure from
a centralized approach, we focus on designing distributed
MPC (DMPC) controllers for the hydro power valley.
With this we aim to illustrate the possibilities of our
approach for even larger-scale, sparsely connected systems
(with many more than 8 subsystems), where its benefits
could be even more pronounced in terms of flexible system
maintenance and reliability, problem size tractability, and
limited communication.

Before describing the various MPC approaches that will
be investigated, in the next section we will first discuss
the modeling of the HPV system for completeness, based
on content from Savorgnan and Diehl (2011).

3. MODELING OF THE HYDRO POWER VALLEY

3.1 Nonlinear modeling, discretization and linearization

The model of the reaches is based on the one-dimensional
Saint Venant partial differential equation, representing the
mass and momentum balance:
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with z the spatial variable, t the time, q the river flow,
s the cross-section surface of the river, h the water level
w.r.t. the river bed, If the friction slope, I0(z) the river
bed slope, and g the gravitational acceleration constant.

The partial differential equation (2) can be converted into
a system of ordinary differential equations by using spatial
discretization. To this aim, each reach is divided into 20
cells, yielding 20 additional states, which are the water
levels at the beginning of the cells. As a consequence, a
set of nonlinear dynamical equations are obtained, with a
total of 249 states (Savorgnan and Diehl, 2011).

A linear time-invariant model of the hydro power valley
is next obtained by linearizing the nonlinear model at a
steady operating condition, followed by discretization in
time. The use of the discrete-time linearized model will
simplify the analysis and enable specific MPC approaches.

Due to the coupling structure of the system, the discrete-
time linear model of each of the eight subsystems i =
1, . . . , 8 can be expressed in the following form:

xi(k + 1) = Aiixi(k) +

8
∑

j=1

Bijuj(k) (3)

yi(k) = Cixi(k)

in which the variable x and u respectively stand for the
deviation of the water levels and flows from the steady-
state values, the output y corresponds to the states of
the last cell of the reaches, and the subscripts i, j stand
for the subsystem index. Note that the subsystems are
coupled through the inputs only. Furthermore, there are
no couplings between subsystems (Bij = 0) that are not
connected together. Based on this dynamical coupling
structure, we define the neighborhood set Ni for each
subsystem i = 1, . . . , 8 that includes all other subsystems
which influence the dynamics of subsystem i, i.e.

Ni = {j|Bij 6= 0}. (4)

3.2 Treatment of non-smoothness

One of the difficulties in applying a linear MPC approach
to the hydro power valley is the non-smoothness of the
power functions associated with the ducts C1 and C2.
The non-smoothness is caused by the fact that the flow
through C1 and C2 can have two directions and the powers
generated or consumed do not have equal coefficients. For
example, the power produced at C1 can be expressed as

pC1
(t) = kC1

(qC1
(t))qC1

(t)∆hC1
(t), (5)

where ∆hC1
(t) it the duct head which depends on the

water level in lake L1 and reach R1 and

kC1
(qC1

(t)) =

{

ktC1
when qC1

(t) ≥ 0
kpC1

when qC1
(t) < 0

(6)

To deal with this issue, we use the double-flow technique,
which involves introducing two separate positive variables
to express the flow in C1:

• qC1p
(t): virtual flow such that C1 functions as a pump

• qC1t
(t): virtual flow such that C1 functions as a

turbine

Using these two flows, the power function associated with
C1 is replaced by two continuous functions that express
the power produced (qC1p

(t)) and consumed (qC1t
(t)):

pC1
(t) = pC1t

(t) + pC1p
(t),where (7)

pC1t
(t) = ktC1

qC1t
(t)∆hC1

(t) (8)

pC1p
(t) = kpC1

qC1p
(t)∆hC1

(t) (9)

This approach allows the optimization solver to deal with
smooth functions only. When the solution is obtained, we
combine the virtual flows to get the real flow through C1:

qC1
(t) = qC1t

(t)− qC1p
(t) (10)

The double-flow approach is also applied for C2. Con-
sequently, the new linear model has 12 inputs. Another
challenge of the linear model is the existence of a number
of unobservable and uncontrollable modes due to the de-
pendencies between states that represent adjacent water
levels along the reaches. Moreover, the linear model has a
large number of states, causing a significant computational



burden. Therefore, we use balanced truncation for model
order reduction (Gugercin and Antoulas, 2004) to remove
less significant modes (all stable), including all unobserv-
able and uncontrollable ones. This results in a model of
the form (3) with 32 states in total.

4. HIERARCHICAL AND DISTRIBUTED MODEL
PREDICTIVE CONTROLLER DESIGN

4.1 MPC optimization problem

The requirement of power-reference tracking while satis-
fying hard constraints suggests the use of MPC. In the
MPC framework, the control problem is formulated as an
optimization problem to be solved online at each sampling
time. The MPC optimization problem for the HPV has
the following form:

min
{xi

k
}i=1,...,8

k=0,...,N−1
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T
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s.t. A1xk = B1, k = 0, . . . , N − 1

A2xk ≤ B2, k = 0, . . . , N − 1 (11)

in which the cost function represents the control goal,
i.e., power-reference tracking and simultaneously keeping
water levels close to the steady-state values. The equality
and inequality constraints respectively represent the dis-
cretized dynamics of the subsystems and the limitation
of the physical values, including water levels and flows.
We use k as sampling time step index, i as subsystem
index, and N as the prediction horizon. The variable xi

k

combines the state xi and input ui of each subsystem in the

predicted step k, while xk = [x1
k

T
, . . . ,x8

k

T
]T is used for

the aggregate variable at one step. In addition,Qi, which is
properly formed from Qi and Ri with minor modification
to be a block-diagonal positive definite matrix, represents
the penalties for each subsystem’s states and inputs. The
term Pixk represents the power function belonging to each
subsystem i, which is a linearization of the bilinear power
function at the steady-state condition. The matrix Pi is
sparse, since all of its columns that correspond to the
variables of the subsystems outside Ni are zero.

Remark 2. Note that the constraint matrix A2 is block-
diagonal since there are only local constraints on states
and inputs in the HPV problem, but the constraint matrix
A1 is not block-diagonal, due to the couplings in the
dynamics. However, since the matrix A1 is sparse, we
can use dual decomposition techniques to deal with this
coupled constraint in a hierarchical or distributed way (see
also Section 4.2.4).

Another coupling is the objective of total power reference
tracking, which leads to the coupled cost function: it can-
not be separated as the sum of local costs. The coupling
in the cost function prevents the dual decomposition tech-
niques from being applied directly. In order to treat this
coupling, we need to modify the cost function in a specific
way that facilitates distributed and hierarchical solution
approaches. Obviously, the result with the modified cost
function will not be optimal for problem (11), but in some
ways we can reduce the sub-optimality. In the next section,
we will present different approaches to modify the cost
function that lead to distributed or hierarchical MPC.

4.2 MPC algorithms for HPV control problem

The structured sparse model of the Hydro Power Val-
ley prompts us to consider designing a hierarchical or
distributed MPC algorithm in which the main comput-
ing tasks are carried out by subsystems’ controllers. In
this section we will discuss different control architectures
for MPC, including centralized MPC, hierarchical MPC,
distributed MPC, decentralized MPC, together with the
outcomes of each approach.

Centralized MPC In the centralized MPC approach,
there is one centralized controller that gathers all the
necessary information, i.e., measurements of the sensors,
and then solves the optimization problem. Once the so-
lution is obtained, the new control input values are sent
to the actuators. The controller must use an appropriate
solver that is capable of solving the optimization problem.
Indeed, the optimization problem (11) can be recast as
a convex quadratic program (QP) by transforming the
absolute term of power-reference tracking in the overall
objective function of (11) into the following equivalent
formulation:

min
x

|Px− p| ⇔
min
x,v

1T v

s.t.− v ≤ Px− p ≤ v
(12)

As convex QPs can be solved efficiently by many state-of-
the-art solvers, giving exact optimal solution, it is prefer-
able to use centralized MPC when global communications
are possible. However, when global communications are
costly, limited, or not possible at all, centralized MPC may
not be a good candidate. In that case, one can consider the
other control architectures that are discussed next.

Decentralized MPC One extreme case that avoids the
need of communications, is decentralized MPC, where
there is no communication at all. The decentralized MPC
setting for the HPV is defined as follows:

• There are 8 local controllers, each of them is respon-
sible for the control of one subsystem. Each one can
only measure its own output and can only control its
own manipulator(s).

• The controllers use linearized local models with the
double-flow technique of Section 3.2 in order to apply
discrete-time linear MPC to the local problem.

• No information exchange is allowed. The steady-state
inputs and states are the only common information
of the local controllers, and this information is shared
before the operation starts. Any subsystem interac-
tion will be modeled by using the steady-state vari-
ables of the other models.

• The overall power reference tracking problem is thus
separated into several local tracking problems, with
the local power references proportional to the steady-
state power of the corresponding subsystem.

We proceed by defining the local MPC cost functions in
(11) as follows:

min
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where p
ref,i
k is the local power reference at step k. The

values of p
ref,i
k are computed such that the following



condition is maintained:

p
ref,i
k

prefk

=
pss,i

pss
, ∀i, ∀k (13)

in which pss,i and pss respectively represent the steady-
state powers of subsystem i and of the whole plant. Al-
though there are many alternative ways of computing local
power references, the idea behind our choice is to ensure
that the local control actions can remain unchanged if the
reference matches the steady-state value. The constraints
of the local MPC problems are also simplified from the
constraints of the original centralized problem (11), in the
sense that each subsystem considers the variables of the
other subsystems as the steady-state values.

Although the implementation is straightforward and the
problem size is small for every subsystem, using decen-
tralized MPC leads to a trade-off in terms of performance
and potential instability. Since the couplings in both the
constraints and the cost function are neglected, the decen-
tralized MPC in general achieves poor performance.

Hierarchical MPC When global communication chan-
nels exist but are limited, one can use hierarchical MPC.
The hierarchical architecture aims to distribute the tasks
to local controllers, while still keeping some information
exchange at the upper layer, e.g., via a global coordinator,
so that the couplings can be treated properly.

In order to address the coupled constraints in a hierarchical
framework, the optimization problem is often decomposed
using a dual decomposition method (Bertsekas, 1999).
However, dual decomposition methods often result in iter-
ative schemes that converge to the dual optimal solution
only asymptotically. This may also create difficulties in
obtaining a primal feasible solution before convergence.

In Doan et al. (2011b) we have proposed a hierarchical op-
timization approach for solving large-scale MPC problems
with coupling in dynamics and constraints that guarantees
primal feasible solutions even after only a finite number
of iterations. The primal feasible solution is achieved by
employing a combination of a primal averaging scheme, a
distributed Jacobi iterative method, and constraint tight-
ening. The core idea of the approach is to use constraint
tightening and then solve the tightened problem using
nested iterations: a projected gradient method for the
outer loop to solve the tightened dual problem, and making
use of the approximate solution of the primal problem
that is obtained by the Jacobi iteration in the inner loop.
The coordinator is needed to compute several common
parameters that have to be passed to local controllers.

The advantage of the hierarchical MPC framework in Doan
et al. (2011b) is that all the constraints are satisfied after a
finite number of iterations, and that most of the computa-
tions are performed by the local controllers. On the other
hand, by putting the highest priority for the constraint
satisfaction, the performance can be significantly reduced
due to the tightening of the constraints. Moreover, the
hierarchical MPC framework does not handle equality
constraints, thus the state variables need to be eliminated,
which will enlarge the neighborhood sets of the subsys-
tems. Therefore this method is not readily suitable for
applying to the HPV control problem where the number

of subsystems is limited compared to the sparsity of the
interconnections.

Distributed MPC In case global communications are not
available, but local communications between subsystems
can be used, then a suitable approach is distributed MPC,
which often achieves better performance than decentral-
ized MPC, since the couplings are not neglected. In this
section we discuss distributed MPC frameworks that are
based on distributed optimization, i.e., the distributed
nature comes from the algorithm to solve the optimization
problem (11).

The two main traditional classes of techniques for solv-
ing a coupled optimization problem are primal and dual
decomposition. With primal decomposition, the problem
structure is exploited such that each subsystem can solve
its own problem, which involves the variables of itself and
its neighbors only. One typical method in this class is the
Jacobi iterative algorithm (Bertsekas and Tsitsiklis, 1989,
Chapter 3), which was adopted for distributed MPC in
Venkat et al. (2008). The main idea is that each subsystem
solves its own problem using the previous update of the
others, and then uses a convex combination of the new and
old values to guarantee that the new iterate is plant-wide
feasible. In Venkat et al. (2008), it is proved that, similar
to the Jacobi algorithm, the distributed MPC solution
converges to the centralized MPC solution (assuming no
coupling constraints).

In the class of dual decomposition approaches, a dual
problem of (11) is formulated and taken as the main
optimization problem. It is well-known by the duality
theorem (Bertsekas, 1999) that the dual optimum is the
same as the primal optimum when the original problem
is strictly convex, which is the case for the HPV problem
since the matrices Qi are positive definite for all i. In the
dual problem, the couplings in the constraints are then
transformed into separable terms in the cost function.
Since in most cases the dual problem is separable, we
can employ a number of optimization algorithms using
first-order derivatives, which then allow a distributed
implementation. However, in the particular HPV problem
(11), since there is also coupling in the cost function, the
dual problem is not separable. To obtain a separable dual
problem, we first need to reformulate the cost function
of (11) in a separable form. Hereby we present two ways
of power reference division for the HPV problem. For the
sake of brevity, we now focus on decomposing the following
problem:

min
{xi}i=1,...,8
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Static power division

In order to avoid global communications, we can divide
the total power reference into several local ones and use
the following cost function instead of (14):

min
{xi}i=1,...,8
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with M̄ the number of separate power references such that
∑M̄

j=1 p
ref,j = pref , and with Gj the group of subsystems



that are assigned to track the power reference pref,j . The
disadvantage of this power reference division is that the
total power production may not be able to track the total
power reference in some cases. This issue will be discussed
with the illustrative results for the case study in Section 5.

We list here alternative strategies for dividing the total
power reference that will be considered in the case study:

(1) DIST–REF1: Use two sequences pref,1k , pref,2k such that

prefk = p
ref,1
k + p

ref,2
k . The total power production of

subsystems 1, 3, 4, and 5 will track p
ref,1
k , while the

sum of power produced by subsystems 2, 6, 7, and 8

will track p
ref,2
k .

(2) DIST–REF2: Use 4 sequences: prefk = p
ref,1
k + p

ref,2
k +

p
ref,3
k + p

ref,4
k , with p

ref,1
k to be tracked by subsystems

1, 3, and 4, pref,2k to be tracked by subsystem 5, pref,3k

to be tracked by subsystems 2, 6, and 7, and p
ref,4
k to

be tracked by subsystem 8.

(3) LOCAL–REF: Use 8 sequences: prefk =
∑8

i=1 p
ref,i
k ,

with each local power reference p
ref,i
k , i = 1, . . . , 8 to

be tracked by subsystem i.

In all these schemes, the local power reference sequences
are computed by keeping the same proportion to the
total power reference as in the steady-state operating
conditions, which is similar to the formula (13). The
scheme LOCAL–REF means that each subsystem tracks
a local power reference, however this does not lead to a
decentralized MPC setting, since the subsystems have to
take into account the coupled dynamics. The ways we
define the tracking tasks with DIST–REF1 and DIST–
REF2 are aimed at exploiting the existing structure of
couplings in dynamics between subsystems.

Dynamic power division

Static power division essentially means that each group
of subsystems always tracks a given fraction of power
reference (based on steady-state conditions). When the
total power reference deviates a lot from the steady-state
power, then this idea may not work well. To address this
issue, we now introduce the dynamic power division, in
which the subsystems have more flexibility in choosing the
appropriate local power reference to be tracked. The main
idea is that each subsystem will “trade” an amount of
power reference with its neighbors.

Let us define for each pair (i, j) with j ∈ Ni a pair of
power exchange variables

δij = δji (16)

and we assign either subsystem i or subsystem j to “lead”
the exchange between them 1 , then for each subsystem we
form the set

∆i = {j|j ∈ Ni, δij is managed by subsystem i} (17)

Then we replace (14) by the following cost function:

min
{xi}i=1,...,8

8
∑

i=1

∣

∣

∣

∣

pref,i +
∑

j∈∆i

δij −
∑

j∈Ni\∆i

δij − Pix

∣

∣

∣

∣

(18)

1 A simple way is to let the subsystem with smaller index lead the
exchange, i.e., ∆i = {j|j ∈ Ni, j > i}.

with pref,i the nominal power reference for subsystem i
that is defined in the same way as (13), and subject to the
constraints (16) for all pairs of (i, j) with j ∈ Ni. In other
words, the local power reference for each subsystem i may
deviate from the nominal value by adding the exchange
amounts of the links that i manages and subtracting
the exchange amounts of the links that affect i but are
decided upon by its neighbors. Note that problem (18) is
decomposable, and the additional constraints (16) can be
dualized in a similar way as the other constraints in (11),
without expanding the neighbor set of each subsystem.

The advantage of this dynamic power division is that it
makes use of the existing network topology to form a
separable cost function, and the total power reference is
preserved even if the local power references deviate from
the nominal values since

8
∑

i=1

{

pref,i +
∑

j∈∆i

δij −
∑

j∈Ni\∆i

δij

}

= pref (19)

Now that we have a separable cost function by using either
static or dynamic power division technique, we can form
a dual problem and apply a distributed optimization algo-
rithm for the dual problem. In the case study of Section 5,
we will use the distributed dual accelerated proximal gra-
dient (DAPG) algorithm that has recently been developed
in Giselsson et al. (2012), as it has a fast convergence rate
and was designed to treat problems with mixed absolute
and quadratic terms, such as the HPV problem, in a more
efficient way than translating the problem into a QP (as
mentioned in Section 4.2.1). By formulating a specific dual
problem that the accelerated proximal gradient method
can handle, the DAPG algorithm does not need to treat
the absolute term in the cost function as shown in (12).
The fast convergence rate comes from the nature of the
accelerated proximal gradient method and the optimal
choice of step size based on the strong convexity of the
cost function, which is discussed in detail in Giselsson et al.
(2012).

5. COMPARISON OF MPC SCHEMES

We performed numerical simulations of the HPV using
centralized MPC, decentralized MPC, and distributed
MPC based on the DAPG algorithm (Giselsson et al.,
2012) with the 3 static power division schemes: DIST–
REF1, DIST–REF2, and LOCAL–REF, and the dynamic
power division scheme referred to as DYN–REF. With
the centralized and decentralized MPC, the optimization
problems are transformed into QPs and are solved by the
solver quadprog in the Optimization Toolbox of MATLAB.
In the distributed MPC approach, we implemented our
own DAPG solver in MATLAB that iteratively achieves
the exact solution of the optimization problem up to
a small tolerance in each MPC step. The closed-loop
simulation results are obtained by applying the computed
inputs to the original nonlinear continuous-time model
(using the MATLAB function ode15 ). The simulations
were implemented on a PC running MATLAB on Linux
with an Intel(R) Core(TM)2 Duo CPU running at 2.33
GHz with 2 GB RAM.



5.1 Performance comparison

The power reference tracking results are plotted in Fig-
ures 2(a)–2(f). We can see the trade-off due to the division
in power reference: the centralized MPC achieves the best
tracking performance at the price of using global commu-
nications, while the distributed MPC with static power
division schemes DIST1–REF, DIST2–REF and LOCAL–
REF show deterioration of the tracking performance. An-
other interesting point is that the scheme DIST–REF2
achieves a better tracking performance than LOCAL–
REF, while they use the same communication structure.
This observation suggests to consider finding the division
of power reference that resembles the structure of dynami-
cal couplings between subsystems, i.e., defining groups for
tracking power references such that any pair of subsystems
in a group are neighbors of each other. The tracking
performance of the decentralized MPC is very poor, due
to the lack of communications. The best result, in view of
both achieving performance and using local communica-
tions only, is distributed MPC with dynamic power divi-
sion scheme DYN–REF, which achieves almost the same
tracking performance as centralized MPC, while relying
on the same communication structure as the LOCAL–
REF scheme (see also the comparison of communication
requirements).

Figures 4 and 5 show the input and output evolutions and
the corresponding constraints with the scheme DYN–REF
as an example. For the cases of DIST–REF1, DIST–REF2,
and LOCAL–REF, all the constraints on the inputs and
outputs are also satisfied. We note that this is guaranteed
due to the fact that constraints are not relaxed, and the
couplings in dynamics are taken into account.

5.2 Computational efficiency

In Figure 3, we plot the comparison of computation time of
the solvers quadprog and the DAPG, both are implemented
in MATLAB, for solving the same optimization problem
of the centralized MPC at each sampling step. Figure 3
shows that the total computation time (summed up over
all subsystems) of the DAPG algorithm is much lower than
the computation time of quadprog, which reflects the fast
convergence rate of the DAPG algorithm and the efficiency
of dealing with the absolute term in the cost function.

5.3 Communication requirements

In Table 1, we provide the comparison of the communi-
cation neighborhood sets between the distributed MPC
schemes. The communication neighborhood set of a sub-
system i, denoted by Mi, indicates the need of communi-
cation links between subsystem i with each of its neigh-
bors. Notice that these communication neighborhood sets
are not only the sets Ni defined by the coupling dynamics
in (4), but can be extended due to the additional coupled
constraints that are introduced by the power reference
division schemes. In the scheme DIST–REF1, the sets
Mi are larger than Ni, since we form the power tracking
groups that involve subsystems which are not dynamically
coupled, e.g., between subsystems 1 and 5, 2 and 8. With
the schemes DIST–REF2, LOCAL–REF, and DYN–REF,
the sets Mi are the same as Ni.

Combining the comparison of communications and per-
formance, the distributed MPC with dynamic power di-
vision scheme DYN–REF would be the best choice for
the total power reference tracking problem of the HPV,
as it achieves almost the same optimal solution as the
centralized MPC, while allowing a distributed implemen-
tation using the existing dynamical coupling structure.
Among the distributed MPC with static power division
schemes, the scheme LOCAL–REF is the most naive idea
and its performance suffers the most. The scheme DIST–
REF1 shows a fairly good tracking performance of to-
tal power reference, however it employs a more complex
communication structure. The scheme DIST–REF2 has a
good balance between tracking performance and limiting
communication requirement, it achieves a much better
result than the LOCAL–REF scheme while sharing the
same communication structure. It should also be noted
that decentralized MPC is not recommended unless the
communication is prohibited, otherwise the performance
will significantly deteriorate.
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(c) DMPC and DIST–REF1
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(d) DMPC and DIST–REF2
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Fig. 2. Comparison of power reference tracking perfor-
mance using centralized MPC, DMPC, and decentral-
ized MPC approaches.

6. CONCLUSIONS AND FUTURE WORK

We discussed various challenges of the HPV control prob-
lem, and provided an overview of our recently developed
techniques to address them. We described several hier-
archical and distributed MPC frameworks that could be
applied to the HPV control problem, and adapted the
optimization problem using static and dynamic power
division schemes so that it is suitable for distributed MPC.
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optimization problem per each sampling step

2 4 6 8

x 10
4

0

10

20

Time[s]

q
T

1
[m

3
/s

]

2 4 6 8

x 10
4

−10

0

10

Time[s]

q
C

1
[m

3
/s

]

2 4 6 8

x 10
4

0

10

20

Time[s]

q
T

2
[m

3
/s

]

2 4 6 8

x 10
4

−10

0

10

Time[s]

q
C

2
[m

3
/s

]

2 4 6 8

x 10
4

0

100

200

300

Time[s]

q
D

1
[m

3
/s

]

2 4 6 8

x 10
4

0

100

200

300

Time[s]

q
D

2
[m

3
/s

]

2 4 6 8

x 10
4

0

100

200

300

Time[s]

q
D

3
[m

3
/s

]

2 4 6 8

x 10
4

0

100

200

300

Time[s]

q
D

4
[m

3
/s

]

2 4 6 8

x 10
4

0

100

200

300

Time[s]

q
D

5
[m

3
/s

]

2 4 6 8

x 10
4

0

100

200

300

Time[s]

q
D

6
[m

3
/s

]

Fig. 4. Input constraint satisfaction with the DMPC based
on DAPG algorithm with dynamic power division
scheme. Dash-dotted lines: upper bounds, dashed
lines: lower bounds.

By means of numerical simulations in a case study, we
showed that our proposed distributed MPC approach out-
performs the centralized and decentralized MPC in terms
of computational efficiency, communication requirements,
and tracking performance. Future developments will in-
clude the implementation of distributed estimation and
analysis of stability and robustness of the method when
there is model mismatch and measurement noise.
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Fig. 5. Output constraint satisfaction with the DMPC
based on DAPG algorithm with dynamic power divi-
sion scheme. Dash-dotted lines: upper bounds, dashed
lines: lower bounds.

Table 1. Communication neighborhoods of
subsystems (Mi)

i DMPC DMPC DMPC DMPC
DIST–REF1 DIST–REF2 LOCAL–REF DYN–REF

1 {1, 3, 4, 5} {1, 3, 4} {1, 3, 4} {1, 3, 4}

2 {2, 6, 7, 8} {2, 6, 7} {2, 6, 7} {2, 6, 7}

3 {3, 1, 4, 5} {3, 1, 4} {3, 1, 4} {3, 1, 4}

4 {4, 1, 3, 5} {4, 1, 3, 5} {4, 1, 3, 5} {4, 1, 3, 5}

5 {5, 1, 3, 4, 6} {5, 4, 6} {5, 4, 6} {5, 4, 6}

6 {6, 2, 7, 8, 5} {6, 2, 7, 5} {6, 2, 7, 5} {6, 2, 7, 5}

7 {7, 2, 6, 8} {7, 2, 6, 8} {7, 2, 6, 8} {7, 2, 6, 8}

8 {8, 2, 6, 7} {8, 7} {8, 7} {8, 7}

Centralized MPC uses global communications: Mi = {1, . . . , 8}, ∀i
Decentralized MPC does not use communications: Mi = {i}, ∀i
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