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Abstract: This paper presents a methodology for traffic control using a distributed model pre-
dictive control scheme based on game theory (GT-DMPC). Using the traffic model METANET
as prediction model, the control objective is to minimize the total time spent by vehicles in
the traffic network. The proposed control methodology is compared with a centralized model
predictive control approach and a non-controlled-case. The simulations show that the GT-
DMPC controller efficiently distributes the vehicles entering the highway, and presents a similar
performance in comparison with centralized MPC.
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1. INTRODUCTION

Sustainable mobility of the people is a key issue in the
modern society. However, nowadays many traffic networks
are operating in an inefficient way, producing several
negative impacts in the environment and the deterioration
of the quality of life in general. Solutions like building new
roads or improving the infrastructure now installed is not
always possible because of environmental and/or budget
regulations. Thus, developing efficient management and
control systems for traffic and transportation, to satisfy
the always increasing demand for mobility, is nowadays a
crucial topic of research.

Among the different approaches existing in the literature,
the ones based on model predictive control (MPC) have
been quite broadly used and successfully applied to solve
traffic problems. These techniques are mainly focused on
the optimal use of the information provided by the infras-
tructure already installed, and on reducing the total travel
time while considering explicitly the physical and opera-
tional constraints of the system (Kotsialos et al., 2002a;
Bellemans et al., 2006; Hegyi et al., 2005; van den Berg
et al., 2003). However, despite of the advantages of MPC
over other methods, the application of this control scheme
in real large-scale systems (such as energy transportation
systems, water distribution systems, traffic systems, etc.)
resulted impractical due to the computational burden of its
centralized applications (Camponogara et al., 2002; Cortes
et al., 2008).

In order to make possible the real implementation of MPC
in large-scale systems, different distributed model pre-
dictive control (DMPC) approaches have been proposed.

Specifically, in this paper we will focus on the applica-
tion of distributed predictive control based on game the-
ory (GT-DMPC) (Giovanini and Balderud, 2006; Maestre
et al., 2009). In GT-DMPC, the local control actions of a
subsystem are computed in a cooperative way, considering
the preferences of other local controllers. Although such
approaches have been reported to produce good results,
the communication requirements of the schemes are cru-
cial, because the computational burden may increase dras-
tically if each local controller is required to communicate
many times its preferences and then to have to solve more
than one optimization problem at each time step. This is-
sue is particularly important in traffic control applications,
as traffic or models like METANET are non-linear, and
thus the controllers have to deal with those non-linearities.
In order to tackle this drawback, in (Alvarado et al., 2011;
Valencia et al., 2011; Valencia, 2012) a DMPC scheme
based on bargaining games was proposed, where the local
controllers are able to decide whether to cooperate or
not based on the benefit perceived from the cooperative
behavior. However, this scheme (as well as in the other
GT-DMPC approaches) only has been designed and tested
for linear models. Thus, in this paper, we propose to ex-
tend the formulation of GT-DMPC to non-linear systems,
focusing on traffic control purposes using the macroscopic
traffic model METANET as prediction model.

The paper is organized as follows: In Section 2 the
METANETmacroscopic traffic model is introduced. Then,
in Section 3 the formulation of the non-linear MPC for
total travel time reduction in a highway is presented. In
Section 4 the traffic problem is formulated as a bargaining
game. Finally, in Sections 5 and 6 simulation results and
concluding remarks are presented.



2. MACROSCOPIC TRAFFIC MODEL METANET

Let us start by introducing some concepts and notations
related with the traffic model used in this work, viz. the
METANET model described in (Papageorgiou et al., 1990;
Kotsialos et al., 1999, 2002b). There are links and nodes.
The links have homogeneous properties, so on-ramps, off-
ramps, merge/split of links, lane drop, yields node. The
links are imaginary divisions of a highway formed by
a sequence of adjacent stretches called segments. Each
segment is characterized by its length (Lm), number of
lanes (λm), vehicle density (ρ(m,i)), mean speed (v(m,i)),
and output flow (q(m,i)), with m denoting the link number
and (m, i) denoting the segment i of the link m. The
dynamic evolution of the density of vehicles in the segment
(m, i) is given by:

ρ(m,i)(k + 1) = ρ(m,i)(k) +
Ts

λmLm
[q(m,i−1)(k) − q(m,i)(k)]

(1)
where Ts is the sample time (often 10 s). In order to
determine the dynamic evolution of the vehicles in the
segment (m, i), the following tree terms are considered.

(1) Relaxation R(m,i)(k), which expresses the desire of
the drivers to achieve a desired speed for the current
density:

R(m,i)(k) =
Ts
τ
[V (ρ(m,i)(k))− v(m,i)(k)] (2)

(2) Convection C(m,i)(k), which quantifies the effect of
the changes in speed in one segment due to the speed
difference with the previous segment:

C(m,i)(k) =
Tsv(m,i)(k)[v(m,i−1)(k)− v(m,i)(k)]

Lm
(3)

(3) Anticipation A(m,i)(k), which models the effect of
the changes in the speed in one segment due to the
difference in density with the next segment:

Am,i(k) = −
Tsn[ρ(m,i+1)(k)− ρ(m,i)(k)]

τLm(ρ(m,i)(k) + µ)
(4)

By considering the relaxation, convection, and anticipation
terms, the dynamic evolution of the mean speed in the
segment (m, i) is given by:

v(m,i)(k+1) = v(m,i)(k)+R(m,i)(k)+C(m,i)(k)+A(m,i)(k)
(5)

where the output flow is given by

q(m,i)(k) = λmρ(m,i)(k)v(m,i)(k) (6)

Note that in Eq. (2) the evolution of the relaxation term
is determined by the function V (·) for which an empirical
relation can be given by:

V
(
ρ(m,i)(k)

)
= vfree,m exp

(
−

1

bm

(
ρ(m,i)(k)

ρcr,m

)bm)
(7)

where vfree,m is the speed of a vehicle in free-flow. In
this relation, ρcr,m is the critical density of vehicles. The
critical density of vehicles determines the behavior of the
traffic in a link. If the density of vehicles remains less than
its critical value, then the traffic flow is considered as a
laminar flow, consequently the mean speed becomes higher
and the time spent by the users in the highway decreases
as the density of vehicles tends to zero. Otherwise, the
traffic flow goes towards an instability region or congestion

region, consequently the mean speed goes quickly to zero
which is a symptom of congestion in the link.

For a link without on-ramp or other access roads, a model
given by Eqs. (1)–(7) is enough. However, if there exist
other access roads to the link, the interaction between the
traffic on the access road and the traffic on the link should
be included. With this purpose, the concept of origin node
is introduced. An origin node allows the access of traffic
from an external road, where do denotes the demand at
the origin o. This traffic accessing a link by on-ramp o
often is limited or controlled by a traffic light (or ramp
metering), where ro(k) denotes the ramp metering rate,
used to regulate the vehicles accessing the highway. Let
qo(k) be the flow of vehicles incoming from the origin o
to the link which origin o is connected (1,m). The value
of qo(k) is determined by the minimum value between
the number of vehicles waiting to access the highway and
the number of vehicles able to access. Let wo denote the
queue of vehicles on the origin node o. Then, the dynamic
evolution of the queue is given by

wo(k + 1) = wo(k) + Ts(do(k)− qo(k)) (8)

where qo is defined as

qo(k) =min

(
do(k) +

wo(k)

Ts
, Qoro(k),

Qo

(
ρmax,(m,1) − ρ(m,1)(k)

ρmax,(m,1) − ρcr,m

))
(9)

Qo is the on-ramp capacity (veh/h) under free-flow condi-
tions and ρmax,(m,1) being the maximum density of vehicles
able to access the segment 1 of link m. By including q(m,1)
in Eqs. (1) and (5) we get:

ρ(m,1)(k + 1) = ρ(m,1)(k)+

Ts
Lmλm

(qin,(m,1)(k)− qout,(m,1)(k)) (10)

v(m,1)(k + 1) = v(m,1)(k) +R(m,i)(k) + C(m,i)(k)

+A(m,1)(k)−
δTsqo(k)v(m,1)(k)

Lmλm(ρ(m,i)(k)− µ)
(11)

qin,(m,1)(k) = qo(k) + q(m−1,ilast)(k) (12)

qout,(m,1)(k) = λmρ(m,1)(k)v(m,1)(k) (13)

with −(δTsqo(k)v(m,1)(k))/(Lmλm(ρ(m,i)(k)+µ)) describ-
ing the merging phenomenon.

3. NON-LINEAR MODEL PREDICTIVE CONTROL
FOR TRAFFIC APPLICATIONS

3.1 Non-Linear Model Predictive Control (NMPC)

Consider the discrete-time non-linear system whose dy-
namic evolution is described by the following state space
model

x(k + 1) = fd(x(k), u(k)) (14)

with x(k) ∈ R
n and u(k) ∈ R

m, the state and the input
vector respectively. The general idea of non-linear model
predictive control (NMPC) is to determine the sequence of
control actions for the system by solving an optimization
problem considering the predicted trajectories given by the
non-linear model. Often, a quadratic function of the form



J(x̃(k), ũ(k)) =

Np∑

l=1

xT (k + l)Qx(k + l)+

Nu−1∑

l=0

uT (k + l)Ru(k + l) + ∆uT (k + l)S∆u(k + l)

(15)

is used to measure the performance of the system. Here the
superscript T is the transpose operator, x̃(k) = [xT (k +
1), . . . , xT (k+Np)]

T , ũ(k) = [uT (k), . . . , uT (k+Nu−1)]T ,
with u(k + l) = u(k + Nu − 1), for l = Nu, ..., Np, with
Np, Nu the prediction and control horizon respectively;
Q, R, S are weighting matrices generally diagonal with
positive elements, and ∆u(k+ l) = u(k+ l)− u(k+ l− 1).

Assume x(k) ∈ X, and u(k) ∈ U for all k, where X

and U determine the feasible values of the states and the
inputs respectively, and they are given by the physical and
operational constraints of the system. Then, the NMPC
problem can be formulated as a non-linear optimization
problem:

min
ũ(k)

J(x̃(k), ũ(k))

s.t. x(k + 1) = fd(x(k), u(k)), x(0) = x0,

x(k) ∈ X, u(k) ∈ U

3.2 Optimal Reduction of the Travel-Time

From Section 2, the dynamic behavior of the traffic net-
work can be described using Eqs. (6)–(13). The model
given by these equations has the form of Eq. (14), with
x(k) = [ρT (k), vT (k), wT (k)]T , and u(k) = rT (k), where
ρ(k), v(k), w(k), r(k) are the vectors containing the den-
sities, mean speeds, queues, and ramp-metering rates of
all links, segments and origins of the highway respectively.
Since the traffic model is a discrete-time model it will be
used to simulate the plant and to predict the trajectories
of the states in the NMPC.

Although Eq. (15) often is used to measure the perfor-
mance of the system in MPC schemes, in traffic control
applications other cost functions are used. This is moti-
vated by the fact that in traffic control the objective often
is to reduce the travel time of the users (the objective of
the NMPC approach presented in this paper) or to reduce
the emissions, and not to regulate the states of the system
to some value. Hence, a different cost function is used.
From the definitions, the total number of vehicles in the
highway and its on-ramps is given by∑

m∈M

∑

i∈ψm

ρ(m,i)(k)Lmλm +
∑

o∈O

wo(k) (16)

where M is the set of links, ψm denotes the set of segments
of link m, and O denotes the set of origin. Therefore, the
travel time of the users of the highway and the access roads
over a prediction horizon Np is given by

J(x̃(k), ũ(k)) = Ts

k+Np−1∑

l=k


∑

i∈ψm

ρ(m,i)(l)Lmλm+

α
∑

o∈O

wo(l) + αramp(ro(l)− ro(l − 1))2

) (17)

where α, αramp > 0 are tuning parameters associated with
the time spent by the users in the queues at the origins

and with the smoothness of the changes of the control
actions. Finally, the NMPC formulation is completed by
adding the boundary constraints. In this case it was con-
sidered that ρmin,(m,i) ≤ ρ(m,i)(k) ≤ ρmax,(m,i), wmin,o ≤
wo(k) ≤ wmax,o, and vmin,(m,i) ≤ v(m,i)(k) ≤ vmax,(m,i),
with ρmin,(m,i), wmin,o, vmin,(m,i) ≥ 0. These constraints
determine the feasible set X for the states (if the prediction
model is included in the state constraints the feasible set
becomes X̃(ũ(k);x(k)), where the time evolution is given
by the state equation (14) coming from the traffic model).
Additionally, the feasible set for the control inputs U is
determined by the inequality rmin,o ≤ ro(k) ≤ rmax,o,
rmin,o ≥ 0 and rmax,o = 1. Therefore, the NMPC for travel
time reduction can be formulated as

min
ũ(k)

J(x̃(k), ũ(k)) (18)

s.t x̃(k) ∈ X̃(ũ(k);x(k)), ũ(k) ∈ Ũ (19)

where X̃(ũ(k);x(k)) denotes the set resulting of the inter-
section of the set given by the simple bound constraints
for the states X and the set determined by the evolution of
the state trajectories along the prediction horizon for input

ũ(k) ∈ Ũ and the model (14) taking as initial condition
x(k). The optimization problem (18)-(19) corresponds to
the centralized formulation of the NMPC for travel time
reduction in a highway. However, as it was stated in Sec-
tion 1, traffic systems are large-scale systems, and hence,
the implementation of centralized MPC is not advisable.
Therefore, in the next section a distributed model predic-
tive control based on game theory scheme is proposed.

4. BARGAINING APPROACH TO OPTIMAL
TRAFFIC CONTROL

In Section 3 an NMPC approach for travel time mini-
mization was presented. Such formulation corresponds to
a centralized control scheme. Since real traffic networks
are large-scale systems, DMPC arises as an alternative
to overcome the computational problems associated with
the implementation of the centralized NMPC schemes.
Assume that the whole system can be decomposed into
M subsystems r such that

xr(k + 1) = fdr(x(k), ur(k), u−r(k)) (20)

where u−r(k) = [uT1 (k), . . . , u
T
r−1(k), u

T
r+1(k), . . . , u

T
M (k)]T .

Let Ur be the feasible set for the control inputs of subsys-
tem r. Let Ωr be the set of feasible control actions for
ũr(k), where ũr(k) = [uTr (k), . . . , u

T
r (k+Nu−1)]T . Let Xr

be the feasible set for the states of subsystem r determined
by the boundary constraints. Let Ξr be the set of feasible
values of the states for x̃r(k), where x̃r(k) = [xTr (k +
1), . . . , xTr (k + Np)]

T , and ũ−r(k) = [uT
−r(k), . . . , u

T
−r(k +

Nu − 1)]T . Let Ξ̂r(ũr(k), ũ−r(k);x(k)) be the feasible set
for the states, considering the boundary constraints, the
initial condition x(k), and the prediction model (20). Let
Jr(x̃r(k), ũr(k), ũ−r(k)) denote the cost function of sub-
system r, then the local optimization problem arising from
the partition of the whole system can be formulated as
follows

min
ũr(k)

Jr(x̃r(k), ũr(k), ũ−r(k)) (21)

s.t. x̃r(k) ∈ Ξ̂r(ũr(k), ũ−r(k);x(k)), ũr(k) ∈ Ωr



Hence, this DMPC approach is composed by the local
optimization problem (21) and the procedures used to
guarantee the negotiation among subsystems in order to
jointly compute the control actions to be applied to the
controlled non-linear system.

From (21), the local optimization problems are coupled
to each other through the inputs and the states, i.e., the
value of the cost function Jr(·) and the decision space
of subsystem r depends of the decision of the remaining
subsystems. Then, the DMPC problem can be treated as a
game where the success of each subsystem is based on the
choices of the other subsystems. In a dynamic setting, at
each time step k a play of the DMPC game is performed,
so a control action is computed based on the rules of the
game. At time step k each subsystem has to choice a local
control action, under the conditions stated by the sets

Ξ̂r(ũr(k), ũ−r(k);x(k)) and Ωr, the negotiation algorithm
or moves of the DMPC game used to solve the problem
(21), and trying to minimize the local cost function.

Let Γr(ũr(k), ũ−r(k);x(k)) denote the set resulting from
the cartesian product of Ξr(ũr(k), ũ−r(k);x(k)) and Ωr.
Then, the DMPC game can be represented as a tuple

GDMPC = (N, {Γr(ũr(k), ũ−r(k);x(k))}r∈N ,

{Jr(x(k), ũr(k), ũ−r(k))}r∈N )
(22)

where N are the subsystems, and Jr(x(k), ũr(k), ũ−r(k))
the cost function of subsystem r respectively. Since the
game GDMPC comes from of a distributed control set-
up, the idea of the game is to find the optimal control
inputs that increases the overall system performance.
When all subsystems have a common goal, like to minimize
the global cost function, the game is called cooperative.
However, in order to achieve near Pareto optimal solutions,
the subsystems may have the flexibility to decide whether
to collaborate or not, if from their point of view that
decision would lead into a more important benefit for the
overall system.

Hence, the game GDMPC is defined as a sequence of bar-
gaining games {Υ(ũr(k), ũ−r(k);x(k)), η(k)}

∞

k=1, whose
solutions are determined at every instant k by the follow-
ing local optimization problem:

min
ũr(k)

M∑

σ=1

ωσ log(ησ(k)− Jσ(x̃σ(k), ũr(k), ũ−r(k)))

s.t. ησ(k) > Jσ(x̃σ(k), ũr(k), ũ−r(k))

x̃r(k) ∈ Ξr(ũr(k), ũ−r(k);x(k)), ũr(k) ∈ Ωr
(23)

where ωσ > 0,
∑M

σ=1 ωσ = 1. In order to solve (23)
it is required that subsystems communicate each other
their actual value of the states, actual control actions,
and disagreement points. The disagreement points η(k) :=
(η1(k), . . . , ηM (k)), given an initial value η(0) = η0 are
defined recursively as:

ηr(k+1) :=





ηr(k)− α1(ηr(k)− Jr(x̃r(k), ũr(k), ũ−r(k)))
if ηr(k) ≥ Jr(x̃r(k), ũr(k), ũ−r(k))

ηr(k) + α2(Jr(x̃r(k), ũr(k), ũ−r(k))− ηr(k))
if ηr(k) < Jr(x̃r(k), ũr(k), ũ−r(k))

(24)
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Fig. 1. Demand profile for cases 1 and 2, both origins with
the same profile.

where α1, α2 are positive tuning parameters, and ηr(0)
is chosen big enough to satisfy the inequality constraints
in (23). Once the subsystems have this information, the
optimization problem (23) is locally solved by considering
as inputs the ones obtained in the previous instant time
for the remaining subsystems (under the same assumption
the trajectories of the states of the remaining subsystems
are computed to determine the value of the cost function).
Moreover,this formulation allows each subsystem to take
into account the effect of its decisions in the behavior of
the whole system and to promote the cooperation among
subsystems.

5. SIMULATION RESULTS

A three-lane highway with two entrances was used for
testing the proposed methodology. It consists on one
segment of a highway, divided into three links with similar
characteristic: same length, same number of lanes, and
similar geometry. In this small traffic network benchmark,
each link is separated from one another by an on-ramp,
modeled as origins which allow the entry of new vehicles
to the highway regulated by the traffic signals: r1(k) and
r2(k). The model parameters we use in this benchmark are
the same as the ones used in (Zegeye et al., 2012), L1 =
0.5[km], Ts = 0.0028[h], τ = 0.0041[h], wmax,1 = wmax,2 =
100[veh], vmax,(1,1) = vmax,(1,2) = vmax,(1,3) = 102[km/h],
vfree,(1,1) = vfree,(1,2) = vfree,(1,3) = 102[km/h], ρcr,1 =
33.5[veh/km/lane], ρmax,(1,1) = ρmax,(1,2) = ρmax,(1,3) =
187.6495[veh/km/line], Q0 = 1751.2[veh/h], bm = 1.867,
δ = 0.8942, ω1 = ω2 = 0.5, αn = 0.4, n = 64.2005,
Np = 75, Nu = 35, λ1 = 3, and µ = 32.9010.

Two different cases are proposed: (i) free flow conditions;
and (ii) congestion. In the latter case the demand for
the on-ramp at origins 1 and 2 is variable, as shown in
Figure 1. In both cases, the results obtained with the
proposed distributed control scheme was compared with
a uncontrolled situation and with a centralized NMPC
approach. In all the simulations a prediction horizon Np =
75 and a control horizon Nu = 35 were used for both
the NMPC controller and in the proposed GT-DMPC
controller.

For the GT-DMPC approach, the system is divided in two
subsystems in order to perform two concerted optimiza-
tions (See Figure 2): the controller MPC1 is responsible for
providing the control signal r1(k) according to a negotia-
tion with the controller MPC2, while the controller MPC2
provides the control signal r2(k) according to negotiation
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Fig. 2. Distributed MPC for the case of study
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Fig. 3. Queue lengths and the signals of the links of origin
1 and 2 for uncontrolled, centralized MPC, and GT-
DMPC schemes, case 1.

with the controller MPC1. In such partition, subsystem 1
is formed by the links (1, 1) and (1, 2), and by the origin
1, and subsystem 2 is formed by the link (1, 3) and the
origin 2. As a consequence of the partition of the system
the global cost function of Eq. (17) is also partitioned
into two local cost functions: J1(x̃1(k), ũ1(k), ũ−1(k)) for
subsystem 1, and J2(x̃2(k), ũ2(k), ũ−2(k)) for subsystem
2. The constraints in both subsystems are the same of the
centralized scheme, defined in Section 2.

5.1 Case 1: Free flow conditions

The regular traffic conditions proposed for Case 1 are
not demanding for the control system, but it is desirable
to reduce the total time spent as much as possible. The
proposed control techniques reduced more than one half
of the time expend by the uncontrolled case to reduce the
queue lengths (coincident with the steady-state of density
and speed). Figure 3 shows the queue lengths at origins 1
and 2. In Figure 3 are also shown the control signals for
the same simulations, the MPC response is faster than the
one of the GT-DMPC.

As expected, it was possible to achieve much faster the
steady state condition. Regarding to the performance com-
parison between the centralized MPC controller and the
GT-DMPC controller, they had similar behavior; however,
if we consider a large-scale system, the centralized MPC
will be just impractical.
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Fig. 4. Queue lengths and the signals of the links of origin
1 and 2 for uncontrolled, centralized MPC, and GT-
DMPC schemes, case 2.

5.2 Case 2: Congestion

Figure 4 shows the control signals applied; the centralized
MPC maintained a similar behavior that the one presented
in case 1, and the GT-DMPC controller follows the dynam-
ics of the demand.

The density and speed of vehicles remained within the
defined bounds in the controlled cases. But in the uncon-
trolled case, the Figure 4 clearly shows that the maximum
allowed number of vehicles at the on-ramps queues was
exceeded (100 vehicles), while the proposed controllers
reduced the number of vehicles in the queue to zero.

5.3 Performance analysis

In order to determine the performance of the proposed
controllers the total time spent (TTS) by the vehicles on
the highway and the entrance ramp was evaluated. The
TTS is defined as:

TTS =

Nsim∑

l=1


∑

m∈M

∑

i∈ψm

ρi,m(l)Lmλm +
∑

o∈O

wo(l)


Ts

(25)
where Nsim is the number of simulation steps. Table 1
shows TTS results for the Cases 1 and 2.

Table 1. Performance of the controllers

Configuration TTS TTS

Case 1 Case 2

Uncontrolled 71.23 546.27

Centralized MPC 66.98 89.59

GT-MPC 67.85 101.61

Regarding Case 1, the centralized MPC presents a better
performance with respect to the GT-DMPC, but their
difference was not significant (1.30 %). Both proposed
controllers had an improvement in performance of 20.38 %
with respect to the uncontrolled case. Regarding Case 2,
again the centralized MPC controller had better perfor-
mance, in this case the difference with the GT-DMPC was
larger (13.42 %), but both had a high difference with the
uncontrolled behavior.



Regarding computational times, the total time required by
the Centralized MPC was 6.4155e+ 003(s) and 3.2269e+
003(s) for cases 1 and 2. For the GT-MPC, subsystem 1,
1.3263e+ 003(s) and 1.6533e+ 003(s), and for subsystem
2 1.5781e+ 003(s) and 1.5693e+ 003(s) for cases 1 and 2
respectively.

6. CONCLUDING REMARKS

In this paper centralized and distributed non-linear model
predictive control techniques were implemented for a traf-
fic network. In general, traffic network models are highly
non-linear and for real applications, the controllers should
be designed including the flexibility to be easily adapted
to large-scale setups.

The MPC schemes presented here were able to include
explicit constraints in the optimization process, the game
theory approach being a good strategy when distributing
the MPC for allowing large-scale systems. In our approach,
the METANET traffic model was used as a prediction
model and the case study was considered using a simple
traffic network. The performance of these schemes was
analyzed using as performance index the total time spent
as comparison, and all the results were consistent with
those expected from the literature.

Future work will include implementation on large-scale
traffic networks, including several traffic control measures
(ramp-metering, speed limits, route guidance, etc.), and
the comparison with other hierarchical and distributed
MPC approaches for traffic like the ones presented in
(Papamichail et al., 2010) and (Frejo and Camacho, 2011).
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Maestre, J., Muñoz de la Peña, D., and Camacho, E.
(2009). Distributed MPC Based on a Cooperative
Game. In Proceedings of the 48th IEEE Conference on
Decision and Control (CDC’09), 7099–7104. Shanghai,
China.

Papageorgiou, M., Blosseville, J., and Haj-Salemn, H.
(1990). Modelling and real-time control of traffic flow
on the southern part of boulevard périphérique in paris:
Part ii: coordinated on-ramp metering. Transportation
Research Part A, 24(5), 361–370.

Papamichail, I., Kotsialos, A., Margonis, I., and Pa-
pageorgiou, M. (2010). Coordinated ramp meter-
ing for freeway networks, a model-predictive hier-
archical control approach. Transportation Research
Part C: Emerging Technologies, 18(3), 311–331. doi:
10.1016/j.trc.2008.11.002.

Valencia, F. (2012). Game Theory Based Distributed
Model Predictive Control: An Approach to Large-Scale
Systems Control. Ph.D. thesis, Facultad de Minas,
Universidad Nacional de Colombia, Medelĺın.
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