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A Model Predictive Control Approach

for the Line Balancing in Baggage Handling

Systems ⋆

Y. Zeinaly ∗ B. De Schutter ∗ H. Hellendoorn ∗

∗ Delft Center for Systems and Control, Delft, The Netherlands
(e-mail: y.zeinaly,b.deschutter,j.hellendoorn@tudelft.nl).

Abstract: This paper proposes an efficient solution approach for the line balancing problem
in state-of-the-art baggage handling systems that are based on destination coded vehicles that
transport the bags from their origins to their destinations. First, a simple event-driven model
of the process is presented. Next, this model is applied within the context of model predictive
control to determine the optimal number of destination coded vehicles to be dispatched from
the central depot to each loading station. The performance criterion is minimizing the overall
baggage waiting time as well as the energy consumption.

Keywords: model predictive control, nonlinear optimization, mixed integer programming,
linear programming, logistics.

1. INTRODUCTION

Advanced automated baggage handling systems in large
airports are often based on destination coded vehicles
(DCVs), which are tubs moving on conveyor belts or high-
speed carts moving on a network of tracks. Moving through
the network of tracks, DCVs transport luggage from their
origin to their destination. A DCV-based baggage handling
system consists of several parts: loading stations (where
the bags enter the system having cleared the check-in and
security check), unloading stations (which are the final
destinations of the bags from where the bags are loaded
onto the planes), a network of single-direction tracks pos-
sibly with several (local) loops (for loading, unloading,
and temporary storage of DCVs), and the early baggage
storage, where the bags that enter the system too early
can be stored. From a high-level point of view, the control
problems in automated baggage handling system can be
divided into three categories: (i) route choice control for
DCVs, (ii) line balancing, and (iii) empty cart manage-
ment. This paper focuses on the line balancing problem.
The term line balancing has also been used extensively
in the context of assembly lines in production systems to
refer to the problem of optimally partitioning the assembly
work among the assembly stations with respect to some ob-
jective and the precedence constraints of the tasks (Becker
and Scholl, 2006) . Since its first mathematical formulation
by Salveson (1955), many varieties of this problem have
been developed in the literature. The simple assembly line
balancing problem (Baybars, 1986) is the basic version of
the problem with many simplifying assumptions. Further
extensions were added to this problem in later work such
as Becker and Scholl (2006) in order to move towards
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generalized assembly line balancing problem, which inte-
grates more practical aspects. The core problem of all these
extensions is the assignment of tasks to assembly stations
(Boysen et al., 2007). Depending on the type of the prob-
lem, the objective could be to minimize the number of
stations, to maximize the line efficiency or to minimize the
cost. The solution approach can be static, in which case
the solution is pre-computed, or dynamic, in which case
the optimization problem is solved online over a planning
horizon and the solution is updated whenever necessary. A
classification methods for assembly line balancing problem
can be found in Boysen et al. (2007).
Even though dynamic line balancing is also addressed in
the literature related to production systems, we cannot
apply their methods to our problem in a straightforward
manner. In the context of baggage handling systems, we
do not deal directly with tasks. The concepts such as the
precedence constraints of tasks as well as cycle times are
not relevant for baggage handling systems. The control
system needs to deal with dynamically changing demands
within the planning horizon. This necessitates the use of
dynamical models whereas in the context of production
systems, static models are used and average estimate of
rates (for wages, operational costs etc.) are assumed during
the planning horizon. Moreover, by using our proposed
model, we are able to directly penalize the baggage delay as
well as energy consumption and wear and tear. This differ-
entiates our problem with the one discussed in production
systems and makes methods and solutions developed for
line balancing in production systems inapplicable to our
particular problem.

Tarău et al. (2009) and Tarău et al. (2010) have developed
methods for predictive route choice control of DCVs by
assuming there is always a sufficient number of free DCVs
at the loading stations such that the bags are immediately
transported upon arrival. In practice, the number of free
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Fig. 1. A simple layout of the baggage handling system

DCVs is limited, necessitating dynamical assignment of
free DCVs to the loading stations. In this context, line bal-
ancing is the problem of assigning a limited number of free
DCVs in the central or local depots to the loading stations.
The solution must satisfy the following requirement: the
overall waiting time of the baggage in the loading stations
is not too large while the number of DCVs dispatched is
as small as possible. The first part of this requirement
concerns the overall time delay in the loading stations and
the second part concerns energy consumption and wear
and tear due to DCVs moving around in the network.
In this paper, we propose one particular solution to the
line balancing problem that is based on Model Predic-
tive Control (MPC), where a finite-horizon constrained
optimal control problem is solved in a receding horizon
fashion using a dynamic model of the system (Rawlings
and Mayne, 2009; Maciejowski, 2002). For the sake of sim-
plicity we consider a simple configuration of the baggage
handling system as depicted in Fig. 1. It will be shown that
the proposed control scheme can achieve an acceptable
balance between the overall baggage waiting time and the
energy consumption. In general, the optimization problem
based on our developed model is a nonlinear optimization
problem. We will show that the problem can be recast as
a mixed integer linear programming (MILP) problem and
as a linear programming (LP) problem by making some
approximations. The performance and computational ef-
fort of control scheme based on LP will be compared with
the ones of the scheme based on nonlinear optimization,
highlighting the trade-off between optimality and compu-
tational efficiency.
This paper is organized as follows: Section 2 describes
the dynamical model of the system that will be used for
MPC. In Section 3, the MPC optimization problem is
formulated and the choice of the cost function is moti-
vated. In Section 4, the procedure of transforming the
nonlinear optimization problem into an MILP problem
and an LP problem is presented. The comparison between
performance of the proposed control scheme is illustrated
by simulations in Section 5, followed by some remarks.
Finally, Section 6 concludes the paper.

2. DYNAMICAL MODEL

Throughout this paper, a simple configuration as in Fig. 1
will be used as an illustrative example for the bag-
gage handling system. For this configuration we derive a

continuous-time event-driven model by making the follow-
ing assumptions:

A1 The network of tracks that connects the loading
stations to the unloading stations is modeled as a time
delay system. Moreover, regardless of the assigned route
for each DCV, the travel time between a given loading
station and unloading station pair through the network
is considered to be known and equal for all DCVs (i.e.,
we do not take into account the routing of DCVs).

A2 The return path of DCVs from the depot to the
loading stations through the network is also considered
as a time delay system with known delays.

A3 For each loading station we associate a baggage queue
and a DCV queue. Moreover, it is assumed that only
fully loaded DCVs can leave the loading station. This
implies that the baggage queue outflow must be equal
to the DCV queue outflow.

A4 Continuous variables are used for the number of DCVs
in the depot and for the queue lengths.

Without making Assumptions A1 and A2, one would have
to solve the routing problem and the line balancing prob-
lem simultaneously. Assumption A3 is made as dispatching
of empty DCVs in not considered here. Assuming contin-
uous variables for queue lengths is an approximation as in
reality the queue lengths are integer numbers. However,
these assumptions are necessary to keep the control de-
sign problem tractable. Nevertheless, they can be justified
for many practical cases. For example continuous queue
lengths are justified when there is a large number of DCVs
(bags). Assumptions A1 and A2 can be justified when the
variation of the travel times with respect to the chosen
route is not significant. In other words these assumptions
allow us to make a trade-off between accuracy of the model
and tractability of the control problem.
Consider the following notation:

L ∈ N: the number of loading stations with N being the
set of natural numbers.
i ∈ I: an index with I = {1, 2, . . . , L} being the index set.
lDCV,i: the DCV queue length at loading station i.
lbag,i: the baggage queue length at loading station i.
qinDCV,i: the inflow of the DCV queue i.

qinbag,i: the inflow (baggage demand) of baggage queue i.

qoutDCV,i: the outflow of DCV queue i.
D: the number of DCVs in the central depot.
qout,iD : the outflow of DCVs from the central depot to
DCV queue i.
τi: the travel time from loading station i to the depot.
τDi : the travel time from the depot to loading station i.
Qmax

DCV,i: the maximum outflow of DCV queue i.

Consider the following regions partitioned over the space
of baggage and DCV queue lengths:

R1 , {(lbag,i, lDCV,i)|lbag,i > 0, lDCV,i > 0}

R2 , {(lbag,i, lDCV,i)|lbag,i > 0, lDCV,i = 0} (1)

R3 , {(lbag,i, lDCV,i)|lbag,i = 0, lDCV,i > 0}

R4 , {(lbag,i, lDCV,i)|lbag,i = 0, lDCV,i = 0}

Then, for i ∈ I, the dynamics of the system are described
by the following model:



d

dt
lDCV,i(t) = qoutD,i (t− τDi )− qoutDCV,i(t) (2a)

d

dt
lbag,i(t) = qinbag,i(t)− qoutDCV,i(t) (2b)

d

dt
D(t) =

L
∑

i=1

(

qoutDCV,i(t− τi)− qoutD,i(t)
)

(2c)

with

qoutDCV,i(t) =



















































































Qmax
DCV,i

if (lbag,i(t), lDCV,i(t)) ∈ R1

min
(

qoutD,i(t− τDi ), Qmax
DCV,i

)

if (lbag,i(t), lDCV,i(t)) ∈ R2

min
(

qinbag,i(t), Q
max
DCV,i

)

if (lbag,i(t), lDCV,i(t)) ∈ R3

min
(

qoutD,i(t− τDi ), qinbag,i(t), Q
max
DCV,i

)

if (lbag,i(t), lDCV,i(t)) ∈ R4

(2d)

and

qoutD,i (t) =











uout
D,i(t) if D(t) > 0

min
(

uout
D,i(t),

1

L

L
∑

i=1

qoutDCV,i(t− τi)
)

if D(t) = 0

(2e)
where the outflow of the depot uout

D,i(t) is the control

variable. Equations (2a-2c) describe the evolution of the
DCV and baggage queue lengths at loading station i and
the number of DCVs in the depot, respectively. Since the
DCV and baggage queues are coupled, the outflow of DCV
queue (baggage queue) i is defined in (2d) such that the
queue lengths are non-negative. If at a given instant of
time at loading station i, both the baggage and DCV queue
lengths are non-zero, the outflow from the loading station
takes its maximum value Qmax

DCV,i. If a queue length is zero,
the outflow from the loading station must be equal to the
inflow of the corresponding queue or Qmax

DCV,i, whichever
is less. If both queues lengths are zero, then the outflow
must be either the inflow of the DCV queue, the inflow
of baggage queue, or Qmax

DCV,i, whichever is the smallest. In

the same manner, equation (2e) relates the outflow of the
depot to the control variables uout

D,i(t) such that the number
of DCVs in the depot is non-negative. Hereafter, we will
refer to the dynamical model of (2) as the nonlinear model.

3. OPTIMIZATION PROBLEM

In this section the MPC control problem is formulated.
First, in addition to assumptions made in Section 2, we
make the following assumption:

A5 The inflows (baggage demands) of baggage queues and
the control signal are constant between two consecutive
controller sampling time instants.

By Assumption A5, there will be a finite number of
zero crossings for the baggage and DCV queue lengths
between two sampling time instants. This allows us to

explicitly calculate the time instants at which a queue
length becomes zero and to update the corresponding
outflow according to (2d). Obviously, a small sampling
time yields a more accurate model at the cost of increasing
the computational burden. From the practical point of
view, a reasonable sampling time can be chosen based on
physical specifications of the process (e.g., the distances
between loading and unloading stations, average traveling
speed of the DCVs, and the baggage demand profile).
At the current time t = kTs, the MPC optimization
problem is then formulated as:

min
u

L
∑

i=1

∫ NpTs

0

lbag,i(t+ τ)dτ

+ γ1

∫ NpTs

0

(

NDCV −D(t+ τ)−
L
∑

i=1

lDCV,i(t+ τ)

)

dτ

+ γ2

L
∑

i=0

Np−1
∑

l=0

∣

∣ui
l − ui

l−1

∣

∣ (3)

subject to:

uout
D,i(t+ θ) = ui

l, lTs ≤ θ < (l + 1)Ts (4a)

lbag,i(t+ τ)≤ lmax
bag,i (4b)

lDCV,i(t+ τ)≤ lmax
DCV,i (4c)

D(t+ τ)≤Dmax (4d)

ui
l ≥ 0 (4e)

L
∑

i=1

ui
l ≤Qmax

D (4f)

for 0 < τ ≤ NpTs, l = 0, . . . , Np − 1, and for each i ∈ I. In
the above Np is the prediction horizon, NDCV is the total
number of DCVs in the system, and lmax

bag,i, lmax
DCV,i, and

Dmax are the maximum queue levels for the baggage and
DCV queue i, and for the depot, respectively. In addition,
QD,max is the maximum possible outflow of the depot. We
have also used the following notation:

ul = [u1
l , u

2
l , . . . , u

L
l ]

T

u = [uT
0 ,u

T
1 , . . . ,u

T
Np−1

]T

where u is the decision variable. In (3), γ1 and γ2 are
weight factors indicating the relative priority of different
terms in the objective function.
Constraint (4a) expresses that the controls are piecewise
constant (i.e., they are constant within the sampling in-
terval). Constraints (4b-4d) impose bounds on the queue
levels and (4e-4f) impose bounds on the decision vari-
able. Based on measurements at t = kT s, this optimiza-
tion problem can be solved using multi-start sequential
quadratic programming (Antoniou and Lu, 2007) or a
global optimization method. According to the receding
horizon policy only the first element of the decision vec-
tor, u0, is applied to the system and a new optimization
problem is solved at the next sampling time using new
measurements.
Now we will motivate our choice of the objective function
(3). The first term in the objective function penalizes the
sum of the integral over time of the baggage queues in the
loading stations, which is an indirect way of penalizing
the overall baggage waiting time. The second term in



the cost function penalizes the number of DCVs running
around in the network, which is an indication of energy
consumption as well as an indication of wear and tear.
The last term in the cost function penalizes the sum of
variations in the control sequence, which affects the cost
due to maintenance of the actuators.

4. ALTERNATIVE SOLUTION APPROACHES

The optimization problem as stated in Section 3 is a
nonlinear optimization problem, which cannot be solved
efficiently for a large number of loading stations or a
large prediction horizon. In this section, we will derive the
discrete-time evolution equations of the queue lengths that
are next used to transform the optimization problem into
a mixed integer linear programming (MILP) problem and
a linear programming (LP) problem.

4.1 Mixed Integer Linear Programming

As discussed in De Schutter (2002), this sort of problems
can be recast as a MILP problem by making some approx-
imations including the assumptions of Section 2 as well as
the delays being integer multiples of the sampling time Ts,
which then should be sufficiently small.
At the current time kTs, consider the regions as defined in
(1). It is now assumed that no region transition happens
between time step k and time step k + 1. This assump-
tion is necessary to make the discrete-time representation
feasible. The outflow of the baggage and DCV queues is
determined based on the state of lDCV,i(k) and lbag,i(k),
and it is assumed constant until time step k+1. To ensure
the queue lengths are non-negative at time-step k + 1, we
explicitly saturate the computed queue lengths at zero.
For the sake of brevity, we only present the discrete-time
evolution of the DCV queues. Similar equations can be
derived for the baggage queues and the depot. Consider
the following shorthand notation:

qinDCV,i(k) , qoutD,i (k − nD
i )

nD
i , τDi /Ts

ni , τi/Ts

Now we have

qR1

DCV,i(k), qinDCV,i(k)−Qmax
DCV,i

qR2

DCV,i(k), qinDCV,i(k)−min
(

Qmax
DCV,i, q

in
DCV,i(k)

)

qR3

DCV,i(k), qinDCV,i(k)−min
(

Qmax
DCV,i, q

in
bag,i(k)

)

qR4

DCV,i(k), qinDCV,i(k)−

min
(

Qmax
DCV,i, q

in
bag,i(k), q

in
DCV,i(k)

)

Then, the discrete-time evolution of the DCV queue
lengths is given by:

lDCV,i(k + 1) = max

(

lDCV,i(k) + q
Rj

DCV,i(k)Ts, 0

)

if
(

lDCV,i(k), lbag,i(k)
)

∈ Rj (5)

for each i ∈ I. Note that (5) is an approximation of the
nonlinear model as the transitions between the regions,
within one sampling interval, are taken into account in the
nonlinear model. For a small sampling time, inaccuracies
due to this approximation would be negligible at the
cost of increased computational complexity of the model.
To illustrate the difference between (5) and the original
nonlinear model, consider the scenario shown in Fig. 2,
where the DCV and baggage queues of Fig. 2(a) are
approximated with the ones of Fig. 2(b).
The system described by (5) is piecewise affine. The
first two terms of objective function (3) can also be
approximated by affine expressions after discretization.
By introducing some dummy variables, the third term
in (3) can be recast as a linear objective term subject
to linear constraints. The constraints of (4) are linear in
the states of the model and the input. Therefore, the
optimization problem can be solved within the MILP
framework (Bemporad and Morari, 1999), which yields a
MILP. However, MILP is NP-hard as the number of binary
variables and thus the computation time increases with the
number of loading stations. Therefore, we will not focus
further on the MILP approach here.

4.2 Linear Programming

We will now show that the optimization problem of Sec-
tion 3 can be approximated as an LP problem. In the
dynamical model of Section 2, the non-negativity require-
ment on the queue lengths is integrated in the model.
This along with the coupling between DCV and bag-
gage queues 1 , yields the regions of (2d). When the non-
negativity requirements are not integrated in the model
but imposed as optimization constraints, these regions
will not appear, enabling us to formulate the optimization
problem as an LP problem. To achieve this, we introduce
the additional control variable qoutDCV,i(k), i ∈ I, which is

the DCV (baggage) outflow from loading station i at time
step k. We constrain the controls qoutDCV,i(k) and qoutD,i (k)
such that the computed queue lengths at time step k + 1
are non-negative. This is illustrated in Fig. 2(c), where the
queue lengths cannot be zero within the sampling time
interval. Hence, the discrete-time dynamics of the system
are described by the following constrained linear difference
equations for each i ∈ I:

lDCV,i(k + 1) = lDCV,i(k)

+ Ts

(

qoutD,i (k − nD
i )− qoutDCV,i(k)

)

(6a)

lbag,i(k + 1) = lbag,i(k)

+ Ts

(

qinbag,i(k)− qoutDCV,i(k)
)

(6b)

D(k + 1) = D(k)

+ Ts

L
∑

i=1

(

qoutDCV,i(k − ni)− qoutD,i (k)
)

(6c)

1 Recall that the baggage and DCV queues have the same outflow.
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Fig. 2. Evolution of baggage (solid line) and DCV (dashed-line) queue lengths between time-instants k and k + 1, for
a particular scenario. One can see that the slope of the queue lengths can change several times for the nonlinear
model within the sampling time interval. For the MILP model, the queues start with the initial slope and saturate
at zero, and for the LP model, the queue lengths will not hit zero in between two sampling time instants.

lbag,i(k + 1)≥ 0 (6d)

lDCV,i(k + 1)≥ 0 (6e)

D(k + 1)≥ 0 (6f)

Using (6), the MPC optimization problem can be recast
as an LP problem. Consider the following notation:

u1(k) = [qoutD,1(k), . . . , q
out
D,L(k)]

T

u2(k) = [qoutDCV,1(k), . . . , q
out
DCV,L(k)]

T

u
Np

1 (k) = [uT
1 (k),u

T
1 (k + 1), . . . ,uT

1 (k +Np − 1)]T

u
Np

2 (k) = [uT
2 (k),u

T
2 (k + 1), . . . ,uT

2 (k +Np − 1)]T

lmax
DCV = [lmax

DCV,1, . . . , l
max
DCV,L]

T

lmax
bag = [lmax

bag,1, . . . , l
max
bag,L]

T

Qmax
DCV = [Qmax

DCV,1, . . . , Q
max
DCV,L]

T

The optimization problem is then formulated as:

min
u

Np

1
(k),u

Np

2
(k)

Ts

2

L
∑

i=1

Np
∑

j=1

(

lbag,i(k+ j)+ lbag,i(k+ j−1)
)

+ γ1
Ts

2

L
∑

i=1

Np
∑

j=1

(

2NDCV− lDCV,i(k+ j)− lDCV,i(k+ j− 1)

−D(k+j)−D(k+j−1)
)

+γ2

∥

∥

∥
u
Np

1 (k − 1)− u
Np

1 (k)
∥

∥

∥

1
(7)

subject to the following constraints:

0 ≤ lDCV(k + j) ≤ lmax
DCV (8a)

0 ≤ lbag(k + j) ≤ lmax
bag (8b)

0 ≤ D(k + j) ≤ Dmax (8c)

0 ≤ u2(k + j − 1) ≤ Qmax
DCV (8d)

u1(k + j − 1) ≥ 0 (8e)

‖u1(k + j − 1)‖1 ≤ Qmax
D (8f)

for j = 1, . . . , Np. One should note that the LP formu-
lation is an approximation of nonlinear one. The differ-
ence between (6) and the original nonlinear model can
be realized by comparing Fig. 2(a) with Fig. 2(c), where
the evolution of the baggage queue length is plotted for
a particular scenario. It is obvious that the linear model
is less accurate than the nonlinear model. Therefore, the
solution of the LP may be suboptimal with respect to the
one of the nonlinear optimization problem. However, the
LP can be solved much more efficiently than the nonlinear
optimization problem. Therefore, the LP approximation
can provide a balanced trade-off between computational
effort and optimal cost.

5. SIMULATION RESULTS

In order to illustrate the performance of the proposed
control approach, we consider the baggage handling sys-
tem of Fig. 1 with two loading stations. The simulation
parameters are given in Table 1. We consider the follow-
ing scenario: There are initially 20 and 50 bags in the
baggage queues 1 and 2 respectively, and 120 DCVs in
the depot. The DCV queues are initially empty. A pulse-
shaped demand of 60 s duration arrives at loading station
1 at t = 30 s. Fig. 3(c) depicts the optimal control sequence
computed for the demand of Fig. 3(a). The resulting queue
lengths are illustrated by Fig. 3(b). It is observed that
for loading station 2, the controller dispatches just enough
DCVs as needed to transfer all bags. For loading station 1,
the controller dispatches DCVs in advance such that there
are enough DCVs in the DCV queue when the demand
pulse arrives and it continues to dispatch DCVs at the
same rate as the demand during the presence of demand.
The number of DCVs in the depot is depicted in Fig. 3(d).
In Table 2, we compare computation time and total closed-
loop cost of three different optimization approaches for a
particular scenario and for different sampling times. These
methods are sequential quadratic programming (SQP),
SQP initialized by the solution of the LP problem (LP-
SQP), and LP. For the SQP approach, a multi-start al-
gorithm with 10 random feasible initial points is used.
For the LP-SQP approach, the LP problem is solved and
its solution u∗

LP is used as the initial point for the SQP
algorithm. The LP problem is solved using the simplex
method. The last column of Table 2 shows the relative cost
and computation time of the LP approach with respect to
the LP-SQP approach. The relative cost and relative CPU
time are obtained by dividing the cost and computation
time of the LP-SQP approach by the corresponding values
of the LP approach. It is obvious that in most cases the LP-
SQP approach achieves the global optimum as obtained by
the SQP approach with less computational effort. One can
observe that for a given sampling time, the closed-loop
cost of the LP approach is higher than the ones of the
SQP and LP-SQP approaches while its computation time
is significantly less. Furthermore, for decreasing values of
the sampling time, the performance of the LP approach
gets closer to the one of the LP-SQP approach while its
relative computation burden is low.

Table 1. Simulation parameters

Qmax
DCV,i

[DCV/s]
Qmax

D
[DCV/s]

ni nD
i

NDCV Ts

[s]
Np
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Fig. 3. closed-loop simulation results using SQP method.

6. CONCLUSIONS

A continuous-time event-driven model was developed for
the baggage handling system. Based on this model, a so-
lution for the line balancing problem was proposed within
the context of model predictive control that aims at min-
imizing the overall baggage delay as well as energy con-
sumption and wear and tear. The underlying optimization
problem is a nonlinear optimization problem. We showed
that by making some simplifying assumptions, the problem
can be recast as a linear programming problem. Our re-
sults show that the nonlinear optimization approach based
on multi-start sequential quadratic programming achieves
the lowest closed-loop cost but it is computationally very
expensive. The linear programming approach is the fastest
but yields suboptimal solutions. However, for a sufficiently
small sampling time, it can achieve a performance very
close to the one of the multi-start sequential quadratic pro-
gramming method with significantly less computational
burden. We also showed that for large sampling times, the
LP solution can still be used in combination with the SQP

Table 2. Optimal closed-loop cost and compu-
tation time for different methods.

Ts opt. cost cpu time rel. cost
[s] method [s] rel. cpu

5
SQP

LP-SQP
LP

674.167
674.170
682.5

313.866
6.403
0.848

98.78%
7.55

10
SQP

LP-SQP
LP

926.667
925.993
960

101.496
2.823
0.448

96.53%
6.30

20
SQP

LP-SQP
LP

1438.667
1438.667
1520

34.589
1.698
0.240

94.65%
7.07

40
SQP

LP-SQP
LP

2484.670
2484.670
3040

19.935
1.186
0.146

81.73%
8.12

60
SQP

LP-SQP
LP

3554.667
3554.667
4560

10.891
0.753
0.118

77.95%
6.38

algorithm to yield fast yet near optimal solution.
Further steps will include relaxing some of the assumptions
we made to obtain a more realistic model as well as
investigating other solution approaches by using methods
from explicit model predictive control and methods from
classical control of time-delay systems.
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