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Abstract: In this paper, model predictive control of traffic networks using first-order macro-
scopic link transmission model (LTM) is considered. The LTM model provides fast yet accurate
predictions for traffic networks compared to other models. In order to use this model for traffic
control, it is extended to include ramp metering. Using the extended LTM model as prediction
model in a model predictive control framework, one can determine optimal control signals
for metered on-ramps. However, the optimization problem is still nonlinear and nonconvex,
and in general it is not tractable to find its global optimum, as global or multi-start local
optimization techniques take considerable time. Therefore, in this paper the extended LTM
model is transformed into a mixed logical dynamic model. The resulting optimization problem
can be recast as a mixed integer linear program (MILP) that can be solved much more efficiently
than the nonlinear optimization problem, and it allows to determine a global optimum efficiently.
A simple case study is selected, first to test the modeling performance of the extended LTM
and next to compare the control performance of the MILP approach and the original nonlinear
formulation in terms of computational efficiency and total cost.

Keywords: Traffic control, link transmission model, predictive control, mixed logical dynamics,
mixed integer linear programming.

1. INTRODUCTION

With the increasing number of vehicles, highways are be-
coming more and more congested. This along with increas-
ingly stringent traffic requirements necessitates the use of
efficient large-scale traffic management and control meth-
ods. One particular solution to this problem is based on
Model Predictive Control (MPC), where a finite-horizon
constrained optimal control problem is solved in a receding
horizon fashion (Rawlings and Mayne, 2009; Maciejowski,
2002).

In the MPC framework a model of the process is required
to predict its behavior over a prediction window. For traffic
networks, a wide range of traffic flow models have been
developed (Hoogendoorn and Bovy, 2001). MPC requires
a traffic model that can provide accurate predictions of
the traffic states while it has low computational complex-
ity. The METANET model (Messmer and Papageorgiou,
1990) is a second-order model that is able to model the
traffic network with good accuracy. However, this is a
nonlinear model and when it is used as prediction model in
the MPC framework, a nonlinear nonconvex optimization
problem results. This approach has been considered in
Kostsialos et al. (2002), Hegyi et al. (2005), and Belle-
mans et al. (2006); for a simple case study, it has been
shown that solving the nonlinear optimization problem
based on the METANET model takes considerable time
and in fact there is no guarantee to have a unique global

optimal solution. Groot et al. (2011) proposed a method
to transform the original nonlinear problem into a mixed
integer linear optimization problem. This has been done
by approximating the METANET model by piecewise
affine (PWA) functions. Although this can solve the afore-
mentioned computational complexity problem, using this
approach for larger networks is impractical and still takes
large amount of computation time.

One way to overcome this problem for large-scale traffic
networks is to use first-order models like the cell trans-
mission model (Daganzo, 1994) and the link transmission
model (Yperman, 2007). These models are mostly used
for dynamic traffic assignment problems (Peeta and Zil-
iaskopoulos, 2001). However, this paper considers using
them for other control purposes. The Cell Transmission
Model (CTM) has been widely used to model traffic evo-
lution.

However, using the CTM as prediction model in the MPC
framework will result in a nonlinear optimization problem.
One way to tackle this problem is using the relaxed formu-
lations proposed by Ziliaskopoulos (2000), Ukkusuri and
Waller (2008) to obtain linear problems. This is however
an approximation for the original optimization problem.
Moreover, according to Lo (2001) this approximation leads
to a phenomenon called vehicle holding. This means that
vehicles are unnecessarily held in cells for some time period
despite there being spare capacity at the next downstream



cell. Therefore, Lin and Wang (2004) and Lo (2001) have
proposed a new formulation based on the CTM that leads
to a mixed integer linear optimization problem. Besides
not using approximation, reaching a global optimum is
also guaranteed.

Recently the link transmission model (LTM) has been
developed by Yperman (2007). The LTM has a lower
computational complexity than the CTM and METANET.
This is due to the fact that the LTM calculates the
traffic variables for only the boundaries of the links.
Moreover, to reduce computational efforts in CTM, one
could enlarge the length of the time step, but such an
operation leads to reduction in accuracy. In the LTM, it
can be proved (Yperman et al., 2005) that one can get
acceptable accuracy with less computational effort. For the
first time, we aim at using the LTM for prediction in the
MPC framework. However, the LTM is still a nonlinear
model.

In this work, we aim at using a procedure for transforming
the nonlinear LTM into a system of linear equations
and inequalities with real and integer variables. Based
on this new formulation, one can build a mixed integer
linear problem, which can be solved more efficiently than
the original nonlinear optimization problem based on the
original LTM.

The remainder of this paper is organized as follows. In
Section 2, first the original LTM is briefly introduced and
next the model is extended to include ramp metering.
Next, in Section 3 MPC for traffic networks is presented
and traffic performance functions are briefly reviewed. In
Section 4, rules for transforming the LTM into a system of
linear equalities and inequalities are presented. At the end,
the final mixed integer linear optimization problem based
on the new formulation of the LTM is established. A case
study in Section 5 is presented to test the nonlinear MPC
based on the original LTM and the new approach based
on the new formulation of the LTM. The performance of
the two approaches is compared in terms of computational
efficiency and total cost. Conclusions and topics for further
research are given in Section 6.

2. THE LINK TRANSMISSION MODEL

The Link Transmission Model (LTM) is a model orig-
inally developed for dynamic traffic assignment (Yper-
man, 2007). The role of dynamic traffic assignment (DTA)
(Peeta and Ziliaskopoulos, 2001) is to first assign optimal
routes to the travelers using a route choice model and then
simulate and evaluate the assigned routes using a traffic
model. The traffic model should be capable of describ-
ing the traffic evolution of a transportation network (e.g.
freeway or urban networks). In the following, the LTM is
presented briefly. The reader is referred to Yperman (2007)
and Yperman et al. (2005) for an in-depth description of
the LTM. Right after this part, an extension to the original
model for including ramp metering signals is proposed.

In the LTM framework, traffic networks consist of homoge-
neous links i, that start at an upstream boundary denoted
by x0

i and end at a downstream boundary denoted by xL
i .

The links have a length Li and they are connected to each
other via nodes. A node can represent a change in the

characteristics of a road such as capacity, speed limits,
etc. (inhomogeneous nodes), merging lanes and/or on-
ramps (merge nodes), or diverging lanes and/or off-ramps
(diverge nodes). There are also origin and destination
nodes, which can be included in the inhomogeneous nodes
category. Moreover, cross nodes are defined for modeling
urban intersections.

The LTM is capable of determining time-dependent link
volumes, link travel times, and route travel times in traffic
networks. To this aim, the LTM uses the cumulative
number of vehicles as a representation for the traffic
evolution. The cumulative number of vehicles N(x, t) is
defined for the upstream and downstream boundaries of
the links. The values of N(x0

i , t) and N(xL
i , t) are updated

using flow functions of links and nodes defined in the
following.

The sending number of vehicles 1 Si(t) of link i at time t is
defined as the maximum amount of vehicles that could
leave the downstream end of this link during the time
interval [t, t + ∆t], where ∆t is the simulation time step.
It is constrained by the link’s maximum flow qM,i and is
formulated as

Si(t) = min

[

N

(

x0
i , t+∆t−

Li

υfree,i

)

−N(xL
i , t), qM,i∆t

]

(1)

where υfree,i and Li are the free-flow speed and the length
of link i.

Similarly, the receiving number of vehicles Ri(t) of link i
at time t is defined as the maximum amount of vehicles
that could enter the upstream end of this link during the
time interval [t, t+∆t], and it is also limited by the link’s
maximum flow. It is formulated as follows

Ri(t) = min

[

N

(

xL
i , t+∆t+

Li

wi

)

+ ρmaxLi −N(x0
i , t),

qM,i∆t

]

(2)

where wi and ρmax are the congestion speed and the jam
density, respectively.

2.1 Node models

For each of the nodes, a transition number of vehicles
Gij(t) is defined and determined by using the sending
and receiving numbers of vehicles of the connected links.
In fact, the transmission flow determines the maximum
number of vehicles that can be transferred from incoming
links to outgoing links of a node during the time interval
[t, t+∆t].
For the inhomogeneous nodes, the transition number
Gij(t) is formulated as

Gij(t) = min
[
Si(t), Rj(t)

]
(3)

where i is the incoming link and j is the outgoing link.

For origin nodes, the transition number of vehicles is
determined as follows:

Gj(t) = min
[
No(t+∆t)−N(x0

j , t), Rj(t)
]

(4)

1 Yperman (2007) uses the term “sending flow” for this purpose,
but since it is not a flow, we prefer to use term “number of vehicles”.
The same holds for other model variables that will be defined later.



where j is the index of the first link connected to the origin
and No denotes the traffic demand in origins in terms of
the cumulative number of vehicles. A simple queue model
for origins is defined as:

ωo(t) = No(t)−N(x0
j , t) (5)

where ωo(t) and N(x0
j , t) denote the number of vehicles

standing in the queue and the cumulative number of ve-
hicles that already entered the network at time t, respec-
tively. It should be noted that this a Point-Queue(P-Q)
model.

The transition number of vehicles for destination nodes is
equal to the sending number of vehicles of the last link
connected to the destination node:

Gj(t) = Si(t) (6)

with j and i the destination and the last link. Merge nodes
can represent merging of links and/or on-ramps in traffic
networks. To model a merging node n with predefined
priorities for the incoming links, Lebacque (1996) has
proposed the following equation for the transition number
of vehicles of the incoming links of the merge node

Gij(t) = min
[
Si(t), pijRj(t)

]
for all i ∈ In (7)

where pij is the priority parameter associated with incom-
ing link i connected to the only outgoing link j via the
merge node, and In is the set of incoming links to node n.
The priority parameter is determined for each link based
on the characteristics of the link (e.g. capacity, number of
lanes,...) and it should be noted that

∑

i

pij = 1.

Jin and Zhang (2003) proposed another model that does
not have fixed priority parameters. The priority propor-
tions are equal to the proportions of Si(t) of the incoming
links. The transition number of vehicles is formulated as

Gij(t) = min

[

Rj(t)Si(t)
∑

i
′
∈In

Si′(t)
, Si(t)

]

for all i ∈ In (8)

where j is the only outgoing link of merge node n. Finally,
the third model for a merge node proposed by Daganzo
(1995), is formulated as follows:

Gij(t) = median

[

Si(t), Rj(t)−

(( ∑

i′∈In

Si′(t)
)

− Si(t)

)

,

pijRj(t)

]

for all i ∈ In (9)

Gij is determined for each link i from the set of incoming
links In connected to outgoing link j via the merge node
n.

For diverge nodes that are used to model diverging links
and/or off-ramps in traffic networks, two types of equa-
tions have been proposed in the literature. The first one
was proposed by Daganzo (1995):

Gij(t) = qij min

[

Si(t), min
j′∈Jn

(
Rj′(t)

qij′

)]

for all j ∈ Jn

(10)
where Jn is the set of outgoing links, qij is the split factor
and i is the unique incoming link of node n. The second
type of equation for a diverge node has been proposed by
Lebacque (1996):

Gij(t) = min
[
pijSi(t), Rj(t)

]
for all j ∈ Jn (11)

In general, for intersections with two or more upstream and
downstream links, we can combine the merge and diverge
models. As in Yperman et al. (2005), we combine (8) and
(10). The resultant equation becomes:

Gij(t) = pij min

[

min
j′∈Jn

(

Rj(t)Si(t)
∑

i′∈In

pi′j′Si′(t)

)

, Si(t)

]

for all i ∈ In and for all j ∈ Jn (12)

Having determined the transition number of vehicles of all
nodes, the cumulative number of vehicles for the upstream
and downstream boundaries of links can be updated using
the following equations:

N(xL
i , t+∆t) = N(xL

i ) +
∑

j∈Jn

Gij(t) for all i ∈ In (13)

N(x0
j , t+∆t) = N(x0

j ) +
∑

i∈In

Gij(t) for all j ∈ Jn (14)

For each node n ∈ N where N is the set of all nodes in
the traffic network.

2.2 Extension of the LTM model for ramp metering

In this section the LTM model is extended to include
control signals. In order to implement the action of ramp
metering in the LTM framework, one can add a constraint
on the transition number of vehicles from the on-ramp to
the mainstream. Recall from (7), the modified equation is
as follows:

Gij(t) = min
[
Sij(t), pijRj(t), Ciri(t)

]
(15)

where i is the incoming link (the on-ramp), j is the out-
going link, Ci is the capacity of the on-ramp (veh/h), and
ri(t) ∈ [0, 1] is the metering signal. A similar modification
can be applied to either (8) or (9).

3. MODEL PREDICTIVE CONTROL FOR TRAFFIC
NETWORKS

Model Predictive Control (MPC) (Maciejowski (2002),
Rawlings and Mayne (2009)) is an advanced control
method for industrial processes and traffic networks. The
main idea is to use a prediction model of the process (in
our case: the traffic network) and an objective function
assessing the desired performance of the process, and to
find the optimal control inputs by means of an optimiza-
tion algorithm. In our case, the LTM is used to predict the
behavior of a traffic network over a prediction horizon. The
optimization algorithm minimizes the objective function
and finds a sequence of optimal control inputs for the
whole prediction horizon,but only the first control input
sample is applied to the traffic network and the procedure
is repeated in the next control step but in a rolling horizon
style. In other words, the prediction horizon is shifted
one step forward, and the prediction and optimization
procedure over the shifted horizon are repeated using new
measurements.

For a traffic network, one can define different objective
functions based on travel time, fuel consumption of ve-
hicles, emissions, etc. The objective function we chose is
the total time spent in the traffic network, consisting of
the time vehicles spend in queues at mainstream origins
and on-ramps and the travel time on the freeway. The



Total Time Spent (TTS) objective function for the MPC
controller is formulated as follows

JTTS(kc) = T

M(kc+Np)−1
∑

k=Mkc

(
∑

i∈Iall

ρi(k)Liλi+
∑

o∈Oall

ωo(k)

)

(16)

where T is the simulation time step length, kc is the
controller time step counter, and k is the model time step
counter. In fact, we assume that the controller time step
length is an integer multiple of the simulation time step
length: Tc = MT . Moreover, Np is the control horizon, ρi
is the density of link i, ωo is the queue length at origin
o, and Iall and Oall are the set of all links and the set
of all origins, respectively. In order to apply the objective
function (16) to our continuous-time LTM model, we have
to discretize the model and take care of the delay in the
sending/receiving number of vehicles. Further, we have to
estimate the density of links using the following:

ρi(k) =
N(xL

i , k)−N(x0
i , k)

Li

(17)

However, we are not able to apply control inputs that have
high fluctuations. This is due to the fact that in reality
traffic signals cannot vary with high frequency over time.
Further, high fluctuations in control inputs may cause
instability in some cases. Therefore, a penalty term on
control input deviations is usually added to the objective
function. In our case, the control inputs are the metering
signals of on-ramps. The penalty term is formulated as

ζ

kc+Np−1
∑

l=kc

∑

o∈Oramp

∣
∣ro(l)− ro(l − 1)

∣
∣ (18)

where ro is the metering signal and Oramp is the set of
indices of metered ramps 2 . The ζ is a weighting coef-
ficient. Also, to reduce the complexity, control variables
are sometimes taken constant after passing a predefined
control horizon Nc. Taking this into account, Np in (18)
should be replaced by Nc. Finally, The penalty term is
added to the TTS objective function (16). However, the
total objective function is nonlinear 3 . This along with
using the LTM model for prediction leads to a nonlinear
nonconvex optimization problem that has to be solved in
the MPC framework to find the optimal control signals.
At every control time step, there is no guarantee to be
able to find a unique global solution. Furthermore, the
nonlinear optimization may take considerable time to find
a (local) optimum. In the next section, a solution to this
problem is proposed. In fact, we aim to transform the
nonlinear nonconvex optimization problem into a Mixed
Integer Linear Problem (MILP).

4. MLD-MPC FORMULATION FOR THE LTM

Using the methods proposed by Williams (1993) and
adopted in Bemporad and Morari (1999), one can trans-
form the model and the objective function into a system of

2 It should be noted that mainstream origins’ outflows can also be
controlled in some cases, so in that case they can also be included in
the set Oramp.
3 But in fact it is piecewise-affine (PWA), a property that will be
used later on in the next section.

linear equalities and inequalities consisting of real and inte-
ger variables and end up with an MILP. The MILP can be
efficiently solved using existing MILP solvers like CPLEX,
GLPK, or lp solve (see Atamturk and Savelsbergh (2005)).
The MILP solvers can find the global optimum and this
is a significant advantage over the nonlinear optimization
problem solvers.

4.1 Mixed Logical Dynamic Models

In order to get an MILP, we first have to transform the
model of the system into a Mixed Logical Dynamic (MLD)
form. An MLD model is described by the following system
of equations (Bemporad and Morari (1999))

x(k + 1) =Ax(k) +B1u(k) +B2δ(k) +B3z(k) + f

y(k) =Cx(k) +D1u(k) +D2δ(k) +D3z(k) + g

E1x(k) + E2u(k) + E3δ(k) + E4z(k) ≤ h,

where δ(k) ∈ {0, 1}nb denotes the vector of binary vari-
ables used to indicate which region of operation the system
is in, and z(k) ∈ R

nz is the vector of auxiliary variables.
In the following, we will elaborate more on how to get
the MLD form by introducing some basic transformation
rules. Consider the statement f(x) ≤ 0, where f is an
affine function over a bounded set X of the input variable
x. Moreover, assume that the constantsm andM are lower
and upper bounds of the function f over X. By defining
δ ∈ {0, 1}, the following holds

[f(x) ≤ 0] ⇔ [δ = 1], iff

{
f(x) ≤ M(1− δ)

f(x) ≥ ǫ+ (m− ǫ)δ
(19)

where ǫ is a small tolerance, typically the machine preci-
sion 4 . Moreover, δf(x) can be replaced by the auxiliary
real variable z = δf(x). In fact, z = δf(x) is equivalent to







z ≤ Mδ

z ≥ mδ

z ≤ f(x)−m(1− δ)

z ≥ f(x)−M(1− δ)

(20)

Now, using the basic rules, we can transform the LTM
model into an MLD form.

4.2 MLD transformation of the LTM

The LTM model is continuous-time in nature. Thus, in
order to apply the MLD transformations, first the equa-
tions should be discretized. To this aim, we assume that
(

Li

υfree,i

)

is a multiple integer of the sample time T . Fur-

ther, time index t is replaced by k.

• Recalling the sending number of vehicles equation
from (1), it can be rewritten as follows

Si(k) = fi,1(k) + [fi,2(k)− fi,1(k)]δi(k)
︸ ︷︷ ︸

zi(k)

, (21)

with

fi,1(k) = N

(

x0
i , k + 1−

Li

υfree,i

)

−N(xL
i , k) (22)

4 The reason for introducing ǫ is that an equation like f(x) > 0 does
not fit the MLD framework, in which only nonstrict inequalities are
allowed. Therefore, the equation f(x) > 0 is replaced by the equation
f(x) ≥ ǫ.



fi,2(k) = qM,iT (23)

and δi(k) = 1 ⇔ [fi,2(k)− fi,1(k)] ≤ 0. Following the
MLD rules, we reach the following linear equation

Si(k) = fi,1(k) + zi(k), (24)

subject to the following constraints,






{fi,2(k)− fi,1(k)} ≤ M(1− δi(k))

{fi,2(k)− fi,1(k)} ≥ ǫ+ (m− ǫ)δi(k)

zi(k) ≤ Mδi(k)

zi(k) ≥ mδi(k)

zi(k) ≤ [fi,2(k)− fi,1(k)]−m(1− δi(k))

zi(k) ≥ [fi,2(k)− fi,1(k)]−M(1− δi(k))

where M and m are upper and lower bounds for
{fi,2(k)−fi,1(k)} . These constraints along with (22),
(23), and (24) are equivalent to (1).
For the receiving number of vehicles (2), the trans-

formation procedure is similar.
• The transition number of vehicles for merging nodes
can also be transformed into the MLD form. For (7),
one can assume that the priority parameter pij is
constant, which is not far from reality (since this pa-
rameter is mostly related to physical properties of the
links). By this assumption, the transformation will be
similar to the sending number case. For (8), one can
use simple approximations for the multiplication of
the sending numbers like assuming that they can be
taken as constant over a certain period of time, or
trying to approximate the function with piecewise-
affine (PWA) functions Groot et al. (2011). Next,
the PWA approximation can be transformed into the
MLD form (Bemporad and Morari, 1999). For (9),
recall

Gij(k) =median

[

Si(k), Rj(k)−
(

(
∑

i′∈In

Si′(k))

− Si(k)
)

, pijRj(k)

]

for all i ∈ In (25)

The median function is equal to the following condi-
tions:

G =median(a, b, c) =






a if [(a ≤ b and c ≤ a) or (a ≤ c and b ≤ a)]

b if [(a ≤ b and b ≤ c) or (c ≤ b and b ≤ a)]

c if [(a ≤ c and c ≤ b) or (b ≤ c and c ≤ a)]

Thus, following the MLD rules, these conditions
can also be transformed into the MLD form, yielding
an expression of the form

G = aδ1
︸︷︷︸

z1

+ bδ2
︸︷︷︸

z2

+ cδ3
︸︷︷︸

z3

(26)

along with a set of 34 inequalities.
• Transformation of other types of node models is
straightforward, since they contain the min function
and the transformation procedure for that was ex-
plained in the Si(k) case.

4.3 Final MILP problem

After transforming the LTM model into the MLD form,
one can recast the original nonlinear optimization problem
into an MILP. However, to this aim a linear objective

function is needed. Recall from Section 3, the penalty
term (18) that has been added to the objective func-
tion is piecewise affine. Thus it can also be transformed
into a mixed-integer linear form by defining additional
binary and auxiliary variables. However, there is another
approach to recast (18) as a linear problem that does not
need any binary variable. It can be easily proved that the
following optimization problems have the same optimal
solution:

min
θ

∑∣
∣θi
∣
∣⇐⇒







min
θ,β

∑

βi

βi ≥ θi

βi ≥ −θi

Hence, instead of reformulating (18) into an MLD form
too, one can use the above linear problem.
Finally, using the total linear objective function and the
MLD-LTM model, the final MILP problem can be con-
structed. The MILP can be solved using efficient solvers
like CPLEX.

5. CASE STUDY

In order to test the proposed approach, a benchmark
traffic network example has been selected from Hegyi et al.
(2005). As shown in Fig. 1 the network consists of a
two-lane freeway with an on-ramp. Both the mainstream
origin and the on-ramp are controlled. The network is
modeled using the modified version of the LTM that
includes the ramp metering signals. We take the standard
parameter settings used by Hegyi et al. (2005): υfree =
102 km/h, Ts = 12 s, ρmax = 180 veh/km/lane, ρcrit =
33.5 veh/km/lane, L1 = 4 km, L2 = 2 km and simulate
over a time horizon of 2.5 hours. Simulation results for the
no-control case are shown in Fig. 2

The flows of the vehicles from the mainstream origin
and the on-ramp are controlled in order to minimize the
sum of the TTS objective function (16) and the penalty
term (18) with ζ = 0.4. The control signals are obtained
first by using an MPC controller based on the nonlinear
LTM and next by using the MLD-MPC approach. The
performance of the two approaches is compared in terms
of computational efficiency and total cost. The results
are shown in Table 1. Based on the prediction horizon
and the control horizon, different scenarios have been
defined. The simulation time step T and the control
time step Tc are both 12 s. For each scenario, the total
time spent over the full 2.5 hours simulation period is
compared for both approaches. Also the computation
time for one run of the optimization step is presented,
averaged over the number of simulation steps. As can
be seen in the table, the MLD-MPC approach returns
values that are close to the original TTS, while needing
a shorter computation time. It should be noted that
for the nonlinear optimization algorithm, a multi-start
optimization approach with several initial points should
be used (In our case we called the nonlinear optimization
algorithm 6 times within each MPC optimization step).
It means that the CPU times for nonlinear MPC can
in fact be a multiple of the current values presented
in Table 1. With the increase in the prediction horizon
and the control horizon, the mean computation time of
one optimization step over the simulation horizon for the
MLD-MPC approach increases only a little while in the



Table 1. Comparison of TTS (veh.h) and CPU Time (s) for two approaches

Scenario TTS (nonlinear MPC) TTS (MLD-MPC) CPU time (nonlinear MPC) CPU time (MLD-MPC)

Np = 7, Nc = 3 893.4 veh.h 897.5 veh.h 0.8306 s 0.0886 s
Np = 7, Nc = 5 893 veh.h 896.8 veh.h 1.0450 s 0.1473 s
Np = 10, Nc = 9 891.4 veh.h 893.7 veh.h 2.7230 s 0.2452 s

mainstream metering

Fig. 1. Set-up of the case study
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Fig. 2. Simulation results for the ’no control ’ case

nonlinear MPC, the amount of change is considerable.
Therefore, from the increasing values in computation time
for larger prediction and control horizons, the MLD-MPC
approach is expected to even perform significantly better,
when it is applied to larger traffic networks.

6. CONCLUSIONS AND FURTHER RESEARCH

Modeling and control of traffic networks using the Link
Transmission Model has been presented in this research.
The LTM model was extended to include ramp metering
and then was used to model a section of a freeway. Simu-
lation results showed fast yet accurate modeling using the
LTM. For the first time, the LTM was used as prediction
model in the MPC framework in order to minimize a traffic
objective function. Since a direct MPC implementation
based on the nonlinear LTM was still computationally

inefficient, a reformulation of the LTM was proposed in
order to eventually obtain an mixed integer linear problem.
For the given case study, this new approach gives results
close to the ones obtained by the nonlinear MPC while the
CPU time goes down significantly. Moreover, it is expected
that for larger networks the benefits of the new approach
over the nonlinear MPC will become even more clear.
As an extension to this work, the LTM could be modified in
order to include the effects of variable speed limits. Once
the new modifications are evaluated and approved on a
case study with real data, one can use the basic rules to
transform the new model into an MLD form too. With
this, full control of traffic networks using ramp metering
and variable speed limits will become possible using a
fast traffic model (extended LTM) and an efficient control
approach (MLD-MPC).
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