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Micro-Ferry Scheduling Problem with
Charging and Embarking Times

M. Burger ∗ B. De Schutter ∗ J. Hellendoorn ∗

∗ Delft Center for Systems and Control, Delft University of
Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
(Email: {m.burger, b.deschutter, j.hellendoorn}@tudelft.nl)

Abstract: This paper considers a variant of the travelling salesman problem where both
energy consumption and variable travel speeds are taken into account. The problem describes
the scheduling of pick-ups and deliveries of passengers with micro-ferries, where the energy
consumption is dependent on the speed of the ferries. The schedule should be such that the
ferries do not run out of energy during a trip, and time-window misfits, travel times, and waiting
times for passengers are minimised. Scheduling of many transportation requests is made possible
by including the charging of the ferries in the scheduling procedure, whereas the inclusion of
embarking and disembarking times ensures that the passengers can board the ferry comfortably.

Keywords: Scheduling, Energy Consumption, Variable Speed, Travelling Salesman Problem

1. INTRODUCTION

In this paper the modelling of a scheduling problem for
micro-ferries is discussed. The ferries are used to transport
customers between several locations along the water, and
the customers can provide a desired time-window for
picking them up. The aim of the micro-ferry scheduling
problem is to find a schedule that minimises the energy
consumption, while assuring that the micro-ferries do
not run out of energy. The challenge in the micro-ferry
scheduling problem lies in the consideration of the energy
consumption, and the possibility to vary the speed of
the ferry for each transport. More common objectives as
minimising travel times, waiting times, and time-window
misfits are also included. It is a variant of the travelling
salesman problem (TSP) (Bektaş, 2006; Laporte, 1992)
with varying travel times, where the energy consumption is
minimised and charging (refuelling) is taken into account.

Traditionally the TSP and its variants —like the vehicle
routing problem (Kulkarni and Bhave, 1985; Toth and
Vigo, 2001) and pick-up and delivery problem (Savelsbergh
and Sol, 1995)— are concerned with minimising the trav-
elled distance. These results do not take into account that
vehicles can often move at different speeds, thereby affect-
ing the travel times and possibly other characteristics that
might be optimised. Recently the literature shows some
work regarding routing and scheduling problems where
the speed of vehicles and energy consumption becomes
important. In (Bektaş and Laporte, 2011) the pollution
routing problem has been proposed, which is a vehicle
routing problem taking into account the pollution caused
by the vehicles, depending on both the speed and load of a
vehicle. The objective is to optimise the routing while con-
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sidering the travel distance, greenhouse emissions, travel
times, and costs. The speed of the vehicle is fixed for
each road, and it is not explicitly used as an optimisation
variable. Energy consumption is considered by Kara et al.
(2007), who define the energy-minimising vehicle routing
problem by considering the load of the vehicles, and ar-
guing that minimising the energy consumption is similar
to minimising the product of the load and the travelled
distance. The speed of the vehicle is not taken into account
in determining the energy consumption. In (Xiao et al.,
2012) a vehicle routing problem is discussed where the fuel
cost (= unit fuel cost x road-dependent fuel consumption
rate x road length) instead of the road length is used as
the constant cost term for travelling.

Instead of the (constant) distance that is used as a cost in
the TSP, we consider a (variable) speed-dependent energy
consumption as a cost. In (Burger et al., 2012) we first
proposed the micro-ferry scheduling problem with soft
time-windows. If feasible, the proposed method ensures
that the transportation requests are spread over the micro-
ferries such that they do not run out of energy while
handling a request. In this paper the work is extended
by including the possibility to recharge the micro-ferries
in between the requests, and by taking into account the
time needed for embarking and disembarking the micro-
ferries. Including the charging ensures that there will never
be too little energy for handling all requests, and therefore
it allows the scheduling of more requests than the micro-
ferries could handle based on the current energy levels.

This paper is organised as follows. Section 2 gives the
formulation of the micro-ferry scheduling problem by in-
troducing concepts and variables that will be used, based
on two separate networks; one describes the physical net-
work with stations as nodes and routes as arcs, the other
describes a virtual network with transportations as nodes
and relocations as arcs. Section 3 gives a summary of the
work presented in (Burger et al., 2012); the extensions



introduced in this paper are given in Section 4. To solve
the scheduling problem efficiently a linear programming
approximation is used, as described in Section 5. The
resulting mixed-integer linear program is tested in simu-
lation, and the results are discussed in Section 6, followed
by conclusions in Section 7.

2. PROBLEM FORMULATION

The problem of scheduling the micro-ferries can be solved
by considering two distinct networks. With micro-ferries
we mean small, autonomous water-taxis that can trans-
port a small number of passengers from and to multiple
locations along the water. They receive their orders of
whom to pick up where and when and where to deliver the
passengers from a central location, for which we propose
a model in this paper. First we describe the physical
network in which the micro-ferries travel to transport the
customers. Next a virtual network is used to model the
transportation requests (by nodes) and the order in which
they are handled (by arcs).

2.1 Description of the physical network

We consider a network consisting of L locations along
the water where the M micro-ferries can moor to pick-
up and deliver customers. The number of transporta-
tion requests is denoted by R. The sets L = {1, . . . ,L},
M = {1, . . . ,M }, and R = {1, . . . ,R} are associated with
the locations, micro-ferries, and requests respectively.

The operational speed of the micro-ferries is variable, and
bounded by the interval [u,u], with 0 < u < u. The path
lengths between locations p, q ∈L is given by lpq ≥ 0; we
have lpq = 0 if and only if p = q.

Within this network the customers can make transporta-
tion requests to be brought from location pj ∈L to location
qj ∈L within a desired time interval [ta,j , tb,j] for the pick-
up to take place, where j ∈R denotes the request number.

The set R consists of two types of requests: current
requests and new requests. The set M corresponds to the
current requests that the M micro-ferries are handling
at the moment the scheduling problem is to be solved;
if the micro-ferry is waiting at a location we model this
as an ‘empty request’ with both the pick-up and delivery
location equal to the current location of the micro-ferry.
The set N = {M + 1, . . . ,M +N } denotes the new request
that are not handled yet. The set R is defined as

R ∶=M ∪N = {1, . . . ,M ,M + 1, . . . ,R}, (1)

with R = M +N the total number of requests.

2.2 Description of the virtual network

The scheduling problem associated with the physical net-
work described above consists of finding assignments of
requests to micro-ferries such that

(1) each request is handled by one (and only one) ferry;
(2) the energy consumption of the ferries is minimised;
(3) it is guaranteed that ferries do not run out of energy

while handling a request;
(4) the pick-ups for the requests should (preferably) be

within the desired time-interval.

The problem can be represented by a graph G = (R,A)

where R = {1, . . . ,R} is a set of nodes associated with
the requests, and A = {(i, j) ∶ i, j ∈R} is a set of arcs
connecting the nodes. There are two types of nodes; one
associated with the M current requests and one associated
with the N new requests.

Node properties Each node j ∈R is associated with
several variables, such as the index kj ∈M of the micro-
ferry that will handle the request, the energy level ej ∈ R+
of the micro-ferry after completion of request j, and the
scheduled starting time tj ∈ R (the time at which the
customer is picked up). Furthermore, we associate a cost

cjj ∶= lpjqj , (2)

indicating the distance from the pick-up location pj to the
delivery location qj of request j.

Arc properties Associated with each arc a∈A are binary
variables xij ∈ {0,1} indicating whether (xij = 1) or not
(xij = 0) request j is handled directly after request i (by
the same micro-ferry), and constants cij ∈ R+ indicating the
‘cost’ to schedule request j after request i. This cost equals
the distance needed to travel from the delivery location qi
of request i towards the pick-up location pj of request j;
when request j directly succeeds request i, the micro-ferry
has to travel without a passenger aboard over a distance

cij ∶= lqipj . (3)

If the locations qi and pj are the same, we have cij = 0.
When xjj = 1 for j ∈M a micro-ferry is not assigned a new
request after completing its current one. We say that the
specific micro-ferry was assigned an empty request.

3. THE MICRO-FERRY SCHEDULING PROBLEM

Based on the network description given in Section 2, the
mathematical model of the micro-ferry scheduling problem
is developed. First a summary of the results described
in (Burger et al., 2012) is given, split into the objective
function and constraints of the problem. In Section 4
two extensions will be introduced, namely the modelling
of charging of the micro-ferries, and the inclusion of
embarking and disembarking times.

3.1 Objective function

Four distinct objectives are considered for the optimisa-
tion problem at hand, each of which can be modelled by
a function that should be minimised. The optimisation
problem becomes a trade-off between the energy consump-
tion, the empty-travel distance of the micro-ferries, the
total travel time of the customers, and the time-window
misfit of the schedule. The relative importance of the four
objectives can be influenced by using weighting variables
αec, αet, αtt, αtw ≥ 0 in the objective function

J = αecJec + αetJet + αttJtt + αtwJtw, (4)

where the details of the objective functions Jec, Jet, Jtt
and Jtw of the energy consumption, empty-travel distance,
total travel time, and time-window misfit are given next.

Energy consumption The power of a micro-ferry can
be modelled by a second-order polynomial in the vehicle
speed uj , written as (Burger et al. (2012))

P (uj) ∶= p2u
2
j + p1uj + p0, (5)



where p0,p1,p2 ≥ 0 are constants for a specific micro-
ferry model. The group of micro-ferries is assumed to be
uniform; the extension to multiple types with different
characteristics is considered for future work. The index j
denotes the request number the speed is associated with;
the speed uj is an optimisation variable bounded by the
interval [u,u], and it is constant during request j. There-
fore, we can calculate the energy consumption by mul-
tiplying the power (5) with the duration of the request.
The time Tij(uj) it takes to perform request j when it
succeeds request i can be found by dividing the travelled
distance Cij by the travel speed uj ; the distance Cij is
the sum of the distance from the delivery location of
request i towards the pick-up location of request j (the
relocation distance cij defined in (3)), and the distance
from the pick-up location towards the delivery location of
request j (the transportation distance cjj defined in (2)).
The energy consumption εij is given by

εij(uj) ∶= P (uj)Tij(uj) = (p2u
2
j + p1uj + p0)

cij + cjj

uj

= (p2uj + p1 + p0
1

uj
)Cij . (6)

The energy consumption εij in (6) represents the en-
ergy that would be consumed when request i precedes
request j. The binary optimisation variable xij introduced
in Section 2.2.2 indicates whether (xij = 1) or not (xij = 0)
request j succeeds request i. Therefore, the amount of
energy that will be consumed during request j can be
calculated as

εj(uj) ∶= (p2uj + p1 +
p0
uj

)
R

∑
i=1

Cijxij , (7)

resulting in the total amount of consumed energy given by

Jec ∶=
R

∑
j=1

εj =
R

∑
j=1

R

∑
i=1

(p2uj + p1 +
p0
uj

)Cijxij (8)

=
R

∑
j=1

R

∑
i=1

εij(uj)xij ,

which is the objective function associated with the energy
consumption. Note that the ‘cost’ terms εij as defined
in (6) are not constant, since they depend on the opti-
misation variable uj .

Empty-travel distance The distance a micro-ferry has
to travel to relocate from the delivery location of one
request towards the pick-up location of the next request
results in undesired costs for the owner, since there are
no passengers on board during these trips. Therefore,
another objective is to minimise this empty travelling.
Since the vehicles will consume energy while relocating,
the objective function (8) already penalises empty travel,
but one might want to put more emphasis on it.

The relocation distance between request i and j is given by
the constant cij ; the total empty-travel distance is found
by summing up the travel costs 1

1 This function includes the terms cjjxjj with cjj the transportation
distance of request j. Nonetheless, the terms cjjxjj will equal zero
for all j ∈R: when j ∈M we can have xjj = 1 (indicating an empty
request) but then cjj = 0 since the pick-up and delivery location

Jet ∶=
R

∑
j=1

R

∑
i=1

cijxij , (9)

which is the objective function penalising empty travel.

Travel time The energy consumption given in (6) will
be minimal when the function

p2uj + p1 + p0
1

uj
(10)

is minimal; this happens when the speed uj satisfies 2

u∗j =

√
p0
p2
, (11)

and hence minimising the objective function (8) will force
the speeds towards this optimum. Since it might be con-
sidered a better service towards the customers to travel
at higher speeds, thereby lowering the travel time, we
can include a separate penalty on the travel times. The
travel time of a customer for request j is given by the
transportation distance cjj divided by the speed uj , hence

Jtt ∶=
R

∑
j=1

cjj

uj
(12)

is the objective function associated with the travel time.

Time-window misfit For each request j we have a de-
sired time-window [ta,j , tb,j] wherein the pick-up of the
customer should take place preferably. The misfit of the
scheduled pick-up time tj for this request will be given by
a slack time variable sj ; if sj = 0 the pick-up is scheduled
within the time-window, if sj > 0 it represents the amount
of time the pick-up is scheduled outside the time-window.
To provide a good service to the customers the misfit
should be minimised, which can be accomplished by using
the cost function

Jtw ∶=
R

∑
j=1

sj . (13)

3.2 Constraints

In order to obtain a meaningful solution to the micro-ferry
scheduling problem, the optimisation variables should sat-
isfy several constraints. We give a summary of the variables
used in the optimisation problem; details can be found in
(Burger et al., 2012).

Scheduling variables The binary variables xij reflect the
order in which the requests are scheduled; when xij = 1
request j is handled directly after request i by the same
micro-ferry. To ensure that all requests are handled by one
and only one micro-ferry, the variables should satisfy the
equality constraints (Bektaş, 2006; Laporte, 1992)

R

∑
i=1

xij = 1 ∀j ∈R, (14a)

R

∑
j=1

xij = 1 ∀i∈R. (14b)

Constraints (14a) ensure that each request j ∈R precedes
exactly one other request; constraints (14b) ensure that

are the same; when j ∈N we will have xjj = 0 due to (17) acting as
sub-tour elimination constraints.
2 That is, provided that u ≤ u∗j ≤ u and p0 ≠ 0.



each request i∈R succeeds exactly one other request.
Hence all requests are scheduled in between two requests.
If there are less transportation requests than micro-ferries
(N <M), some loops must exist represented by xjj = 1.

Pace variables Although for practical use it could be
more convenient to work with the vehicle speed uj , for
the optimisation problem it is more convenient to work
with the vehicle pace wj ∶= u

-1
j (i.e., the reciprocal of speed

(Daganzo (1997))) as an optimisation variable. Let u and u
denote the minimum and maximum speed of the micro-
ferries respectively, the pace variables should then satisfy

w ∶=
1

u
≤ wj ≤ w ∶=

1

u
∀j ∈R. (15)

To assign the speeds u0,j of the micro-ferries for the re-
quests they are currently handling, we use the constraints

wj = w0,j ∶=
1

u0,j
∀j ∈M. (16)

Pick-up time variables The variable tj denotes the pick-
up time of request j ∈R, and it should be consistent with
the schedule. To be more precise, if request i precedes
request j —that is, if xij = 1— time tj should be at
least larger than the pick-up time ti of request i, plus the
time it takes to handle request i and relocate the vehicle
afterwards. Using a large constant T (based on the Big-M
method (Taha, 1987)), we can enforce the pick-up times
to be consistent using the inequality constraint

ti − tj + ciiwi + cijwj +Txij ≤ T ∀i∈R, j ∈N . (17)

If the micro-ferries are handling requests at the time
the optimisation algorithm is started, the time variables
associated with these micro-ferries should have the start
time of the currently handled request. If a micro-ferry is
not handling a request, the current time can be assigned.
Assigning these times can be done using the constraints

tj = t0,j ∀j ∈M. (18)

Slack time variables For each request j there is a desired
time interval [ta,j , tb,j] for picking up the customer. The
scheduler should try to find a solution in which the pick-
up time tj is within this interval, but it might not always
be possible. Therefore, pick-up time tj may be scheduled
outside the desired time interval by a value of sj ≥ 0, and
use the inequality constraints

tj + sj ≥ ta,j ∀j ∈R, (19a)

tj − sj ≤ tb,j ∀j ∈R. (19b)

Energy level variables The available energy of a micro-
ferry after completion of request j is denoted by ej . If
request i is the preceding request, the energy level should
be ej = ei − εj , where for xij = 1 the amount of energy
necessary to handle request j becomes εj ≙ εij , with εij
defined in (6). Using a large constant E this can be
accomplished by the inequality constraints

ej − ei + εj + Exij ≤ E ∀i∈R, j ∈N (20a)

ei − ej − εj + Exij ≤ E ∀i∈R, j ∈N , (20b)

whereas the initial energy levels can be assigned using

ej = e0,j ∀j ∈M. (21)

Assignment variables Using the constraints (14) we
assure that each request is preceded and succeeded by

exactly one request, but on its own it is not enough
to avoid schedules where one or more requests are not
assigned to a micro-ferry, nor does it avoid that a request
is scheduled to be handled by multiple micro-ferries. In
terms of graph theory, the former means that there might
exist sub-tours in the graph. To avoid this, we could use
the sub-tour elimination constraints as developed by Miller
et al. (1960) (and extended and improved by Desrochers
and Laporte (1991)). The method is based on the idea of
assigning potentials to each node in the network (as in
an electric circuit), and increase the potentials along each
arc. If there is a sub-tour, the potentials of the nodes will
continue to increase, whereas when there are no sub-tours
a maximum value can be assigned to the node potentials.
In the micro-ferry scheduling problem the start times tj
can be considered as the node potentials, and the time
should increase along the route as enforced by (17).

In (Burger et al., 2012) a method is proposed that can
be considered to be the dual of the sub-tour elimination
constraints. To assure that no request is assigned to more
than one micro-ferry, we enforce the existence of M sub-
tours, where M denotes the number of micro-ferries in the
network. By assigning a unique node current to the first M
nodes (those associated with the micro-ferries) using

kj = j ∀j ∈M, (22)

the existence of sub-tours is imposed by using

ki − kj +M (xij + xji) ≤ M ∀(i, j)∈K, (23)

where the set K can be chosen as

K = {(i, j) ∶ (i, j ∈R, i < j) ∨ (i, j ∈N , i = j)}

to allow loops on the nodes associated with the micro-
ferries. This allows for the possibility that certain micro-
ferries are not assigned any transportation requests (in-
stead they are assigned an empty request).

Since inequality (23) ensures that the node currents cannot
exceed the value M , and (22) assures that the minimum
node current is 1, each sub-tour —representing the order
in which a micro-ferry will handle the requests— will have
a unique node current corresponding to the micro-ferry
number the requests are assigned to.

4. EXTENSION OF THE MICRO-FERRY
SCHEDULING PROBLEM

4.1 Charging of the micro-ferries

The first extension of the micro-ferry scheduling problem
compared to the work in (Burger et al., 2012), is the
modelling of the charging of the micro-ferries. The vehicles
will work continuously, and after some time the batteries
(or fuel) will run out, and charging (or refuelling) is
necessary before they can continue handling requests.

First the micro-ferry will need to dock to a charging facility
before the actual charging can begin. Likewise, the micro-
ferry will need time after the charging before it will resume
its service. We combine these two times in a constant
value tch that will be necessary every time a micro-ferry
will charge. This promotes to charge fewer times for longer
durations, since the micro-ferry looses less time on docking
when charging fewer times. Secondly, the duration of the
actual charging τj will be variable, and it will be used as
one of the optimisation variables.
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Fig. 1. Overview of the four phases of a request, with the associated energy (top) and time (bottom) variables

In the process of handling a request j, four phases are
identified: relocating, transporting, charging, and waiting.
Figure 1 gives a schematic view of these phases, along with
the associated variables. In the relocation phase the micro-
ferry is empty, and it travels from the delivery location
of request i to the pick-up location of request j. The
passengers board at the beginning of the transportation
phase, and leave the micro-ferry at the end of the phase
when they have reached the delivery location. Next the
micro-ferry can charge, possibly followed by a period of
waiting before it starts handling the next request. Notice
that the relocation phase, the charging phase, and the
waiting phase may all have a zero duration, and thus no
change in energy level.

The micro-ferries are given the opportunity to charge after
each delivery of a request j ∈R, and represent the choice of
whether or not to charge by a decision variable yj . Using

yj = 0: no charging after request j,
yj = 1: charging after request j,

the charging time after request j can be written as

Tj = (tch + τj)yj . (24)

Note that (24) is a non-linear equation since it contains a
multiplication of the optimisation variables τj and yj .

The charging time τj is an optimisation variable, and
it should comply to certain constraints. First, the time
should always have a positive value. 3 Secondly, the charg-
ing time should not exceed the time it takes to fully charge
the micro-ferry.

Let rch denote the constant charging rate for the vehi-
cles. For micro-ferries powered by fossil fuels, this rate is
proportional to the rate at which the micro-ferry can be
filled with the fuel. When the micro-ferries are powered by
batteries, the charging of the battery can be considered to
be proportional to the charging current up to about 90%
of the state of charge for both lithium-ion-based batteries
(Jiang and Dougal, 2003) and lead-acid-based batteries
(Cugnet and Liaw, 2011). Charging the batteries to a
state of charge higher than 90% becomes inefficient, and
we consider the micro-ferry fully charged (ej = e) at this
value of 90% of the state of charge. Then the added energy
becomes proportional to the charging time, given as

ξj = rchτj . (25)

The micro-ferries should not be charged to more than a
maximum level e, resulting in the inequality constraints

3 One could enforce the charging time to be at least a certain
duration to avoid short periods of charging, and hence strictly
positive. We choose not to do so, since the fixed cost of the docking
time will already help to avoid this. Furthermore, if a short charging
time will be better for the overall performance of the system, it
should be possible to have this opportunity.

ej + ξj = ej + rchτj ≤ e, ∀j ∈R. (26)

From (26) we can derive both the maximum and minimum
charging times when ej = 0 and ej = e respectively; we have

t ∶= 0 ≤ τj ≤ t ∶=
e

rch
, ∀j ∈R. (27)

When the micro-ferry is not scheduled to charge after
request j —that is, if yj = 0— the charging time τj should
be zero, to avoid that the added energy in (25) becomes
non-zero. By adding the inequality constraints

0 ≤ τj ≤ tyj , ∀j ∈R, (28)

it is assured that yj = 0 ⇒ τj = 0. Therefore, a linear
equivalent to the non-linear equation (24) is given by

Tj = tchyj + τj . (29)

The charging time in (29) should be taken into account
in the scheduling of the pick-ups. The pick-up time for
request j should satisfy (see Figure 1)

tj ≥ ti + ciiwi + Ti + cijwj if xij = 1, (30)

which is accomplished by replacing (17) by

ti−tj +ciiwi+cijwj +τi+tchyi+Txij ≤ T ∀i∈R, j ∈N . (31)

The increase in energy levels after charging can be added
by replacing (20) by (see Figure 1)

ej − ei − rchτi + εj + Exij ≤ E ∀i∈R, j ∈N , (32a)

ei − ej + rchτi − εj + Exij ≤ E ∀i∈R, j ∈N , (32b)

where rchτi = ξi is the energy increase (that can be zero)
due to charging at the end of request i, defined in (25).

4.2 Inclusion of embarking and disembarking times

In the model proposed in (Burger et al., 2012) the time it
takes to embark and disembark the micro-ferries has not
been taken into account explicitly. Assume tp time units
are allowed for customers to enter the micro-ferry at the
pick-up location, and td time units for customers to exit
the micro-ferry at the delivery location. It takes te = tp + td
time units at each request to embark and disembark the
micro-ferries. This time should be taken into account in
the scheduling of the pick-up times. This can be done by
replacing (31) by

ti−tj+ciiwi+cijwj+τi+tchyi+Txij ≤ T−te ∀i∈R, j ∈N (33)

where the constant time te for embarking and disembark-
ing can be chosen by the network operator.

5. LINEAR PROGRAMMING APPROXIMATION

In the model described so far there are two difficulties
for solving the problem exactly due to the objective
function (8). First, both the speed uj and its reciprocal are
used in the formulation. The objective function would be-
come linear by replacing the latter with pace variable wj ,



but this requires a non-linear constraint ujwj = 1. Fur-
thermore, the energy consumption term εj defined in (7)
contains multiplications of variables, making the problem
difficult to solve using standard optimisation programs.
Therefore, we will use linear approximations to obtain a
mixed-integer linear program (MILP).

5.1 Approximation of the speeds

The speed uj is the reciprocal of the pace wj , or

uj =
1

wj
, (34)

which will be approximated by a piece-wise affine (PWA)
function in the variable wj with P sections. This gives

ûj =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

a1wj + b1, ω0 ≤ wj ≤ ω1

⋮ ⋮

aPwj + bP , ωP−1 ≤ wj ≤ ωP

(35)

where ω0 = w, ωP = w as defined in (15), and the scalars ωp
are constants for all p ∈ {1, . . . ,P − 1} and satisfy

ωp < ωp+1 ∀p ∈ {1, . . . ,P − 1}. (36)

The constants ω1, . . . , ωP−1, a1, . . . , aP , and b1, . . . , bP can
be found by minimising the error uj − ûj in a least-squares
sense, as discussed in (Burger et al., 2012).

Using methods as described in (Bemporad and Morari,
1999) we can transform (35) into a single function by
introducing R⋅P binary variables zjp associated with the R
speeds uj and the P constants ωp, representing

[zjp = 1] ⇔ [wj ≤ ωp]. (37)

The relation (37) can be enforced by the constraints

wj − ωp ≤W(1 − zjp) ∀j ∈R, p∈P, (38a)

ωp −wj ≤Wzjp ∀j ∈R, p∈P, (38b)

with W ∶= w − w. Notice that (38a) ensures zjp = 0 when
wj > ωp, and (38b) ensures zjp = 1 when wj < ωp.
Furthermore we have zjq = 1 for q = p + 1, . . . ,P if zjp = 1,
since ωp < ωp+1 < ⋯ < ωP by (36). The PWA function (35)
can then be written as

ûj = (A1zj1 +A2zj2 +⋯ +APzjP)wj (39)

+ (B1zj1 +B2zj2 +⋯ +BPzjP),

= (A1wj +B1)zj1 +⋯ + (APwj +BP)zjP ,

where A1, . . . ,AP and B1, . . . ,BP are constants given as

Ap = ap − ap+1 ∀p ∈ {1, . . . ,P − 1}, (40a)

Bp = bp − bp+1 ∀p ∈ {1, . . . ,P − 1}, (40b)

AP = aP , BP = bP . (40c)

5.2 Linearised formulation of the energy consumption

Using the speed approximation ûj of (39), the energy
consumption can be approximated by a linear function as
well. We substitute (7) by

ε̂j = (p2ûj + p1 + p0
1

uj
)

R

∑
i=1

(cij + cjj)xij , (41)

=
⎛

⎝
p2

P

∑
p=1

{(Apwj +Bp)zjp} + p1 + p0wj
⎞

⎠

R

∑
i=1

Cijxij

with Cij ∶= cij + cjj a constant representing the total dis-
tance travelled when request i precedes request j. This

equation contains many multiplications of variables, mak-
ing it a non-linear function, but they can be removed by
introducing auxiliary variables fj , gjp and hjp.

Using (14a), F ∶= f − f, and the inequality constraints

fj ≤ Cijwj + F(1 − xij) ∀i∈R, (42a)

fj ≥ Cijwj + F(xij − 1) ∀i∈R, (42b)

where f and f are a lower bound and an upper bound on
the product Cijwj respectively, we obtain

fj ≙ wj
R

∑
i=1

Cijxij . (43)

The inequality constraints

gjp ≤ gzjp, gjp ≤ g(zjp − 1) +
R

∑
i=1

Cijxij , (44a)

gjp ≥ gzjp, gjp ≥ g(zjp − 1) +
R

∑
i=1

Cijxij , (44b)

with g and g a lower bound and an upper bound on the
constants Cij respectively, ensure that we obtain

gjp ≙ zjp
R

∑
i=1

Cijxij . (45)

Finally, the inequality constraints

hjp ≤ fzjp, hjp ≤ fj + f(zjp − 1), (46a)

hjp ≥ fzjp, hjp ≥ fj + f(zjp − 1), (46b)

enforce the relationships

hjp ≙ zjpfj . (47)

Substitution of (43), (45), and (47) in (41) gives

ε̂j = p0fj + p1
R

∑
i=1

Cijxij + p2
P

∑
p=1

(Aphjp +Bpgjp), (48)

which is a linear function in the auxiliary variables fj ,
gjp and hjp, and hence all constraints are linear. The
(non-linear) objective function (8) related to the energy
consumption can be replaced by the linear approximation

Ĵec =
N

∑
j=1

[p0fj + p1
N

∑
i=1

Cijxij + p2
P

∑
p=1

(Aphjp +Bpgjp)]. (49)

Both the objective functions (9) and (13) —related to
empty travel and time-window misfit respectively— are
linear functions. The objective function (12) is non-linear
in its current form, but by substituting the speed variables
uj by their associated pace variables wj we have

Jtt =
R

∑
j=1

cjjwj , (50)

which is linear, such that the optimisation problem be-
comes a mixed-integer linear program (MILP).

6. SIMULATIONS

We will demonstrate the use of the proposed method for
micro-ferry scheduling using a small case study. For the
simulations we consider a network with four locations
(L = 4; L = {s1, s2, s3, s4}) and three micro-ferries (M = 3;
M = {m1,m2,m3}). The MILP problem was implemented
in Matlab using CPLEX as solver.



s1 s2

s3s4

400

500450

300

350

250

Fig. 2. The physical network with four stations

A schematic drawing of this network is shown in Figure 2,
along with the path lengths lij for i, j ∈L (in [m]). The
first micro-ferry is waiting at location s1, while the other
two are transporting customers. The initial values for the
start times (in [s]), the speeds (in [m/s]) and the energy
levels (in [%]; e = 0, e = 100) are given by

t0 =

⎡
⎢
⎢
⎢
⎢
⎣

−120
−60
0

⎤
⎥
⎥
⎥
⎥
⎦

, u0 =

⎡
⎢
⎢
⎢
⎢
⎣

3
3
3

⎤
⎥
⎥
⎥
⎥
⎦

, e0 =

⎡
⎢
⎢
⎢
⎢
⎣

100
30
40

⎤
⎥
⎥
⎥
⎥
⎦

. (51)

The parameters associated with embarking and charging
are chosen as

te = 60 [s], tch = 30 [s], rch = 1 [%/s]. (52)

There are fifteen new requests (N = 15) for which the pick-
up locations, delivery locations, desired pick-up time win-
dows, and transportation distances are shown in Table 1.
Requests 1, 2 and 3 are associated with the micro-ferries.

Table 1. Requests that need to be scheduled

request pick-up delivery time window transp. dist.

1 s1 s1 -120 – -60 0

2 s4 s2 -60 – 0 450

3 s4 s3 0 – 60 350

4 s1 s2 0 – 60 400

5 s4 s3 180 – 240 350

6 s2 s1 240 – 300 400

7 s2 s4 360 – 420 450

8 s4 s2 720 – 780 450

9 s2 s1 720 – 780 400

10 s1 s3 660 – 720 500

11 s3 s4 780 – 840 350

12 s1 s3 960 – 1020 500

13 s2 s3 1020 – 1080 250

14 s3 s4 1080 – 1140 350

15 s4 s2 1080 – 1140 450

16 s2 s1 1440 – 1500 400

17 s1 s4 1440 – 1500 300

18 s4 s2 1500 – 1560 450

Using these initial conditions, we investigate the influence
of changing the emphasis on minimising the time-window
misfit towards minimising the energy consumption, both
for fixed and variable speeds. In the cost function defined
in (4) we choose αet = 0 and αtt = 0 (hence, no extra penalty
is imposed on empty travel and long travel times), and αec
and αtw are varied. The power (5) is chosen to be

P (u) = p2u
2
+ p1u + p0 = 0.01u2 + 0.01u + 0.09, (53)

and by (11) the optimal speed is u∗ = 3 [m/s].

6.1 Fixed speeds

First the influence of changing the emphasis of either min-
imising the time-window misfit or the energy consumption
while keeping the travel speeds fixed at uj = 3.0 [m/s] is
considered for all j ∈R. For different values of αec and αtw
the values of the energy consumption (8), the time-window

misfit (13), the empty-travel distance (9), and the total
travel time (12) are given in Table 2.

Table 2. Varying objective with fixed speeds

αec αtw Jec Jtw Jet Jtt #rel

0 100 588 162 1600 2267 5

1 100 553 162 1100 2267 3

10 100 553 162 1100 2267 3

100 100 553 162 1100 2267 3

100 10 518 296 600 2267 2

100 1 476 2177 0 2267 0

100 0 476 9520 0 2267 0

As can be expected the energy consumption reduces as the
value of αec becomes larger relative to αtw, and the time-
window misfit (i.e., the total amount of seconds the pick-
up times are scheduled outside the desired time-windows)
increases. The empty-travel distance also decreases when
energy consumption is penalised more, since less empty
travel means less energy consumption. The total travel
time (i.e., the time the passengers spent on the micro-
ferries) remains the same, since both the transportation
distance and the travel speed are constant.

An example of a schedule is given in Figure 3 for αec = 100
and αtw = 100. The time in seconds passes along the
horizontal axis, and the energy level percentage increases
along the vertical axis. The figure shows the scheduled
pick-up times ti and the desired time windows at the
bottom; the green or red colour indicates whether or not
the time window is met. Here the desired time windows
have not been met three times, and three relocations are
necessary. Note that the slope of the energy level reduction
during relocation and transportation is always the same,
indicating a constant power, as expected for fixed speeds.

6.2 Variable speeds

In the following we repeat the simulations done before,
but this time the travel speed may vary. The minimum
and maximum speed are given by u = 2 and u = 5. The
results are summarised in Table 3.

Table 3. Varying objective with variable speeds

αec αtw Jec Jtw Jet Jtt #rel

0 100 648 0 2100 1913 5

1 100 577 0 1250 1913 4

10 100 577 0 1250 2183 4

100 100 577 0 1250 2183 4

100 10 522 156 600 2253 2

100 1 476 2021 0 2284 0

100 0 475 7557 0 2436 0

Due to the variable speed, also the total travel time Jtt
changes. All desired time-windows are met for the upper
four cases (Jtw = 0), but at the cost of more relocations
and empty travel distance Jet.

Figure 4 shows the schedule for αec = 100 and αtw = 100
when the travel speeds can vary. The slopes of the energy
level reduction varies, consistent with the varying speeds.
Due to the increased flexibility, it is possible to schedule all
pick-ups within their desired time-windows. Both the num-
ber of relocations (4 instead of 3) and energy consumption
(577 instead of 553) have increased, but the time-window
misfit is lower (0 instead of 162).
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Fig. 3. Schedule of the three micro-ferries m1,m2,m3 when using fixed speeds, with pick-up times in seconds
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Fig. 4. Schedule of the three micro-ferries m1,m2,m3 when using variable speeds, with pick-up times in seconds

7. CONCLUSION

In this paper we have proposed a modelling framework
for solving micro-ferry scheduling problems, where energy
consumption is taken into account. By using the travel
speed as one of the optimisation variables, a trade-off can
be made between minimising the total amount of con-
sumed energy and the misfit between the scheduled and de-
sired pick-up times. A mixed-integer linear programming
approximation of the non-linear problem is developed, and
numerical simulations are provided to give an example of
the schedules one obtains using the proposed method.
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