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Abstract: The optimal trajectory planning problem for trains under operational constraints is considered,
which is essential for the success of the real-time operation and the rescheduling process for railway
networks. The operational constraints caused by the timetable, real-time operation, or rescheduling
often include target points and target window constraints. The approach proposed in this paper can take
such constraints into account. In addition, the varying maximum traction force is approximated using a
piecewise affine function and included in the trajectory planning problem. The optimal control problem
is recast as a mixed integer linear programming problem, which can be solved efficiently by existing
solvers. A case study is used to demonstrate the performance of the proposed approach.

Keywords: train operation, trajectory planning, MILP, operational constraints

1. INTRODUCTION

Transport plays a key role in the economy, the environment,
and the society of regions and countries. Public transportation,
especially the rail traffic, becomes more and more important
for the sustainability of transportation systems (Peng, 2008). To
strengthen the position of rail traffic, railway systems must be-
come more efficient, more competitive, and satisfy expectations
of customers, e.g. train services should be safe, fast, punctual,
and comfortable (Lüthi, 2009).

Timetabling and traffic management are two basic elements
of public transport operations, and this also includes railway
systems (Hansen and Pachl, 2008). It is known that timetabling
and traffic management are inherently linked, but the func-
tion of the timetable is often only loosely connected to its
execution in practice (Hansen and Pachl, 2008). Therefore,
real-time rescheduling is proposed to improve punctuality, to
increase network capacity, and to reduce energy consumption
by identifying and resolving conflicts arising during actual op-
erations. Rescheduling may require railway systems with ad-
vanced GSM-R or European Train Control Systems equipment,
so the decisions taken in railway control centers can be trans-
mitted to Driver Machine Interfaces (DMI) or Automatic Train
Operation (ATO) systems immediately (Caimi et al., 2009).
Hence, train drivers or ATO systems can operate the train pre-
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cisely according to the dynamic plan given by the rescheduling
process.

An essential factor for the success of real-time rescheduling
is the calculation of optimal reference trajectories for trains,
because the reference trajectory has an impact on driving be-
havior and achievable accuracy, especially after rescheduling.
There are two possible strategies to define a reference trajec-
tory (Lüthi, 2009). One possibility is to calculate the trajec-
tories precisely in the railway control center as part of the
rescheduling loop and then transmit them to DMI or ATO
systems. The other possibility is that the rescheduling system
only specifies operational constraints (e.g. reference passing
times at particular points) and the calculation of the optimal
reference trajectory is performed on the DMI or ATO system.
The transmitted data volume and the architecture of DMI or
ATO system depend on the strategies described above. For more
information of these two strategies, see Lüthi (2009). The focus
of this paper is on the calculation of optimal reference trajec-
tories under operational constraints. The approach proposed in
this paper is suitable for both strategies for defining reference
trajectories.

Many researchers explored the optimal control problem for
trains, since it has significant effects for energy saving, punctu-
ality, and riding comfort. They applied various methods, which
can be grouped into the following two main categories: an-
alytical solutions and numerical optimization. For analytical
solutions, a comprehensive analysis of the optimal trajectory
planning problem is given in Howlett (2000); Khmelnitsky
(2000); Liu and Golovicher (2003). The maximum principle
can be applied to obtain optimal operation regimes (i.e. max-
imum traction, cruising, coasting, and maximum braking) and
their sequence. It is difficult to obtain the analytical solution



if more realistic conditions are considered, which introduce
more complex nonlinear terms into the model equations and the
constraints (Ko et al., 2004). Because of the comparable high
computing power available nowadays, numerical optimization
approaches are applied more and more to the train optimal con-
trol problem. A number of advanced techniques such as fuzzy
and genetic algorithms have been proposed to calculate the op-
timal reference trajectory of train operation, see e.g. Chang and
Xu (2000), Chang and Sim (1997), and Han et al. (1999). But
in these approaches, the optimal solution is not always guaran-
teed. Therefore, in Wang et al. (2011) a mixed integer linear
programming (MILP) approach has been proposed to solve the
optimal trajectory problem. The resulting MILP problem can
be solved efficiently using existing commercial and free solvers
that guarantee finding the global optimum.

The varying line resistance, variable speed restrictions, and
constant maximum traction force are taken into account in the
optimal trajectory planning problem in Wang et al. (2011).
However, there exist other constraints that can result from the
timetable or from real-time rescheduling process (Lüthi, 2009;
Albrecht et al., 2010). For example, in order not to get hindered
by a preceding train, a train may be required not to pass a
location earlier than a certain time. On the other hand, in order
not to hinder a following train, a train may have to be at a
certain location not later than a scheduled time. In addition, the
maximum traction force is a nonlinear function of the train’s
speed due to the characteristics of the power equipment and the
maximum adhesion between wheel rim and rail (Hansen and
Pachl, 2008). In this paper, we will extend our MILP approach
of Wang et al. (2011) to solve the optimal trajectory planning
problem under operational constraints and a varying maximum
traction force.

The remainder of this paper is structured as follows. In Section
2, the optimal control problem of train operations and the MILP
approach proposed in Wang et al. (2011) are summarized. Sec-
tion 3 introduces several extensions to the proposed MILP ap-
proach, i.e. more accurate line resistance, new piecewise affine
approximations in the time differential equation, and varying
maximum traction force. Section 4 presents the operational
constraints caused by the timetable, real-time operation, or the
rescheduling and shows how to include these operational con-
straints to the MILP problem. Section 5 illustrates the calcula-
tion of the optimal reference trajectory under operational con-
straints and a varying maximum traction force by the proposed
MILP approach with a case study. We conclude with a short
discussion of some topics for future work in Section 6.

2. PROBLEM DEFINITION AND THE MILP APPROACH

In this section, the formulation of the optimal control problem
and the MILP approach we proposed in Wang et al. (2011) are
summarized.

2.1 Optimal control problem

The mass-point model of train is widely used in the literature on
optimal control of trains (Franke et al., 2003). The continuous-
time model of train operation is described as (Howlett, 2000;
Liu and Golovicher, 2003):

mρ
dv

dt
= u(t)−Rb(v)−Rl(s,v), (1)

ds

dt
= v, (2)

where m is the mass of the train, ρ is a factor to consider
the rotating mass (Hansen and Pachl, 2008), v is the velocity
of the train, s is the position of the train, u is the control
variable, i.e. the traction or braking force, which is bounded
by the maximum traction force umax and the maximum braking
force umin: umin ≤ u ≤ umax, Rb(v) is the basic resistance
including roll resistance and air resistance, and Rl(s,v) is the
line resistance caused by track grade, curves, and tunnels. In
practice, according to the Strahl formula (Rochard and Schmid,
2000) the basic resistance Rb(v) can be described as

Rb(v) = m(a1 +a2v2),

where the coefficients a1 and a2 depend on the train charac-
teristics and the wind speed, which can be calculated from the
data known about the train. The line resistance Rl(s,v) caused
by track slope, curves, and tunnels can be described by Mao
(2008)

Rl(s,v) = mgsinα(s)+ fc(r(s))+ ft(lt(s),v), (3)

where g is the gravitational acceleration, α(s), r(s), and lt(s)
are the slope, the radius of the curve, and the length of the
tunnel along the track, respectively. For more information about
these terms, see Mao (2008). It is worth to note that in Wang
et al. (2011) the maximum traction force umax is considered as
constant. However, in reality it is a nonlinear function of the
train’s speed and in Section 3 below nonlinear function will be
approximated by piecewise affine (PWA) function.

Franke et al. (2003) choose kinetic energy per mass unit Ẽ =
0.5v2 and time t as states, and the position s as the independent
variable. The reference trajectory planning problem for trains is
formulated as (Wang et al., 2011):

J =
∫ send

sstart

(

u(s)+λ ·
∣

∣

∣

du(s)

ds

∣

∣

∣

)

ds (4)

subject to the model (1) and (2), the constraints

umin ≤ u(s)≤ umax, (5)

0 < Ẽ(s)≤ Ẽmax(s), (6)

and the boundary conditions,

Ẽ(sstart) = Ẽstart, Ẽ(send) = Ẽend, (7)

t(sstart) = 0, t(send) = T, (8)

where the objective function J is a weighted sum of the energy
consumption and the riding comfort of the train operation;
Ẽmax(s) is equal to 0.5V 2

max(s) and Vmax(s) is the maximum
allowable velocity, which depends on the train characteristics
and line conditions, and as such it is usually a piecewise con-
stant function of the coordinate s (Khmelnitsky, 2000; Liu and
Golovicher, 2003); sstart, Ẽ(sstart), and t(sstart) are the position,
the kinetic energy per mass, and the time at the beginning of the
route; send, Ẽ(send), and tend are the position, the kinetic energy
per mass, and the time at the end of the route; the scheduled
running time T is given by the timetable or the rescheduling
process. It is assumed that the unit kinetic energy Ẽ(s) > 0,
which means the train’s speed is always strictly larger than zero,
i.e. the train travels nonstop (Khmelnitsky, 2000).

The restrictions of maximum speed, maximum traction or brak-
ing force, scheduled running times, etc. are considered in Wang
et al. (2011). However, there exist operational constraints,
which result from the timetable, real-time operation restric-
tions, or the real-time rescheduling process (Lüthi, 2009; Al-



brecht et al., 2010). In this paper, these operational constraints
are included in the MILP approach in Section 4.

2.2 The MILP approach

A discrete-space model is obtained in Wang et al. (2011) by
splitting the position horizon [sstart,send] into N intervals. It is
assumed that the track and train parameters as well as traction
or breaking force can be considered as constant in each interval
[sk,sk+1] with length ∆sk = sk+1 − sk, for k = 1,2, . . . ,N.

According to the transformation properties in Bemporad and
Morari (1999) and by introducing a vector of logical variables
δ (k) and a real-valued vector of auxiliary variables z(k), the
dynamics of the train operation can be transformed into a so-
called mixed logical dynamic model of the following form
(see Wang et al. (2011)):

x(k+1) = Akx(k)+Bku(k)+C1,kδ (k)+C2,kδ (k+1)

+D1,kz(k)+D2,kz(k+1)+ ek, (9)

R1,kδ (k)+R2,kδ (k+1)+R3,kz(k)+R4,kz(k+1)

≤ R5,ku(k)+R6,kx(k)+R7,k, (10)

where x(k) = [E(k) t(k)]
T

and (10) also includes the upper
bound and lower bound constraints for E(k), t(k), and u(k). For
the sake of simplicity, we use E(k) as a short-hand notation for
Ẽ(sk).

By introducing a new variable ω(k) to deal with the absolute
value |∆u(k)| in the objective function, the optimal control
problem can be recast as a the following mixed integer linear
programming (MILP) problem (Wang et al., 2011)

min
Ṽ

CT
J Ṽ , (11)

subject to
F1Ṽ ≤ F2x(1)+ f3 (12)

F4Ṽ = F5x(1)+ f6 (13)

where CJ = [ ∆s1 · · · ∆sN 0 · · · 0 1 · · · 1 ]
T

,

Ṽ =
[

ũT δ̃ T z̃T ω̃T
]T

,

ũ =









u(1)
u(2)

...
u(N)









, δ̃ =









δ (1)
δ (2)

...
δ (N +1)









, ω̃ =









ω(1)
ω(2)

...
ω(N −1)









,

and z̃ is defined in a similar way as δ̃ . The MILP problem
(11)-(13) can be solved by several existing commercial and free
solvers, such as CPLEX, Xpress-MP, GLPK (see e.g. Linderoth
and Ralphs (2004); Atamturk and Savelsbergh (2005)).

3. EXTENSIONS

In this section, we will introduce several extensions to our
previous work in Wang et al. (2011). The line resistance is
considered more accurately. New piecewise affine (PWA) ap-
proximations with two subfunctions are introduced to approx-
imate the nonlinear function f (E(k)) in the time equation. In
addition, a varying maximum traction force is included in the
MILP approach.

3.1 More accurate line resistance

In Wang et al. (2011) the line resistance is considered as a
piecewise constant function. However, when running in tunnels,

the train experiences a higher air resistance, which is a function
of v2. In order to consider the line resistance more accurately,
in this paper we rewrite Rl(s,v) as

Rl(s,v) = R̃l(s)+at(s)v
2, (14)

where R̃l(s) includes the terms that do not depend on the train’s
speed. By defining the discretization of the interval [sstart,send]
properly, we can assume without loss of generality that R̃l(s)
and at(s) are of the following form:

R̃l(s) = R̃l,k for s ∈ [sk,sk+1],

at(s) = at,k for s ∈ [sk,sk+1].

for k = 1,2, · · · ,N. The quadratic term v2 is linear in the kinetic
energy E and it can be easily included in the mixed logical
dynamic model of train operation.

3.2 New PWA approximations in the time differential equation

The difference equation of time obtained using a trapezoidal
integration rule in Wang et al. (2011) is

t(k+1) = t(k)+
1

2

(

1
√

2E(k)
+

1
√

2E(k+1)

)

∆sk (15)

with t(1) = 0. The nonlinear function f (E(k)) = 1

2
√

2E(k)
is

approximated by PWA function with 3 subfunctions in Wang
et al. (2011). In order to reduce the calculation time of the
MILP approach, we now consider approximations with 2 affine
subfunctions (cf. Figure 1). It is known that the approximation
error can be reduced by taking more regions. Therefore, the
approximation error of PWA function with three subfunctions
is better than that with two subfunctions. However, this will be
offset by the huge difference in CPU time to solve the resulting
MILP problem (see also Section 5).

The coefficients of the PWA function do not depend on the
space interval index k in Wang et al. (2011). In this paper, we
adapt these coefficients of PWA approximations with 2 affine
subfunctions depending on the space interval index k to reduce
the approximation error, i.e. we can have different PWA sub-
functions for different space intervals. According to the piece-
wise constant function of speed limits, different approximations
of f (E(k)) are obtained by using proper weighting functions.
In addition, we introduce two additional PWA approximations
of f (E(k)) for the first segment and the last segment. Since
the lowest speed in these two segments is a small positive
number near zero, the highest weight should be given to the low
speed interval. Here, even though we approximate f (E(k)) by
2 affine subfunctions, the approximation error is still small and
better than the approximation in Wang et al. (2011). The PWA

approximation of the nonlinear function f (E(k)) = 1

2
√

2E(k)

depending on the space interval index of can be written as

fPWA(E(k)) =

{

α1,kE(k)+β1,k for Emin,k ≤ E(k)≤ E1,k,
α2,kE(k)+β2,k for E1,k ≤ E(k)≤ Emax,k,

with Emin,k and Emax,k for the interval [sk,sk+1]. Furthermore,
the values of the coefficients and E1,k are determined by the
least-squares optimization (Azuma et al., 2010). A logical vari-
able δ1(k) and a new auxiliary variable z1(k) are introduced
to formulate the PWA constraints into linear inequality con-
straints, see Wang et al. (2011).

3.3 Varying maximum traction force

The maximum traction force umax is often considered as con-
stant in the literature (Howlett, 2000). However, in reality it is
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Fig. 1. The PWA approximation of the nonlinear function
f (E(k))

0 200 400 600 800 1000 1200 1400
0

50

100

150

200

250

300

350

Kinetic Energy (m/s
2
)

T
ra

c
ti
o
n
 f
o
rc

e
 (

k
N

)

adhesion limit

tractive power

 

 

Original traction force

PWA approximation

Fig. 2. Maximum traction force in dependency of kinetic energy
and its PWA approximation

a function of the velocity v. Due to the maximum adhesion and
the characteristics of the power equipment (Hansen and Pachl,
2008; Schank, 2011), the function of the maximum traction
force umax(v) is described as a group of hyperbolic or parabolic
formulas in Hansen and Pachl (2008), where each formula ap-
proximates the actual traction force for a certain speed interval.
For example, if the train speed v belongs to interval [v j,v j+1],
then the maximum traction force can be written as

umax(v) = c1, j + c2, jv+ c3, jv
2, v ∈ [v j,v j+1], (16)

or
umax(v) = ch, j/v, v ∈ [v j,v j+1], (17)

where v j, v j+1, c1, j, c2, j, c3, j, and ch, j are determined by the
characteristics of the train for j = 1,2, · · · ,M−1.

The varying maximum traction force can be reformulated as
a nonlinear function of the kinetic energy as shown in Figure
2 (Schank, 2011). In a similar way as the approximation of the
nonlinear function f (E(k)), we can obtain PWA approxima-
tions of the maximum traction force depending on the space
interval index k. If we consider an approximation using 2 affine
subfunctions (cf. Figure 2), then the approximation can be writ-
ten as

umax,PWA(E(k)) =
{

λ1,kE(k)+µ1,k for Emin,k ≤ E(k)≤ E2,k,
λ2,kE(k)+µ2,k for E2,k ≤ E(k)≤ Emax,k,

(18)

where values of E2,k and coefficients of affine functions are
decided by weighted least-squares optimization (Azuma et al.,
2010).

In order to deal with the PWA constraints of the maximum
traction force, a logical variable δ2(k) is introduced, which is
defined by

[E(k)≤ E2,k]⇔ [δ2(k) = 1].

Since Emin,k and Emax,k are the minimum and maximum values
of E(k) for k = 1,2, · · · ,N, by applying the transformation
properties of Bemporad and Morari (1999), this logical con-
dition can be rewritten as

(Emax,k −E2,k)δ2(k)≤ Emax,k −E(k),

(Emin,k −E2,k − ε)δ2(k)≤ E(k)−E2,k − ε ,
(19)

where ε is a small positive number, typically the machine preci-
sion (Bemporad and Morari, 1999). By defining a new auxiliary
variable z2(k) = δ2(k)E(k), which according to Bemporad and
Morari (1999) can be expressed as

z2(k)≤ Emax,kδ2(k),

z2(k)≥ Emin,kδ2(k),

z2(k)≤ E(k)−Emin,k(1−δ2(k)),

z2(k)≥ E(k)−Emax,k(1−δ2(k)),

(20)

the PWA constraints u(k)≤ umax,PWA(E(k)) can be written as

u(k)≤ δ2(k)[λ1,kE(k)+µ1,k]+ (1−δ2(k))[λ2,kE(k)+µ2,k],

which can be reformulated as

−(λ1,k −λ2,k)z2(k)− (µ1,k −µ2,k)δ2(k)+

u(k)−λ2,kE(k)−µ2,k ≤ 0. (21)

By redefining the coefficient matrices and extending the vari-
ables δ (k) and z(k) of the MLD model (9) and (10) properly,
the constraints caused by the varying maximum traction force
can be included into (9) - (10).

It is important to note that all the extensions presented in this
section still lead to an MILP problem.

4. OPERATIONAL CONSTRAINTS

Train operations are restricted by the maximum speed limits,
the characteristics of trains (e.g. the maximum traction force,
the mass of train, and the maximum speed of the train), the
properties of lines (e.g. the grade profile, tunnels, and curves),
and so on (Liu and Golovicher, 2003).

There also exist some other constraints that result from the
timetable, real-time operation restrictions, or the real-time
rescheduling process. Albrecht et al. (2010, 2011) classified
these operational constraints into two groups: target points
and target windows. Target points correspond to fixed passing
times, which could be arrival and departure times at stations.
In dense networks, target points could also be passing times
at certain places where overtaking and crossing of trains is
planned. If the passing time is not that strict but is characterized
by an earliest arrival time and a tolerated delay, then it forms a
target window constraint. The scheduled arrival times at minor
stations without connections with other trains can be regarded
as target windows. If the train reaches a certain place exactly
on time according to the defined target point or in the target
window, then conflicts can be avoided.

It is assumed that the positions corresponding to target points
or target window constraints are st, j, for j ∈ {1,2, . . . ,Nt}
with st, j = sk j

for some k j in {1,2, . . . ,N}. The operational

constraints can be included in the optimal control problem as
follows:

• for target points:

t(st, j) = Ttarget, j, (22)
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Fig. 3. The speed limits and the grade profile of the line

• for target windows:

Ttargetmin, j ≤ t(st, j)≤ Ttargetmax, j, (23)

where Ttarget, j is the fixed passing time for train to pass position
st, j, and Ttargetmin, j and Ttargetmax, j are the minimum and maxi-
mum passing time at position st, j respect to the target window
constraints. In addition, t(st, j) is corresponding to t(k j), which
is one of the state variables of the model (9) - (10).

Note that (22) and (23) are linear constraints. Hence, we still
have an MILP problem.

5. CASE STUDY

As a benchmark, we use an extended case study of Vašak et al.
(2009) and Schank (2011). Because the parameters for the train
in Schank (2011) are derived from existing rolling stock data,
in this paper we will use those parameters as shown in Table 1.
The speed limits and grade profile are shown in Figure 3. We
assume the track sections between 2500 m to 3000 m are the
most critical bottleneck on this line, where the intercity train
overtakes the regional train. As stated in Albrecht et al. (2010),
there exists an exact time for the intercity train to pass this
bottleneck, so that the intercity train and the regional train will
not hinder each other. It is assumed that the scheduled running
time for the intercity train to run the whole journey is 500 s and
the exact passing time for a train to pass the entrance of the
bottleneck, i.e. 2500 m, could be 130 s, 140 s, or 150 s.

The length ∆sk for interval [sk,sk+1] depends on the speed
limits, gradient profile, tunnels, operational constraints, and so
on. In addition, if the number of space intervals N is large, then
the computation time of the MILP approach will be long, but
the accuracy will be better. According to the speed limits, grade
profile, and operational constraints, the length of each interval
is chosen to equal 500 m, i.e. ∆sk = 500 m for k = 1,2, . . . ,20,
which provides a good balance between the computation time

and the accuracy. The nonlinear function f (E(k)) = 1

2
√

2E(k)

is approximated by using different PWA approximations for
different space intervals. The maximum traction force is a
nonlinear function of the train’s speed as stated in Section 3,
which is approximated by PWA functions as shown in (18).
The coefficients of (18) depend on the space interval index
k. Here, for simplicity, we just use one PWA approximation
with two affine subfunctions for all k as shown in Figure 2.
The parameters of the PWA function are listed in Table 2. The

Table 1. Parameters of train and line path (Schank,
2011)

Property Symbol Value

Train mass [kg] m 5.07 ·105

Basic resistance [N/kg] Rb 0.014+2.564 ·10−5v2

Mass factor ρ 1.06

Line length [m] sT 104

Minimum kinetic energy [J] Emin 0.1

Maximum braking force (regular)[N] umin −4.475 ·105

Table 2. The coefficients of the PWA approxima-
tion of maximum traction force

Segment m λm [kg/m] µm [kg· m/s2] Em −Em+1 [(m/s)2]

1 −2.9396 ·102 4.1992 ·105 0.1−500

2 −0.9637 ·102 3.2112 ·105 500−1250
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Fig. 4. The optimal control inputs corresponding to different
operational constraints

Table 3. The actual energy consumption corre-
sponding to different operational constraints

Target point constraints (Passing time) [s] 130 140 150

Energy consumption [MJ] 324.17 325.99 340.59

objective function in this paper is a trade-off between energy
consumption and riding comfort. The value of λ in (4) could
be chosen properly according to the requirements, and is taken
equal to 25 in this case study.

The optimal control inputs obtained by the MILP approach
corresponding to target points 130 s, 140 s, and 150 s are shown
in Figure 4. The computing time for each scenario is about
0.55 seconds on a 1.8 GHz Intel Core2 Duo CPU running a
64-bit Linux operating system. When applying these inputs to
the nonlinear model of the nonlinear model of the train (1) and
(2), we can obtain the optimal trajectories shown in Figure 5.
The actual energy consumptions corresponding to these three
scenarios are shown in Table 3. The case study shows that
the proposed MILP approach can solve the optimal trajectory
planning problem under operational constraints, which has little
affect to the calculation time.

6. CONCLUSIONS AND FUTURE WORK

We have considered the optimal trajectory planning problem for
trains under operational constraints. The nonlinear train opera-
tion model is formulated as a mixed logical dynamical model
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Fig. 5. The optimal trajectories based on nonlinear train model
for control signals computed using the MILP approach

by using piecewise affine approximation. The variable line re-
sistance, speed limits, varying maximum traction force, and op-
erational constraints (including target window constraints and
target point constraints) are considered. The optimal control
problem then is recast as a mixed integer linear programming
(MILP) problem, which can be solved efficiently by existing
solvers.

From the mixed logical dynamical model transformation and
the formulation of the MILP problem, it is worth to note
that the operational constraints can be easily included in the
problem definition. Furthermore, the operational constraints
have little effect on the calculation time. The computation cost
of the MILP problem with the operational constraints is less
than 1 second in the case study. An extensive comparison and
assessment of the MILP approach and other approaches from
the literature for various case studies and a wide range of
scenarios considering different operational constraints will be
a topic for future work.
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