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Structured modeling, analysis, and control

of complex railway operations*

Ton J.J. van den Boom1, Bart Kersbergen1, and Bart De Schutter1

Abstract— In this paper we discuss the rescheduling of trains
on a large-scale railway network in the case of perturbations
using a max-plus-linear system description. We study the
structure of the system matrices and derive how this structure
can be manipulated by the control variables. In addition, we
show that this leads to a system matrix that is affine in the
control variables and the timing parameters. We also consider
additional constraints for scheduling trains on multiple tracks
and constraints for joining and splitting trains.

I. INTRODUCTION

Propagation of delays in the railway networks is a popular

topic of recent research in railway traffic management [6],

[8], [10], [11], [15]. A railway network with rigid connection

constraints and a fixed routing schedule can be modeled

using max-plus-linear models [2], [3], [4], [5], [9]. A max-

plus-linear model is ‘linear’ in the max-plus algebra [1],

which has maximization and addition as its basic operations.

In [15] we have modeled a controlled railway system using

the switching max-plus-linear system description of [13], in

which we use a number of max-plus linear models, each

model corresponding to a specific mode and describing

the network by a different set of connection and order

constraints. In [12], [15] we have discussed the control of

the railway system by switching between different modes,

allowing us to break train connections and to change the

order of trains.

In this paper we study the structure of the system matrices

and show that the matrices can be partitioned into sub-

matrices. Each submatrix represents the constraints related

to either the running times, the dwell times, the headway

times or the connection times. We also consider additional

constraints for scheduling trains on multiple tracks and

constraints for coupling and splitting trains.

II. RAILWAY OPERATIONS MODEL

Consider a railway operations system, with a periodic railway

timetable with a cycle time T . The network consists of a

set of tracks where overtaking is not possible and a set of

stations. Each track starts and ends at a station. In this paper

we generalize the concept of ‘station’ to places where the

train order may alter, either because of a shunt or a junction

(possibly without a ‘real’ station). By taking into account

constraints that forbid overtaking on a track, we guarantee

a feasible schedule. The operation of the schedule can be

divided into a set of train runs, where each run starts with a
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departure and ends with an arrival. A number of train runs,

performed by the same ‘physical’ train will be denoted as a

line. In the remainder of this paper we will simply refer to

a ‘train run’ as a ‘train’.

Let di(k) denote the time that train i depart for the kth time

and let rdi (k) be the scheduled departure time. Let ai(k)
denote the time that train i arrives for the kth time, let

τrun,i(k) be its running time and let rai (k) be the scheduled

arrival time. We will call k the cycle counter. A departure

may not occur before its scheduled departure time, so we

have to satisfy the timetable constraint

di(k) > rdi (k) (1)

The running time constraint now becomes

ai(k) > di(k) + τrun,i(k) (2)

Note that for a cyclic timetable there holds rdi (k) = rdi (0)+
k T and rai (k) = rai (0)+k T where we choose 0 ≤ rdi (0) <
T with T is the cycle time of the timetable. If the arrival

of the train may not occur before the scheduled arrival time

then we have to satisfy the timetable constraint

ai(k) > rai (k) (3)

With the above definition it may happen that rai (0) ≥ T .

Let pi be the preceding train of train i, which means that

train i and pi are physically the same train. Let τdwell,i(k)
be the minimum dwell time between arrival of train pi and

the departure of train i, then we have to satisfy the dwell

time constraint

di(k) > api
(k − δ

p
ipi

) + τdwell,i(k) (4)

where δ
p
ij = 0 if each cycle k train pi in proceeds as train

i in that cycle, and δ
p
ipi

= µ if train pi in cycle (k − µ)
proceeds as train i in cycle k.

Let Ci(k) be the set of trains to which train i gives a con-

nection, and define a minimum connection time τconnect,ic
for passengers to get from train c to train i . Then for each

train c ∈ Ci(k) we have the connection constraint

di(k) > ac(k − δcic) + τconnect,ic (5)

(δcic is defined similarly as above).

Let Fi(k) be the set of trains that move over the same

track and in the same direction as train i, and are scheduled

before train i. Let f ∈ Fi(k) and let τheadway,if denote the

minimum headway time between train f and train i. For



each train f ∈ Fi(k) we have headway constraints for both

departure and arrival

di(k) > df (k − δhif ) + τheadway,if (6)

ai(k) > af (k − δhif ) + τheadway,if (7)

(δhif is defined similarly as above). Note that due to the

fact that train i cannot overtake train f headway constraints

(for trains running in the same direction) always come in

pairs, one constraint for headway at the departure and one

constraint for headway at the arrival.

Let Wi(k) be the set of trains that move over the same track

and in the opposite direction as train i, and are scheduled

before train i. Let w ∈ Wi(k) and let τwait,iw denote the

minimum separation time between arrival of train w and

departure of train i. For each train w ∈ Wi(k) we have

separation constraint

di(k) > aw(k − δwiw) + τwait,iw (8)

(δwiw is defined similarly as above).

Since we let a train depart as soon as all connection condi-

tions are satisfied, we have [14], [15]:

di(k) =max
{

rdi (k) , api
(k − δ

p
ipi

) + τdwell,pi
(k) ,

max
{

max
c∈Ci(k)

(ac(k − δcic) + τconnect,ic) ,

max
{

max
f∈Fi(k)

(df (k − δhif ) + τheadway,if ) ,

max
{

max
w∈Wi(k)

(aw(k − δwiw) + τwait,iw)
}

, (9)

ai(k) =max
{

rai (k) , di(k) + τrun,ic(k) ,

max
{

max
f∈Fi(k)

(af (k − δhif ) + τheadway,if )
}

. (10)

Note that in an undisturbed, well-defined time schedule the

term ri(k) in (9) and (10) will be the largest. However, if due

to unforeseen circumstances (an incident, a late departure,

etc.) one of the trains (pi, c, f , or w) has a delay, the

corresponding term can become larger than the others, and

then train i will depart later than the scheduled departure

time ri(k) and will therefore also be delayed. Now let us

consider a network with n trains (train runs) and define the

vectors

x(k) =
[

d1(k) · · · dn(k) a1(k) · · · an(k)
]T

∈ R
2n

r(k) =
[

rd1 (k) · · · rdn(k) ra1(k) · · · ran(k)
]T

∈ R
2n.

By defining appropriate matrices Aµ ∈ R
2n×2n for µ =

0, 1, . . . , µmax we can rewrite equations (9) and (10) as:

xi(k) = max
{

ri(k) , max
j

(xj(k) + [A0]ij) , ,

max
j

(xj(k − 1) + [A1]ij ) , . . . ,

max
j

(xj(k − µmax) + [Aµmax
]ij )

}

(11)

where [Aµ]ij are the (i, j)th entries of the matrices Aµ,

µ = 0, 1, . . . µmax, respectively. The matrices Aµ can be

completed by adding [Aµ]ij = −∞ for all combinations

(µ, i, j) that do not appear in (11).

Now we introduce some notation from max-plus algebra.

Define ε = −∞ and Rε = R∪ {ε}. The max-plus-algebraic

addition (⊕) and multiplication (⊗) are defined as follows

[1]:

x⊕ y = max(x, y) x⊗ y = x+ y

for x, y ∈ Rε and

[A⊕B]ij = aij ⊕ bij = max(aij , bij)

[A⊗ C]ij =

n
⊕

k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj)

[A⊙B]ij = aij + bij

for A,B ∈ R
m×n
ε , C ∈ R

n×p
ε . The matrix ε is the

max-plus-algebraic zero matrix: [ε]ij = ε for all i, j.

A max-plus diagonal matrix S = diag⊕(s1, . . . , sn) has

elements [S]i,j = ε for i 6= j and diagonal elements

[S]i,i = si for i = 1, . . . , n. A max-plus permutation matrix

T ∈ R
m×m
ε has one zero in each row and one zero in each

column and ε elsewhere.

In max-plus notation, equation (11) becomes

xi(k) = ri(k)⊕

µmax
⊕

µ=0

n
⊕

j=1

xj(k − µ)⊗ [Aµ]ij

and in matrix-notation we obtain

x(k) =

µmax
⊕

µ=0

Aµ ⊗ x(k − µ)⊕ r(k) (12)

as was already shown in [2], [7], [12]. Model (12) describes

the uncontrolled operation of the railway network in which

some trains should give pre-defined connections to other

trains and the order of trains on the same track is fixed and

no control is applied to the network.

In practice the running times, dwell times, headway times,

and connection times are not always constant, but may

deviate from their nominal values, which may cause delays

in the network. Furthermore, if the delay of a train becomes

too large, then it is sometimes better — from a global

performance viewpoint — to change the departure order on

a specific track, to let a connecting train depart anyway, or to

reroute the train over another parallel track. This is done in

order to prevent an accumulation of delays in the network.

Now consider a railway network at time instant t. We define

a parameter vector θ(k, t) consisting of all running times and

dwell times in the network in cycle k with all information

known at time t. We assume that all events that have taken

place up to time instant t have been measured and that we

can substitute these measured values of running times and

dwell times into the vector θ(k, t). The times for events that

have not taken place we can use estimates from observers or

if no estimates are available we can use the nominal value.



Define at time instant t the control vector u(k, t) that deter-

mines the operation mode of the network in cycle k, where

each mode corresponds to a different set of pre-defined or

broken connections and a specific order of train departures.

We allow the system to switch between different modes,

allowing us to break train connections and to change the

order of trains. Note that any broken connection or change

of train order leads to a new model, similar to the nominal

equation (12), but now with adapted system matrices.

With the parameter vector θ(k, t) and the control vector

u(k, t) at time t in cycle k we obtain the system matrices

Aµ(θ(k, t), u(k, t)). Often we use Aµ(k, t) as short notation.

Note that in controlled operation it may occasionally happen

that a delayed train of the kth cycle is rescheduled behind a

train in the (k+α)th cycle with α > 0. Such a value α > 0
corresponds to a value µ = −α < 0. This means that the

lower bound µ in (12) may become a negative number and

we obtain the following system equation for the controlled

operation:

x(k) =

µmax
⊕

µ=µmin

Aµ(k, t)⊗ x(k − µ)⊕ r(k) (13)

with µmin ≤ 0.

III. STRUCTURE ANALYSIS OF THE SYSTEM MATRICES

From (13) we can observe that in each mode the railway

system is described by the matrices Aµ, µ = 0, . . . , µmax.

In this section we will study the structure of the matrices.

Consider the max-plus linear system (13). Now define

the matrices Aµ,1(k, t), Aµ,2(k, t), Aµ,3(k, t), Aµ,4(k, t),
Aµ,5(k, t) ∈ R

n×n
ε at time t in cycle k:

Running matrix:

Aµ,1(k, t) =





























































τrun,1(k, t) ε · · · ε

ε τrun,2(k, t)
...

...
. . .

...

ε · · · · · · τrun,n(k, t)















for µ = 0

ε for µ 6= 0
Dwell matrix:

[Aµ,2(k, t)]i j =

{

τdwell,pi
(k, t) if j = pi and δ

p
ij = µ

ε elsewhere

Connection matrix:

[Aµ,3(k, t)]i j =

{

τconnect,ij if j ∈ Ci(k, t) and δcij = µ

ε elsewhere

Headway matrix (same direction):

[Aµ,4(k, t)]i j =

{

τheadway,ij if j ∈ Fi(k, t) and δhij = µ

ε elsewhere

Headway matrix (opposite direction):

[Aµ,5(k, t)]i j =

{

τwait,ij if j ∈ Wi(k, t) and δwij = µ

ε elsewhere

Now we find the following structure in the matrices:

Aµ(k, t)=
[

Aµ,4(k, t) Aµ,2(k, t)⊕Aµ,3(k, t)⊕Aµ,5(k, t)
Aµ,1(k, t) Aµ,4(k, t)

]

(14)

where the matrix Aµ,1 represents the running constraints, the

matrices Aµ,2 represent the dwell constraints, the matrices

Aµ,3 represent the connection constraints, the matrices Aµ,4

represent the headway constraints for trains in the same

direction, and the matrices Aµ,5 represent the headway

constraints for trains in the opposite directions. We will

now discuss and analyze the structure of the five matrices

Aµ,1, . . . , Aµ,5 in more detail.

The running matrix Aµ,1:

This matrix represents the running constraints. We assume

that for every train the arrival has the same cycle index as

the departure, and furthermore we assume that each arrival

ai(k) is related to the departure di(k). Therefore the matrix

Aµ,1 will be a max-plus diagonal matrix Aµ,1(k, t) =
diag⊕

[

τrun,1(k, t) τrun,2(k, t) · · · τrun,n(k, t)
]

for

µ = 0 and a zero matrix Aµ,1(k, t) = ε for µ 6= 0. The

values τrun,1(k, t), . . . , τrun,n(k, t) are entries of the vector

θ(k, t) and may change in time and per cycle. The matrix

Aµ,1(k, t) only depends on θ(k, t) and not on the control

vector u(k, t).
The dwell matrix Aµ,2:

This matrix represents the dwell constraints. Let nL be the

number of lines in the network and let nl,i be the number of

trains on track i, i = 1, . . . , nL, so n1 + n2 + . . .+ nL = n.

Now we can define a max-plus permutation matrix ED that

reshuffles the states by line in chronological order:

Aµ,2(k, t) =

ED⊗













Āµ,2,1(k, t) ε · · · ε

ε Āµ,2,1(k, t)
...

...
. . .

...

ε · · · · · · Āµ,2,nL
(k, t)













⊗ET
D

For each line the initial station and terminal station are the

same, leading to a cyclic behavior of the line, and we obtain

for line i a sub-matrix of the form:

Āµ,2,i(k, t) =










ε · · · ε τ̄dw,µ,i,nl,i
(k, t)

τ̄dw,µ,i,1(k, t) · · · ε ε
...

. . .
...

ε · · · τ̄dw,µ,i,nl,i−1(k, t) ε











The dwell matrix Aµ,2(k, t) only depends on θ(k, t) and not

on the control vector u(k, t). All finite values τ̄dw,µ,i,ℓ(k, t),
i = 1, . . . , nL, ℓ = 1, . . . , nl,i are entries of the vector θ(k, t)
and may change in time and per cycle.

The connection matrix Aµ,3:

This matrix represents the connection constraints and only

depends on the control vector u(k, t) and not on the parame-

ter vector θ(k, t). Now collect all minimum connection times



in one matrix C with [C]ij = τconnect,ij for all i = 1, . . . , n,

j ∈ Ci(k, t) and ε elsewhere. Define the matrices Qµ(k, t)
such that

[Qµ(k, t)]i j=











0 if j ∈ Ci(k), vµ,i,j(k, t)=0, and δcij=µ

ε if j ∈ Ci(k), vµ,i,j(k, t)=1, and δcij=µ

ε elsewhere

where the binary control variable vµ,i,j(k, t) ∈ {0, 1} de-

termines whether the connection between train i in cycle k

and train j in cycle (k − µ) will be broken or not (v = 0
means ‘make the connection’ and v = 1 means ‘break the

connection’).

The elements vµ,i,j(k, t), j ∈ Ci(k), i = 1, . . . , n can

be stacked in one vector v(k, t) which now controls the

connections in the network and we obtain

Aµ,3(k, t) = Qµ(k, t)⊙ C

For computational reasons during the implementation we will

introduce a variable β ≪ 0 that replaces all ε values. If β

is sufficiently negative, it will not have any influence on the

final outcome of the control algorithm.

This will result in the matrix

[Qµ(k, t)]i j =

{

vµ,i,j(k, t)β if j ∈ Ci(k) and δcij = µ

β elsewhere

The headway matrices Aµ,4 and Aµ,5:

The matrix Aµ,4 represents the headway constraints for

trains in the same direction and Aµ,5 represents the headway

constraints for trains in the opposite directions.

Let nT be the number of tracks in the network and let nm

be the number of trains on track m, m = 1, . . . , nT , so

n1 + n2 + . . .+ nnT
= n.

Now we can define a permutation matrix EH = [EH,1 EH,2

· · · EH,nT
] with EH,m ∈ R

n×nm
ε for m = 1, . . . , nT , that

reshuffles the states by track in nominal chronological order:

Aµ,4(k, t)=

EH⊗











Āµ,4,1(k, t) ε · · · ε

ε Āµ,4,2(k, t) · · · ε

...
...

. . .
...

ε ε · · · Āµ,4,nT
(k, t)











⊗ET
H

Aµ,5(k, t)=

EH⊗











Āµ,5,1(k, t) ε · · · ε

ε Āµ,5,2(k, t) · · · ε

...
...

. . .
...

ε ε · · · Āµ,5,nT
(k, t)











⊗ET
H

We collect all headway times τheadway,ij (for same direction)

in the matrix H such that [H]ij = τheadway,ij and we

collect all headway times τwait,ij (for opposite direction)

in the matrix W such that [W ]ij = τwait,ij . Now let nm

be the number of trains on track m and define the matrices

H̄m, W̄m,Mm, Nm, Dm, D̄m ∈ R
nm×nm
ε :

H̄m = ET
H,m ⊙H ⊙ EH,m

W̄m = ET
H,m ⊙W ⊙ EH,m

[Mµ,m(k, t)]ij =



















ε if train i in cycle k is scheduled

before train j in cycle k − µ

0 if train i in cycle k is scheduled

behind train j in cycle k − µ

[Dm]ij =



















0 if i and j run in the same direction on

track m

ε if i and j run in the opposite direction

on track m

[D̄m]ij =



















ε if i and j run in the same direction on

track m

0 if i and j run in the opposite direction

on track m

With the above definitions we find for Āµ,4,m and Āµ,5,m:

Āµ,4,m(k, t) = Mµ,m(k, t)⊙Dm ⊙ H̄m (15)

Āµ,5,m(k, t) = Mµ,m(k, t)⊙ D̄m ⊙ W̄m (16)

The matrix H̄m and W̄m consists of all headway times

between the trains on track m. The matrices Dm and D̄m

determine the direction of the trains on track m and are

complementary.

By ordering the trains on track m in nominal chronological

order, the matrix M0,m for the uncontrolled case will become

a lower-triangle matrix with 0 on the lower sub-diagonals and

ε on the diagonal and upper sub-diagonals:

M0,m =



















ε ε · · · ε ε

0 ε
. . . ε ε

0 0
. . . ε ε

...
. . .

. . .
...

0 0 · · · 0 ε



















∈ R
nm×nm
ε

For the uncontrolled case we also find Mµ,m = ε for µ < 0
and Mµ,m = 0 for µ > 0 shows that in the nominal case all

trains on track m in cycle k are scheduled behind all trains

on track m in cycle k − µ and before all trains on track m

in cycle k + µ.

In controlled operation it can happen that a train from a

previous cycle is scheduled behind a train in the present

cycle. In that case the shift δhij in (10) becomes a negative

number.

In controlled operation the matrices Mµ,m(k) may change.

Now define the control variable wµ,m(k, t) ∈ {0, 1}nm×nm ,



then the matrices Mµ,m can be parameterized by

Mµ,m(k, t) =

β ⊗











[wµ,m(k, t)]1,1 · · · [wµ,m(k, t)]1,nm

[wµ,m(k, t)]2,1 · · · [wµ,m(k, t)]2,nm

...
...

[wµ,m(k, t)]
nm,1 · · · [wµ,m(k, t)]nm,nm











(17)

where, similar to the implementation of the connection

matrix, we use the variable β ≪ 0 to replace all ε values.

The variables [wµ,m(k, t)]
i,j

have the following important

properties

[w0(k, t)]i,j + [w0(k, t)]j,i = 1, for i 6= j

(18)

[w−µ,m(k, t)]j,i + [wµ,m(k, t)]i,j = 1 for µ 6= 0
(19)

[w0(k, t)]i,i = 1, ∀i (20)

This property can be explained as follows: Consider train i

in cycle k and train j in cycle k − µ. We find that either

train i in cycle k is scheduled behind train j in cycle k−µ,

so [wµ,m(k, t)]i,j = 0 and [w−µ,m(k− µ, t)]j,i = 1, or train

j in cycle k − µ is scheduled behind train i in cycle k, so

[wµ,m(k, t)]i,j = 1 and [w−µ,m(k − µ, t)]j,i = 0.

The elements [wµ,m(k, t)]
i,j

, µ = −µmax, . . . , µmax,

m = 1, . . . , nT , i, j = 1, . . . , nm can be stacked in

one vector w(k, t), which now controls the headway

constraints in the network. Now the order of the trains in

cycle k is defined by the binary vector w(k, t) and we obtain

Aµ,4(k, t) =

nT
⊕

m=1

EH,m ⊗ Āµ,4,m ⊗ ET
H,m

=

nT
⊕

m=1

EH,m ⊗ (Mµ,m(wµ,m(k, t))⊙Dm ⊙ H̄m)⊗ ET
H,m

(21)

Aµ,5(k, t) =

nT
⊕

m=1

EH,m ⊗ Āµ,5,m ⊗ ET
H,m

=

nT
⊕

m=1

EH,m ⊗ (Mµ,m(wµ,m(k, t))⊙ D̄m ⊙ W̄m)⊗ ET
H,m

(22)

IV. DOUBLE TRACKS

In the previous section we have assumed that the index

m refers to a single track between two stations, on which

no overtaking is possible. However, very often there are

multiple tracks between two stations. In busy railway

networks, such as in the Netherlands, the major part has two

tracks, one track for each direction. Furthermore, some parts

of the network have four tracks, two for each direction, so

that the slow and fast railway traffic can be split. In this

paper we will handle a double track as a bundled track,

with two subtracks.

Consider a bundled track m with a track mA and track mB :

Define nm integers sm,i(k, t) ∈ {0, 1}, i = 1, . . . , nm, such

that sm,i(k, t) = 0 if train i in cycle k runs over track mA

and sm,i(k, t) = 1 if train i in cycle k runs over track mB .

Consider the matrix Mµ,m(wµ,m(k, t)) from equation (17).

If train i in cycle k and j in cycle k + µ (with i 6= j) are

on the same subtrack (so sm,i(k, t) = sm,j(k+µ)), then we

have to determine the order between these two trains. We

have either [wµ,m(k, t)]
i,j

= 0 and [w−µ,m(k, t)]
j,i

= 1 or

we have [wµ,m(k, t)]
i,j

= 1 and [w−µ,m(k, t)]
j,i

= 0, so

(compare (19))

[wµ,m(k, t)]
i,j

+ [w−µ,m(k, t)]
j,i

= 1

If train i in cycle k and j in cycle k + µ (with i 6= j) are

not on the same subtrack (so sm,i(k, t) 6= sm,j(k + µ)),
then the order between the two trains is irrelevant. We have

[wµ,m(k, t)]
i,j

= 1 and [w−µ,m(k, t)]
j,i

= 1 and so

[wµ,m(k, t)]
i,j

+ [w−µ,m(k, t)]
j,i

= 2

This results in the following inequality constraints:

[wµ,m(k, t)]
i,j

+ [w−µ,m(k, t)]
j,i

≥ sm,i(k, t) + (1− sm,j(k + µ, t))

[wµ,m(k, t)]
i,j

+ [w−µ,m(k, t)]
j,i

≥ (1− sm,i(k, t)) + sm,j(k + µ, t)

[wµ,m(k, t)]
i,j

+ [w−µ,m(k, t)]
j,i

≤ 3− sm,i(k, t)− sm,j(k + µ, t)

[wµ,m(k, t)]
i,j

+ [w−µ,m(k, t)]
j,i

≤ 3− (1− sm,i(k, t))− (1− sm,j(k + µ, t))

Let D denote the set of all bundled tracks, then the elements

sm,i,j(k, t), m ∈ D, i, j = 1, . . . , n can be stacked in one

vector s(k, t). This vector s(k, t) is now a decision variable

that decides which train is running over which track in the

case of double tracks.

V. JOINED TRAINS

In the Dutch railway network there are a few lines for which

two trains are coupled on parts of the line and run separately

on other parts of the line. If one of the trains has a delay at

the station where the trains have to be coupled, the coupling

may be canceled and both trains will run separately to the

end station. Define a coupling variable σij(k, t) and let train

i and j be coupled for σij(k, t) = 0 and decoupled for

σij(k, t) = 1 with a minimum headway τheadway,ij if they

are not coupled. If the trains are not coupled, we have the

variables [w0,m(k, t)]
i,j

and [w0,m(k, t)]
i,j

to decide which

train goes first (Section 2). Typically train i and train j

are scheduled in the same cycle k so we only consider

[w0,m(k, t)]
i,j

and [w0,m(k, t)]
i,j

in (17). If the trains are

coupled (σij(k, t) = 0) we must have [w0,m(k, t)]
i,j

=
[w0,m(k, t)]

j,i
= 0. This makes train i to follow train j

with headway 0 and train j will follow train i with headway



0, which means that train i and j have the same departure

and arrival times. If train 1 precedes train 2 (σij(k, t) = 1
and uij(k, t) = 0) we must have [w0,m(k, t)]

i,j
= τ and

[w0,m(k, t)]
j,i

= β + τ .

If train 2 precedes train 1 (σij(k, t) = 1 and uij(k, t) = 1)

we must have [w0,m(k, t)]
i,j

= β+τ and [w0,m(k, t)]
j,i

= τ .

This results in the following inequality constraints:

uij(k, t) ≤ σij(k, t)

[w0,m(k, t)]
i,j

= σij(k, t)τ + uij(k, t)β

[w0,m(k, t)]
j,i

= σij(k, t)(τ + β)− uij(k, t)β

Remark:

Note that in principle we can split and couple trains over the

whole line now. In practice the decision to couple the trains

or not is taken only once at a specific station, which means

that the variables σij(k, t) will be equal for the rest of the

line from that specific station on.

VI. AN AFFINE FORM FOR THE SYSTEM MATRIX

In the above the control measures are restricted to breaking

connections between trains (v(k, t)), changing the order of

trains running on the same track (w(k, t)), allocating trains

to specific tracks (s(k, t)), and joining trains (σ(k, t)). For

cycle k we collect all control variables in one vector:

uT (k, t) =
[

wT (k, t) vT (k, t) sT (k, t) σT (k, t)
]

Note that the matrices Aµ,1, Aµ,2 only depend on the

parameter vector θ(k, t) and the matrices Aµ,3, Aµ,4, and

Aµ,5 depend on the control vector u(k, t).
The matrices Mµ,m and Qµ are affine in the control vector

u(k, t) which means that also the matrices Aµ,3(u(k, t)),
Aµ,4(u(k, t)), and Aµ,5(u(k, t)) are affine in the control

vector u(k, t).
Finally Aµ,1(θ(k, t)) is affine in the parameter vector θ(k, t)
and the submatrices Āµ,2,i are affine in θ(k, t), so we obtain

that Aµ,2(θ(k, t)) is also affine in the parameter vector

θ(k, t).
Now we obtain

Aµ(k, t)=A0
µ⊙

nθ
∑

i=1

·Aθ
µ,i θi(k, t)⊙

nu
∑

ℓ=1

Au
µ,ℓ · uℓ(k, t)

(23)

where the constant matrix A0
µ contains the values ε, the

matrices Aθ
µ,i and Au

µ,ℓ have finite entries, nθ is number of

parameters in θ(k, t), and nu is number of control variables

in u(k, t). Note that the multiplication in the affine part of

(23) is the conventional multiplication.

VII. DISCUSSION

In this paper we use a max-plus-linear system description

to describe a perturbed railway network. The system matri-

ces are highly structured and the submatrices for running

constraints, connection constraints, and headway constraints

have been studied. All control actions, such as changing the

train order, canceling connections, dispatching over double

tracks, and joining and splitting trains are described by the

entries of a control vector u(k, t). All minimum running

times, minimum connection times, and minimum headway

times are collected in a parameter vector θ(k, t). The system

matrices are affine in the control vector u and the parameter

vector θ. The derived model can be used to control the system

with a model predictive control strategy ([12], [15]).
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