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On the synchronization of cyclic discrete-event systems

G.A.D. Lopes, B. De Schutter, and T.J.J. van den Boom

Abstract— Max-plus linear systems are a powerful modeling
tool for many applications that involve scheduling and synchro-
nization, such as manufacturing, traffic, and legged locomotion.
In this paper we investigate how to systematically construct
synchronization controllers for multiple cyclic discrete-event
systems modeled in the max-plus framework. We consider
that a synchronization specification is given to the control
designer as a set of ordering pairs of events that need to occur
for the same event counter. We introduce a synchronization
controller that verifies the feasible specifications and show that
unfeasible specifications are automatically detected. We present
simulation results for the evolution of controlled synchronized
cyclic systems.

I. INTRODUCTION

The synchronization of cyclic processes is crucial in many
applications, such as railroad and urban traffic networks
[1]; production systems [2]; queuing systems and array
processors [3]; genomics [4]; and legged locomotion [5],
[6]. In these applications, the max-plus modeling framework
plays an important role, since under the right assumptions it
transforms the inherently nonlinear structure of the dynamic
equations of cyclic systems into linear expressions in the
max-plus algebra [3], [7]. Timed event graphs [8], [9], a
subclass of Petri nets, are a class of timed discrete-event
systems that can be modeled by max-plus linear equations.
Due to the parallels between max-plus linear systems theory
and the traditional linear systems theory, many tools are
available for analysis of max-plus linear systems.

In this paper we address systems with a nominal behavior
consisting in multiple concurrent cyclic processes that can
be described in the max-plus algebra. These are to be
synchronized via a set of predefined ordering specifications.
Given such a list we aim to generate feasible synchronization
controllers, such that no deadlock occurs. As such, this
paper aims at automatic control synthesis for the canonical
max-plus linear systems as presented in Cohen et al. [10],
where the control specification naturally results in an implicit
form. We assume that the control specification gives rise
to constraints that cannot all be meet, i.e. it is desired to
meet all specifications, but not strictly necessary. The goal
is thus to minimize the number of specifications that cannot
be fulfilled. This synthesis problem appears in scenarios such
as schedule creation for the rail road or in legged locomotion
as the example presented in this paper. This approach differs
from the traditional view of strictly meeting a set of time
constraint as in [11] or Just-in-time control as in [12].

This paper is organized as follows: in Section II we
briefly review relevant concepts from the theory of max-
plus algebra. In Section III we present the structure of
the discrete-event systems to be controlled and in Section

IV a synchronization controller is proposed. We conclude
in Section V with a synchronization example in legged
locomotion. Simulations are presented.

II. MAX-PLUS ALGEBRA

Cuninghame-Green [13], [14] and Giffler [15], [16], [17]
discovered independently in the sixties that certain classes of
discrete-event systems could be described by equations that
only contain the max and + operations. Although nonlinear
in traditional algebra, such classes of systems have a linear
structure when written in the max-plus algebra [3], [7], [9],
a type of tropical algebra with max and + operations as
the basic structural elements. For systems modeled in the
max-plus algebra, synchronization is driven by operations
starting immediately after all preceding operations complete
(equivalent to events firing immediately after enabled in the
Petri net language) and the duration of the operations is
driven by addition: the finishing time of one operation is
equal to its starting time plus its duration (equivalent to
a holding time in timed Petri nets). In this paper we use
the standard notation for the operator x ⊕ y := max(x, y)
and x ⊗ y := x + y. Please see [7], [9] for a complete
treatment of the material and the definitions of max-plus
nilpotentency, precedence graphs, strongly connected graphs,
and irreducibility.

Theorem 1 (see [9], Th 3.17): Consider the following
system of linear equations in the max-plus algebra:

x = A⊗ x⊕ b (1)

with A ∈ Rn×n
max and b, x ∈ Rn×1

max . Now let

A∗ :=

∞⊕
p=0

A⊗p .

If A∗ exists then x = A∗ ⊗ b solves the system of max-
plus linear equations (1). If the greatest eigenvalue of A is
negative then the solution is unique.

III. CYCLIC SYSTEMS

We now consider discrete-event systems that consist of
multiple circuits that we aim to synchronize, as illustrated in
Figure 1. Let ai(k) ∈ Rmax represent the time at which the
event ai ∈ Q fires for the k-th turn, where Q is the set of
all events. A firing precedence order in a cycle indexed by
k is represented by the following equation in the traditional
algebra:

aj(k) ⩾ ai(k) + τi,j

meaning that event aj can only fire τi,j time units after event
ai has fired, within the same cycle k. Now consider a system
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Fig. 1. A system to be synchronized: multiple disconnected circuits of
events. The parameters τi represent the “holding times”, i.e. the time that
must elapse before a transition occurs.

whose nominal dynamics consists of m circuits, with m > 1.
Let r(i) be the number of events in circuit i. Then the total
event state is defined by:

x(k) = [āT1 (k) · · · āTm(k)]T (2)

where each event vector āi(k) describes a circuit:

āi(k) = [ah(i,1)(k) · · · ah(i,r(i))(k)]
T , (3)

ah(i,j)(k) ∈ Rmax, ∀i, j : 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ r(i),

where h(i, j) is an indexing function that maps the event j of
circuit i to an index on the total set of events Q. We consider
that the following ordering relations exist for all events in
the circuits, with all strictly positive holding times τi,j > 0:

ah(i,j+1)(k) ⩾ ah(i,j)(k) + τi,j for 1 ⩽ j < r(i) (4)
ah(i,1)(k) ⩾ ah(i,r(i))(k − 1) + τi,r(i) (5)

The graph in Figure 1 shows an example of three concurrent
circuits with 3, 2 and 3 events each, for the total set of
events Q = {a1, a2, a3, b1, b2, c1, c2, c3}. Equations (4) and
(5) can be written compactly in the max-plus algebra by
the expression (here replacing the inequalities by equalities,
meaning that each event fires as soon as all conditions are
satisfied):

āi(k) = A0,i ⊗ āi(k)⊕A1,i ⊗ āi(k − 1)

where the matrix A0,i is max-plus lower-band triangular and
A1,i is max-plus upper-band triangular, both with max-plus
zeros in the diagonal:

A0,i =



ε · · · ε
τi,1 ε

ε τi,2 ε
...

...
. . .

. . .

ε · · · ε τi,r(i)−1 ε



A1,i =


ε · · · ε τi,r(i)

ε ε

. .
. ...

ε ε


The total uncontrolled system for the event state defined in
(2) is then written as:

x(k) = A0 ⊗ x(k)⊕A1 ⊗ x(k − 1) (6)

with block diagonal matrices

A0 =


A0,1 E · · · E

E A0,2

...
...

. . . E
E · · · E A0,m



A1 =


A1,1 E · · · E

E A1,2

...
...

. . . E
E · · · E A1,m


It can be shown that system (6) always admits the solution

x(k) = A0 ⊗ x(k)⊕A1 ⊗ x(k − 1) =

= A∗
0 ⊗A1 ⊗ x(k − 1)

since A∗
0 can always be computed due to A0 being nilpotent.

Since, by construction, each circuit is disconnected from
each other, the precedence graph of the matrix A∗

0 ⊗ A1

is not strongly connected and as such it is not irreducible.
The precedence graph of the matrix A0 ⊕ A1 represents m
disconnected circuits, by construction, as illustrated in Figure
1

We now consider the controlled system by introducing the
signal u(k) that can insert delays:

x(k) = A0 ⊗ x(k)⊕A1 ⊗ x(k − 1)⊕ u(k)

The signal u(k) is now used to enforce synchronization
between the circuits. Assume that a synchronization spec-
ification S is supplied to the control designer as a set of
precedence order of events of the form:

Sv : aj ≻ ai + σi,j (7)

This specification, indexed by v, represents that the event aj
should only fire σi,j > 0 time units after event ai has fired.
Note that the event counter k is omitted in this specification
since it is not known yet if it is possible to construct a
correct synchronization controller that verifies all the given
pairs. The goal of the next section is to find the largest set
of specification pairs that can be implemented within the
same cycle k while the nominal dynamics, represented by
equations (4) and (5) are verified.

For the state vector x = [a1 · · · an]T , given a specification
Sv one can build the matrix Wv(ai, aj , σi,j), with 1 ⩽ i, j ⩽
n, as:

[Wv]lp =

{
σi,j if l = j and p = i
ε otherwise

such that the expression

x ≻ Wv ⊗ x

is equivalent to expression (7). Now consider that the control
signal u(k) takes the form:

u(k) = S0 ⊗ x(k)⊕ S1 ⊗ x(k − 1)
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Fig. 2. Example of a partially synchronized precedence graph, represented
by the solid arcs together with the dotted arcs (each circuit has at least
one event with an incoming arc from a different circuit); and of a fully
synchronized precedence graph, represented by the solid arcs together with
the dashed arcs (each circuit has at least one event with an incoming arc and
one event with an outgoing arc, from and to different circuits; and graph is
weekly connected)

We aim to encode the synchronization specifications into
the matrices S0 and S1 such that the resulting closed-loop
max-plus linear system equation can be transformed from
an implicit form to an explicit one, i.e. it is solvable. Note
that ideally all specifications should be encoded in the matrix
S0, since that represents that synchronizations occur between
events in the same event cycle k. Placing all the specifications
in matrix S1 trivially allows for computing the explicit form,
but in practice does not result in a system that verified the
specifications (although it might be synchronized). Replacing
the input u(k) into equation (6) we obtain the closed-loop
system:

x(k) = (A0 ⊕ S0)⊗ x(k)⊕ (A1 ⊕ S1)⊗ x(k − 1) (8)

Definition 2: We call the system represented by equation
(8) partially synchronized if for every circuit (encoded by
the matrices A0 and A1) of the precedence graph of the
matrix A0 ⊕ A1 ⊕ S0 ⊕ S1 there is at least one event with
an incoming arc from a different circuit (encoded in the
matrices S0 and S1). The system is called fully synchronized
or simply synchronized if it is partially synchronized, there
is at least an event on every circuit with an outgoing arc
to a different circuit, and the precedence graph is weekly
connected. We call a system unsynchronized if it is not
partially synchronized. See the example in Figure 2.

Proposition 3: The matrix A0 ⊕A1 ⊕ S0 ⊕ S1 of a fully
synchronized system is irreducible.

Proof: Since each circuit has events with incoming and
outgoing arcs to other circuits, and the precedence graph is
weekly connected, then there exists a path from any node
to any other node, i.e. the graph is strongly connected, thus
A0 ⊕A1 ⊕ S0 ⊕ S1 is irreducible.

IV. NON-BLOCKING CONTROLLERS

By construction the precedence graph of the matrix A0

has no cycles due to its max-plus lower-band triangular
structure with max-plus zeros in the diagonal. That is a
sufficient condition for the matrix A∗

0 to be well defined.
In the controlled case, one needs to make sure that each arc
introduced by the synchronization pairs admits a solution
for equation (8), i.e. the matrix (A0 ⊕ S0)

∗ must be well
defined. Given an arbitrary specification of synchronization

pairs, as in (7), there can be situations where some pairs are
conflicting. In this situation the controller must be designed
such that all conflicting pairs are addressed. This is done
by placing the conflicting synchronization constraints in the
matrix S1. Before we present systematic methodologies for
designing such controllers we introduce an example: let the
state vector x be

x = [a1 a2 a3 b1 b2 c1 c2 c3]
T

with paths:

p1 : a1 → a2 → a3 → a1

p2 : b1 → b2 → b1

p3 : c1 → c2 → c3 → c1

as illustrated in Figure 1. Now consider the following list of
desired synchronization pairs:

S1 : c1 ≻ a1 + σ1 S2 : b1 ≻ c1 + σ2

S3 : c3 ≻ b1 + σ3 S4 : a2 ≻ c3 + σ4

S5 : c2 ≻ a2 + σ5 S6 : a3 ≻ c2 + σ6

S7 : b2 ≻ a3 + σ7

From this list, one can see that specifications S4 and S5

are conflicting, since in the same cycle k both cannot occur
simultaneously without breaking the natural order of each
circuit. Let Sall = W1 ⊕W2 ⊕ · · · ⊕W7. For this example
we get

Sall =



ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε σ4
ε ε ε ε ε ε σ6 ε
ε ε ε ε ε σ2 ε ε
ε ε σ7 ε ε ε ε ε
σ1 ε ε ε ε ε ε ε
ε σ5 ε ε ε ε ε ε
ε ε ε σ3 ε ε ε ε


A sufficient condition for the matrix (A0 ⊕ S0)

∗ to exist is
that it is max-plus lower-band diagonal with max-plus zeros
on the diagonal, i.e. it is nilpotent. As such, if we let S0 =
W1 ⊕ W3 ⊕ W5 ⊕ W7 and S1 = W2 ⊕ W4 ⊕ W6, then
the matrix A0 ⊕ S0 is max-plus lower-band diagonal, and
equation (8) admits a solution. However, since the holding
times σ2, σ4, and σ6 were placed in the matrix S1 we obtain
the resulting equations for the event cycle k:

S1 : c1(k) ⩾ a1(k) + σ1 S2 : b1(k) ⩾ c1(k − 1) + σ2

S3 : c3(k) ⩾ b1(k) + σ3 S4 : a2(k) ⩾ c3(k − 1) + σ4

S5 : c2(k) ⩾ a2(k) + σ5 S6 : a3(k) ⩾ c2(k − 1) + σ6

S7 : b2(k) ⩾ a3(k) + σ7

This result is not optimal, in the sense enforcing the maxi-
mum number of synchronization constraints within the same
event cycle k, it is weaker than the original desired specifi-
cation. In fact, for this example, one can find a permutation
matrix P , such that all of the non-max-plus zero elements of
P ⊗A0 ⊗ PT stay in the lower diagonal and all but one of
the non-max-plus zero elements of P ⊗S0 ⊗PT stay in the
lower diagonal. This poses the question of how to assign the
minimum number of synchronization holding times to the
matrix S1 such that the matrix (A0 ⊕ S0)

∗ is well defined.
This problem can be approached from different angles.
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Fig. 3. The precedence graph of the matrix A0 ⊕ Sall. The undesirable
cycle is represented by the dashed lines.

A. Trimming arcs in the precedence graph

Since all the non ε-parameters in the matrix A0 ⊕ S0 are
assumed to be positive numbers, a sufficient and necessary
condition for the matrix (A0 ⊕ S0)

∗ to exist is that the
precedence graph of the matrix A0 ⊕ S0 has no cycles
[3]. Figure 3 illustrates the precedence graph of the matrix
A0⊕Sall from the previously described example. Due to the
conflicting specification a cycle is present via the path

c2
τc2−−→ c3

σ4−→ a2
σ5−→ c2

represented in Figure 3 by the dashed lines. To break the
cycle, it is sufficient then to either remove the c3 → a2
arc by setting S0 = W1 ⊕ W2 ⊕ W3 ⊕ W5 ⊕ W6 ⊕ W7

and S1 = W4 or by removing the a2 → c2 arc by setting
S0 = W1 ⊕ W2 ⊕ W3 ⊕ W4 ⊕ W6 ⊕ W7 and S1 = W5.
Detecting cycles in directed graphs is a well known problem
in graph theory. In [18], [19] Knuth et al. presented a method
based on incrementally deleting “sources”, i.e. vertices in
the graph with no incoming arcs. Tarjan [20] presented a
depth-first search algorithm. These methods find cycles in
O(n + q) time, where n is the number of vertices (event
states) and q is the number of arcs. In our case we have that
q = n−m+p where m is the number of circuits and p is the
number of specification pairs (note that we are enumerating
the arcs in the precedence graph of A0⊕Sall). Once a cycle
is detected, it must be eliminated. Since the detection of an
arc causing a cycle is a function of the “initial topology
representation” of the graph supplied to the algorithm, only
sub-optimal solutions are guaranteed to be found.

B. Incremental topological ordering

A topological ordering [21] of a directed graph is defined
to be a total ordering of the vertices (events in precedence
graphs) such that for every arc from ai to aj we get
an order ai < aj . Ordering thus preclude cycles in the
graph, since their existence would invalidate the order of
vertices. Incremental topological ordering methods [22], [21]
are designed to detect cycles when new arcs are added to
an existing graph. These methods typically assume a fixed
vertex structure, an initial topological ordering is given for a
graph, and new arcs are added incrementally. Haeupler et al.
[21] presented an algorithm that processes p arc additions
in O(p3/2) time, where in our case p is the number of

specification pairs. Using this algorithm, starting with the
trivial topological ordering O0 = {a1 a2 a3 b1 b2 c1 c2 c3}
(the order of the state vector x), and the set of arcs {a1 →
a2, a2 → a3, b1 → b2, c1 → c2, c2 → c3}, we obtain the
following topological orderings as new arcs are added:

O0 = {a1 a2 a3 b1 b2 c1 c2 c3}
S1 : a1 → c1 O1 = {a1 a2 a3 b1 b2 c1 c2 c3}
S2 : c1 → b1 O2 = {a1 a2 a3 c1 b1 b2 c2 c3}
S3 : b1 → c3 O3 = {a1 a2 a3 c1 b1 b2 c2 c3}
S4 : c3 → a2 O4 = {a1 c1 b1 b2 c2 c3 a2 a3}
��S5 : a2 → c2 O5 = {a1 c1 b1 b2 c2 c3 a2 a3}
S6 : c2 → a3 O6 = {a1 c1 b1 b2 c2 c3 a2 a3}
S7 : a3 → b2 O7 = {a1 c1 b1 c2 c3 a2 a3 b2}

The algorithm detects that no topological ordering is possible
if specification S5 is added, since it creates a cycle. As
such, S5 is discarded from S0 but added to S1. Since
the order at which arcs are introduced affects the final
result, this procedure is not guaranteed to always discard the
minimum number of arcs. As such, as it was the case in the
previous methodology, sub-optimal solutions are returned.
One interesting property of the topological ordering method
is that it can be used to construct a permutation matrix Pi that
renders the matrix Pi⊗(A0⊕S0)⊗PT

i max-plus lower-band
diagonal, which simplifies the computation of (A0 ⊕ S0)

∗.
For example, construct a new vector x̄ with the same ordering
as O7:

x̄ = [a1 c1 b1 c2 c3 a2 a3 b2]
T

Then, a permutation matrix P7 can be readily computed such
that x̄ = P7 ⊗ x:

P7 =



0 ε ε ε ε ε ε ε
ε ε ε ε ε 0 ε ε
ε ε ε 0 ε ε ε ε
ε ε ε ε ε ε 0 ε
ε ε ε ε ε ε ε 0
ε 0 ε ε ε ε ε ε
ε ε 0 ε ε ε ε ε
ε ε ε ε 0 ε ε ε


We can now use the permutation matrix to observe the

structure of the matrix A0⊕Sall written in the x̄ coordinates:

P7 ⊗ (A0 ⊕ Sall)⊗ PT
7 =

ε ε ε ε ε ε ε ε
σ1 ε ε ε ε ε ε ε
ε σ2 ε ε ε ε ε ε
ε τc1 ε ε ε σ5 ε ε
ε ε σ3 τc2 ε ε ε ε
τa1 ε ε ε σ4 ε ε ε
ε ε ε σ6 ε τa2 ε ε
ε ε τb1 ε ε ε σ7 ε


From the last matrix it is clear that by eliminating the

specification S5 from S0 the matrix P7 ⊗ (A0 ⊕ S0) ⊗ PT
7

becomes max-plus lower-band diagonal.



Figure 4 illustrates a sample execution in time of equation
(8) with S0 = W1⊗W2⊗W3⊗W4⊗W6⊗W7 and S1 = W5,
and with all τi,j = 1 and all σi,j = 1/2. The execution
follows the order O7.

C. Mixed Integer Linear Programming

To compute the maximal set of specification pairs that can
be included in the matrix S0 one can recast the max-plus
linear equations described by (8) into a mixed integer linear
programming problem (MILP). The important property of
equation (8) is that it is written in an implicit form. If the
equation

x(k) = (A0 ⊕ S0)⊗ x(k)⊕ γ (9)

admits a solution for some vector γ, with no max-plus zero
entries in γ, then equation (8) will also admit a solution. As
such, it is sufficient to analyze the solutions of (9), which
allows us to drop the index k, since only x(k) is referenced
in (9). So we get:

x = (A0 ⊕ S0)⊗ x⊕ γ (10)

Equation (10) contains the max operator, but it can be recast
as a set of inequalities for the synchronization of each circuit:

ah(i,j+1) ⩾ ah(i,j) + τi,j for 1 ⩽ j < r(i) (11)

and for the synchronization between different circuits:

aj(k) ⩾ ai(k) + σi,j (12)

Since imposing all specifications may fail to admit a solution
of (10), we modify equation (12) such that new binary
parameters δi,j ∈ {0, 1} are included to in effect “turn on”
or “turn off” specifications:

aj(k) ⩾ ai(k) + σi,jδi,j + β(1− δi,j) (13)

When δi,j = 1 equation (12) is recovered. When δi,j = 0, by
making the parameter β very negative (the largest allowed
value of β can be computed based on properties of the
system, such as the total cycle time) then the term ai(k)+β
becomes very small so that it always verifies the inequality.
Consider the new vector z:

z = [xT δT ]T

Equations (11) and (13) are linear in the parameters x and
δ, and can be combined into the system:

Cz ⩾ b, (14)

for appropriate parameters C and b. The goal is then to
maximize the sum of the parameters δi,j , i.e., to include the
maximum number of specifications in the matrix S0:

max
∑

δi,j = max gT z, (15)

with g = [1 · · · 1 0 · · · 0]T . Equation (14) together with (15)
forms a standard mixed integer linear programming problem.
The solution of this optimization problem yields the (global)
optimal solution, at the cost of increased computational
cost. Several efficient branch-and-bound algorithms [23] are

available for mixed integer linear programming problems.
In addition, there exist several commercial and free solvers
for mixed integer linear programming problems such as
CPLEX, Xpress-MP, GLPK, or lp solve (see [24], [25] for
an overview).

V. EXAMPLE: LEGGED LOCOMOTION

An example of circuits that need to be synchronized
appears in designing controllers for legged robots [5]. Each
leg i is abstracted into a two event circuit {ti, li}, with events
ti representing the instant the leg touches the ground and li
representing the moment the leg lifts off. Let τf be the swing
time (leg in the air) and τg the stance time (leg touching the
ground). The nominal equations for leg i are:

ti(k) ⩾ li(k) + τf

li(k) ⩾ ti(k − 1) + τg

A gait (a manner of walking) can be constructed by
synchronizing the leg circuits. Consider a robot with legs
numbered from left to right and front to back, as illustrated
in Figure 5.a). A trotting gait on a quadruped robot means
that legs 1 and 4 are synchronized, and have the opposite
phase of legs 2 and 3 (i.e. diagonal legs are synchronized, see
[5] for more details). Such gait is equivalent to the following
list of specifications imposing constraints on the lift off times
of legs as a function of touchdown times (i.e. legs are only
allowed to lift off the ground after others have touched down
to avoid the robot from falling from lack of support), where
τ∆ is called the “double stance time”:

S1 : l2 ≻ t1 + τ∆ S2 : l3 ≻ t1 + τ∆
S3 : l2 ≻ t4 + τ∆ S4 : l3 ≻ t4 + τ∆
S5 : l1 ≻ t2 + τ∆ S6 : l4 ≻ t2 + τ∆
S7 : l1 ≻ t3 + τ∆ S8 : l4 ≻ t3 + τ∆

These specifications are conflicting but describe the gait
correctly: legs 2 and 3 should lift off only after legs 1 and
4 have touched down, and legs 1 and 4 should only lift off
after legs 2 and 4 have touched down. Computing the matrix
A0 ⊕ Sall for the state vector x = [l1 t1 l2 t2 l3 t3 l4 t4]
results in:

A0 ⊕ Sall =



ε ε ε τ∆ ε ε ε τ∆
τf ε ε ε ε ε ε ε
ε τ∆ ε ε ε τ∆ ε ε
ε ε τf ε ε ε ε ε
ε ε ε τ∆ ε ε ε τ∆
ε ε ε ε τf ε ε ε
ε τ∆ ε ε ε τ∆ ε ε
ε ε ε ε ε ε τf ε


Using the incremental topological ordering method we

obtain the following new ordering:

O = {l1 l4 t1 t4 l2 l3 t2 t3}



10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a1(k) a1(k+1) a1(k+2)a2(k) a2(k+1) a2(k+2)a3(k) a3(k+1) a3(k+2)

b1(k) b1(k+1) b1(k+2)b2(k) b2(k+1) b2(k+2)

c1(k) c1(k+1) c1(k+2)c2(k) c2(k+1) c2(k+2)c3(k) c3(k+1) c3(k+2)

Fig. 4. Sample execution in time of equation (8) for the example presented in the beginning of Section IV. With matrices S0 = S1⊗S2⊗S3⊗S4⊗S6⊗S7

and S1 = S5, and with all τi,j = 1 and all σi,j = 1/2. Execution follow the order O7 = {a1 c1 b1 c2 c3 a2 a3 b2}.

a) b)

1

1

2

2 3

3

4
0 1 2 3 4 5s

4

Fig. 5. a) RQuad, a quadruped robot developed at DCSC. Legs are
numbered; b) the resulting trotting gait: blue boxes represent legs in stance
and white boxes represent legs in swing. In this example τf = 0.5s,
τg = 0.7s, and τ∆ = 0.1s.

By constructing a permutation matrix P based on the previ-
ous ordering we obtain:

P ⊗A0 ⊕ Sall ⊗ PT =


ε ε ε ε ε ε τ∆ τ∆
ε ε ε ε ε ε τ∆ τ∆
τf ε ε ε ε ε ε ε
ε τf ε ε ε ε ε ε
ε ε τ∆ τ∆ ε ε ε ε
ε ε τ∆ τ∆ ε ε ε ε
ε ε ε ε τf ε ε ε
ε ε ε ε ε τf ε ε


A non-blocking controller is then achieved by making S0 =
W1⊕W2⊕W3⊕W4 and S0 = W5⊕W6⊕W7⊕W8. Figure
5.b) illustrates a sample simulation of the resulting trotting
gait.

VI. CONCLUSIONS

We have proposed a systematic way to design synchroniza-
tion controllers for discrete-event systems with concurrent
circuits via a list of synchronization specifications. When
the desired specifications cannot be fully fulfilled, a sub-
set of them must be relaxed. We propose three avenues
for dealing with unfeasible specifications: Trimming arcs
in a precedence graph, incremental topological ordering,
and solving a mixed integer linear program. The first two
methods are time efficient but return sub-optimal results,
while the third is known to be NP-hard to solve, but returns
optimal solutions. This trade-off needs to be considered with
regards to the application in mind.
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