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Distributed Identification of Fuzzy Confidence Intervals for Traffic

Measurements

Alfredo Núñez, Bart De Schutter

Abstract— A distributed fuzzy confidence interval identifi-
cation method for traffic measurements is considered. Using
historical data of the density measured on different sections of
the freeway, the idea is to find fuzzy confidence intervals that
define the bands that contain almost all the density measure-
ments. The purpose of the proposed approach is twofold. First,
to obtain a band as narrow as possible for each of the sections
of the freeway. And second, to have a high percentage of the
data contained in the bands. The method we propose in this
paper is completely distributed, and can be used not only to
describe any uncertain nonlinear distributed parameter system
but also as a key element in a robust controller.

I. INTRODUCTION

Traffic congestion and the inefficient operation of traffic

networks are critical problems due to the important costs

produced by travel time delays along with their negative

impact on the environment. Nowadays, those problems are

becoming even more critical, not only because their effects

are continuously increasing, but because of the general

awareness of people and authorities in topics like pollu-

tion, waste of fuel, health problems, noise, stress, and the

deterioration of the quality of life in general, produced by

traffic congestion in both urban and freeway networks. In

this sense, a more efficient use of the existing infrastructure

with the use of intelligent traffic management and control

[3], [8]–[10], [19], [24], seems a good alternative to obtain

sustainable mobility of the people, especially in cases that

the construction of an alternative road is just not feasible,

etc.

In this paper, we will focus on the topic of robust traffic

monitoring systems, which is an essential element in any

robust traffic control design. The purpose is to provide a

distributed methodology to estimate fuzzy confidence in-

terval models for traffic, defining a band that contains the

measurement values with certain confidence. In general, a

good confidence interval model identification method should

have a two-fold objective. On the one hand, to obtain

parameters of the confidence interval model that generate

a confidence band that is as narrow as possible. On the

other hand, the parameters should also generate a band that

contains a high percentage of the data. In the literature,

the use of interval-valued fuzzy sets and numbers is quite

well-known and they have been applied to different fields

of approximate inference, signal processing, and controllers

[17], [20], [21], [26].
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Regarding the classes of models used to model traffic

[18], we will consider first order macroscopic models. that

describe the dynamics of the densities in different segments

of the freeway called “cells”, and are based on the fundamen-

tal assumption that the relation between the density and the

flows in each cell is given by a pre-specified traffic model,

see [1], [5], [6], [11]. To illustrate the proposed method

we will consider fuzzy macroscopic models, first-order in

time, second-order in space. Then, for example, to model

the density in the section i, ρi(t), we will use the regressors

ρi−1(t−1), ρi(t−1), and ρi+1(t−1), which are the densities

in the sections i−1, i and i+1 in the previous time instant.

It is relevant to highlight that in this paper we will focus

on the distributed identification problem of interval fuzzy

models. Even if we validate the procedure reference to a

specific class of non-linear systems, the methodology we

propose is generalizable and can be used for the modeling

and monitoring of other classes of distributed parameter

system like the ones presented in [16], [27].

By relying on experimental data measured on a portion of

the A12 freeway of The Netherlands, we apply the method

in a practical case, showing how the proposed procedure

enables to attain a satisfactory accuracy of the distributed

interval fuzzy model.

II. TAKAGI-SUGENO FUZZY MODELING AND FUZZY

CONFIDENCE INTERVAL MODELING

The Takagi-Sugeno (TS) fuzzy model approximates non-

linear systems by smoothly interpolating affine local models.

Each local model contributes to the global model according

to a membership function [23]. The problem setting is as

follows. Assume that we have s sensors located in different

locations, in a distributed parameter system. Each sensor

provides the measurement of the output yi(t) that in our case

will be the density of a segment i in a highway. The structure

of the TS fuzzy model for the variable yi(t), i = 1, ...,s, is

described as:

yi(t) = f TS
i (zt−1

i ,xt−1
i ,ut−1

i ) =
Ri

∑
j=1

βi j(z
t−1
i )yi j(x

t−1
i ,ut−1

i ),

yi j(x
t−1
i ,ut−1

i ) = (ai j)
T xt−1

i +(bi j)
T ut−1

i + ri j,

βi j(z
t−1
i ) =

pi

∏
r=1

Ai j,r(zr(t −1))

Ri

∑
j=1

pi

∏
r=1

Ai j,r(zr(t −1))

,

(1)

where yi(t) ∈ R is the current output, xt−1
i ∈ R

ni are

past outputs or other exogenous variables, ut−1
i ∈ R

mi



are past inputs, the vector of the premises is zt−1
i =

[z1(t −1), . . . ,zpi
(t −1)]T , pi is the number of inputs at the

premises. The variables xt−1
i , ut−1

i and zt−1
i are the important

variables to properly model the output i of the vector yt =
[y1(t), . . . ,ys(t)]

T
. The premises variables are permitted to

be inputs, outputs or other exogenous variables, and in

this paper we will assume zt−1
i =

[

(xt−1
i )T ,(ut−1

i )T
]T

, so

pi = ni +mi. Moreover, (ai j)
T , (bi j)

T , ri j are the parameters

of the fuzzy model f TS
i (·) for the output yi on rule j, Ri is

the number of rules of the fuzzy model, Ai j,r(zr(t−1)) :R→
[0,1] is the membership degree for the input in premise r,

i.e., zr(t −1), for the variable yi(t) and rule j, and βi j(z
t−1
i )

is the activation degree of the jth rule that belongs to the

fuzzy model. In this paper we will use Gaussians to model

the membership degrees.

Let us assume that input-output and exogenous data is

available, (yt ,xt−1,ut−1), t = 1, ...,Nd. By only using a finite

data set of the process, the identification problem of a TS

fuzzy model given by (1) consists of estimating the following

parameters for each output yi(t), i = 1, ...s: the number of

rules Ri, the parameters of the membership functions Ai j,r(·),
and the parameters (ai j)

T ,(bi j)
T ,ri j. Usually the identifica-

tion procedure consists of minimizing a cost function with

respect to the unknown parameters:

VNd
=

1

Nd

Nd

∑
t=1

s

∑
i=1

V
(

yi(t)− f TS
i (zt−1

i ,xt−1
i ,ut−1

i )
)

(2)

where V is a cost function for the error, typically a quadratic

function. The minimization of (2) is in general a non-linear

optimization problem. In the literature, it is standard to split

the identification of TS fuzzy models in two parts. First,

to determine the premises by using a specific clustering

method. And second, to obtain the remaining parameters

in the consequents by using least squares. This hierarchical

procedure provides meaningful rules as the clusters can

be used to determine which operation point the system is

currently working in. Once the TS models are obtained, a

lower and upper confidence interval of the local linear models

can be defined for each output as in [22]:

yi(t) = f
TS
i (zt−1,xt−1,ut−1) =

Ri

∑
j=1

βi j(z
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i
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Ri
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βi j(z
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T xt−1 +(bi j)
T ut−1 + ri j,
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[
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]T
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(

1+ψT
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T
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)0.5
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pi
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Ri
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pi
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(3)

where f
TS
i is the upper bound, and f TS

i
is the lower bound,

Ψi jΨ
T
i j is a covariance matrix of the local model, σi j is the

variance of the local noise signal. The parameters α i j and

α i j are tuning parameters for the lower and upper fuzzy

bounds. The function ∆i j(x
t−1,ut−1) is the square root of

the covariance of the residual between the model output and

the new set of data in each local domain. In other words,

it represents a kind of time-variant standard deviation, or a

function which decides the variations with respect a nominal

value considering the effect of different inputs.

In the next section, we describe the distributed identifica-

tion procedure for TS fuzzy systems and the fuzzy confidence

intervals for traffic measurements.

III. DISTRIBUTED FUZZY CONFIDENCE INTERVAL

MODEL IDENTIFICATION PROCEDURE FOR TRAFFIC

MEASUREMENTS

Throughout this paper we assume that Nd input/output data

pairs have been collected:

Φ =











(x1)T (u1)T

(x2)T (u2)T

...
...

(xNd)T (uNd)T











, (4)

where Nd denotes the number of data samples, (xt)T =
(yt)T = [ρ1(t),ρ2(t), ...,ρs(t)] ∈ R

s are the outputs, and

(ut)T = [ρ0(t),ρN+1(t)] ∈ R
2 are the inputs. All those vari-

ables were measured at time steps t = 0, ...,Nd and represent

the densities in different s sections of the highway. The

density in the section i is denoted by ρi(t), and the density

in the next section of the highway is denoted by ρi+1(t), and

so on. The procedure we will use can be easily extended to

model not only densities, but also other traffic signals such

as the average velocities, flows, weather conditions, effects

of on/off ramps, etc. The details of each step are explained

next.

For the model of the density ρi(t), i = 1, ...,s, we will use

the available data in the following way:

Φi =











ρi(1) ρi−1(0) ρi(0) ρi+1(0)
ρi(2) ρi−1(1) ρi(1) ρi+1(1)

...
...

...
...

ρi(Nd) ρi−1(Nd −1) ρi(Nd −1) ρi+1(Nd −1)











,

(5)

Note that for the first and the last sections, we will use

the outputs ρ0(t) and ρN+1(t) respectively.

Step 1: Clustering. Determine the fuzzy clusters over the

data Φi, using the G-K algorithm [7]. This algorithm includes

fuzzy covariances in an n-dimensional space, and closely

resembles maximum likelihood estimation on mixture den-

sities. The algorithm will cluster the data given a specified

number of clusters c, the parameters for the cluster fuzziness,

and the stopping criterion. The G-K algorithm provides the

centers of the clusters v j, and the covariance matrix for each

fuzzy cluster l.



For the G-K algorithm, the number of clusters c is needed.

A large number of clusters results in a complicated rule-

base model, while a small number of clusters in a not good

model. To preserve the small clusters is sometimes important,

especially when we are not sure of the correct experiment

design (by the proper excitation of the system). To obtain

the optimum number of clusters it is possible, after using

the G-K algorithm, to use the compatible cluster merging

method, [2], [14]. This method works as follows: let the

centers of two clusters be v j1 and v j2 , with ϕ1, j1 and ϕ1, j2

the eigenvectors associated with the minimum eigenvalue

λ1, j1 and λ1, j2 respectively (from the covariance matrix of the

cluster). The criteria to merge the clusters proposed in [14]

consider that the nearly-parallel major axes of consecutive

clusters should be merged (|ϕ1, j1 ·ϕ1, j2 | ≥ k1, with k1 close

to 1) and also the cluster centers should be sufficiently close

for merging (‖v j1 −v j2‖2 ≤ k2, with k2 close to 0). Finally,

after this step, the number of rules Ri and the membership

functions Ai j,r(·) are obtained.

Step 2: Local fuzzy identification. For each segment of

the highway i, The next step is to identify the consequent

parameters of each rule of the TS model. An identification

procedure is carried out by minimizing the following cost

function with respect to the unknown parameters Θi j of the

fuzzy rule j of the output yi(t) = ρi(t):

VNd
=

1

Nd

Nd

∑
t=1

(

βi j(z
t−1)

)2 (
y(t)−

[

(yt−1)T (ut−1)T 1
]

Θi j

)2

(6)

where Nd is the number of input-output data. Let us write

the consequent parameters for the fuzzy rule j for the output

i as follows:

Θi j =





ai j

bi j

ri j



 , (7)

The model parameters for the rule j of region i can be

obtained using the least squares identification method as

follows:

Θi j = (ΨT
i jΨi j)

−1ΨT
i jYi j (8)

where the matrices Ψi j and Yi j are the following:

Ψi j =











βi j(z
0)[(x0)T (u0)T 1]

βi j(z
1)[(x1)T (u1)T 1]

...

βi j(z
Nd−1)[(xNd−1)T (uNd−1)T 1]











, (9)

Yi j =











βi j(z
0)y(1)

βi j(z
1)y(2)
...

βi j(z
Nd−1)y(Nd)











, (10)

By the identification of each rule (not the overall model), and

also by weighting the data for the corresponding activation

degree of each rule βi j, a better conditioning of the matrices

is obtained, compared to the conditioning of the whole data

matrix. This approach leads to a better estimation of the TS

fuzzy model parameters as the data close to the center of the

cluster will be more important to minimize than the data at

the borders (see [12], [13] and [15]).

Step 3: Confidence interval fuzzy models. To determine

the fuzzy lower and upper confidence interval from (3), the

variables to be determined are: Ψi jΨ
T
i j the covariance matrix

of the local model, σ2
i j is the variance of the local noise

signal, and α i j and α i j. For the covariance matrix it possible

to use the covariance obtained in (9). The variance of the

local noise can be estimated easily by using the identification

data. The crucial parameters in this step are α i j and α i j.

Depending on how those parameters are tuned, we will have

more narrow bands but with a higher number of data points

outside the band. In one of the axis in this front we will have

the number of data points outside the band, and in the other

the area covered by the band (which is a way to analyze

how narrow is the band). The multi-objective optimization

problem to solve in this step is the following:

min
{α i j ,α i j :i=1,...,s, j=1,...Ri,}

{J1,J2}

J1 =
1

Nvs

Nv

∑
t=1

s

∑
i=1

δ i(x
t−1

,ut−1)+δ i(x
t−1

,ut−1)

δ i(x
t−1,ut−1) =

{

1 if f
TS
i (xt−1,ut−1)− yi(t)< 0

0 otherwise

δ i(x
t−1,ut−1) =

{

1 if f TS
i
(xt−1,ut−1)− yi(t)> 0

0 otherwise

J2 =
1

Nvs

Nv

∑
t=1

s

∑
i=1

f
TS
i (xt−1

,ut−1)− f TS

i
(xt−1

,ut−1)

(11)

where J1 considers the number of data points outside the

band, and J2 and approximation of the area of the band.

In this step, using validation data, if the intervals are not

good enough according to a performance criterion, we can

go back to Step 1 and to consider the inclusion of more

regressors (structural optimization), or to increase the number

of clusters by changing the sensibility of the clustering

merge procedure. This step determine the convergence of

the algorithm.

Finally, as the three steps are in a distributed scheme,

with no connections between optimization problems of

neighbors, all those problems can be solved in parallel

for i = 1, ...,s. The computational time of this case is the

maximum of all the times spent in each problem, and the

number of variables obtained in each problem depends on

the number of clusters and the simplifications we assume to

obtain a reasonably good confidence band.



IV. EXPERIMENTAL RESULTS

In this section we summarize the simulation tests con-

ducted to show the application of the identification procedure

to a real scenario. A 1.915 km long stretch of the A12

freeway, in The Netherlands has been used as test field to

validate the identification method. This road connects the

city of The Hague, with the German border, near Zevenaar.

The stretch we use is in the segment that crosses the Dutch

province of South Holland. In Fig. 1 the scheme of the stretch

is depicted. In this paper, the identification procedure will be

explained with a single link case study, with no on-ramps or

off-ramps.

A period of eight hours (4:00-12:00) representative of

typical working Monday will be modeled. The data from the

21 and 28 of September 2009, was used for identification,

see Figures 2(a) and 2(b). For validation, data from Monday

12 of October was used.

Next, we present the experimental results relying on the

real-life data. In the first section, the results of the distributed

identification of the TS models for traffic. In the second,

the interval fuzzy models for different cases are illustrated.

Finally, in the last section, a fault tolerant scheme is evaluated

using the interval fuzzy models obtained.

1) Distributed interval fuzzy model identification: First

the Step 1 and Step 2 (clustering and local fuzzy identi-

fication) of the procedure are performed. In Figure 3, the

one-step ahead prediction results for the four cells of the

case-study using the validation data are shown. The number

of clusters after the process of merge were 10 for each TS

fuzzy model.

The sum of the Root Mean Square (RMS) of the prediction

error of densities in the cells is 7.8181, and the standard

deviation of all the signals 1.9927. This step is important

to perform and to verify, as the TS model is one of the

components of the interval fuzzy model.

For simplicity of the Step 3 (determination of the confi-

dence interval fuzzy models), let us assume that the tuning

parameters for the lower and upper fuzzy bounds to be the

same α i j = α i j = α . Figure 4 shows the Pareto front of the

normalized area of the band, and the normalized number of

data points outside the band, when the parameter α changes

from 0 to 400.

Each point in the Pareto front is related with a value of the

optimization variable α . For the normalization, the maximum

values of J1 and J2 are 11204 and 276000 respectively. Just

for illustrative purposes, we have selected the distributed

interval fuzzy models generated with the values α = 40 and

α = 120. In the Figures 5 and 6 we can see the fuzzy

confidence intervals for the densities, for the cases α = 40

and α = 120 respectively. As expected, the fuzzy confidence

intervals for the case α = 120 contains a higher amount of

data in the band; however, the area of the band is much

higher than in the case α = 40.

2) Virtual Sensor: failure in the sensor i: In this sub-

section, we analyze the effect of a failure in the sensor

i. We assume the failure is detected immediately, and we

replace the sensor i with the TS fuzzy model identified in

the previous section, one sensor at the time. In Fig. 7 we

show the estimated values with the fuzzy models, the interval

fuzzy models and the real measurement, when the sensor in

segment i has failed. The Root Mean Square (RMS) for each

case of virtual sensors prediction is 2.5825, 1.8428, 1.8745,

1.5182 respectively. From the figure, we can see when the

sensor 1 fails, the most important errors happen.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a distributed identification of fuzzy confi-

dence interval for a chosen freeway has been analyzed. The

method proposed in this paper is completely distributed. To

decide how to properly split the fuzzy interval identification

problem, by changing the interactions between different

hierarchical and distributed optimization problems, is a topic

for further research.

By relying on experimental data measured on a portion of

the A12 freeway of The Netherlands, we have shown that it is

possible to find fuzzy intervals considering the compromise

between the number of data points outside the bands and

area of the bands. Finally, to show the good properties of

the identified model, an evaluation of the performance of the

identified model used as a set of virtual sensors in different

scenarios was made. More sophisticated schemes of failures

and detection can also be analyzed in the future, as well

as on-line identification, and the inclusion of other traffic

measurements.
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Fig. 6. Distributed fuzzy confidence interval, α = 120.
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