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A hierarchical MPC approach with guaranteed

feasibility for dynamically coupled linear

systems

Minh Dang Doan, Tamás Keviczky and Bart De Schutter

Abstract In this chapter we describe an iterative two-layer hierarchical approach to

MPC of large-scale linear systems subject to coupled linear constraints. The algo-

rithm uses constraint tightening and applies a primal-dual iterative averaging pro-

cedure to provide feasible solutions in every sampling step. This helps overcome

typical practical issues related to the asymptotic convergence of dual decomposition

based distributed MPC approaches. Bounds on constraint violation and level of sub-

optimality are provided. The method can be applied to large-scale MPC problems

that are feasible in the first sampling step and for which the Slater condition holds

(i.e., there exists a solution that strictly satisfies the inequality constraints). Using

this method, the controller can generate feasible solutions of the MPC problem even

when the dual solution does not reach optimality, and closed-loop stability is also

ensured using bounded suboptimality.

1 Introduction

When there are couplings among linear subsystems in a distributed MPC problem,

dual decomposition is often used in order to divide the computational tasks among

the subsystems. A typical requirement of the dual decomposition-based methods is

that the dual problem needs to be solved exactly in order to obtain a primal feasible

solution [1]. However, iterative approaches based on dual decomposition often only

converge asymptotically to the optimum, which may not be practical when imple-

menting these approaches in a real-time environment. In this chapter, we apply a

dual decomposition technique to the class of MPC problems for linear systems with

coupled dynamics and coupled linear constraints, and propose a novel method that

is motivated by the use of constraint tightening in robust MPC [5]. This method
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allows terminating the iterations for the dual problem before reaching convergence

while still guaranteeing a feasible primal solution to be found. Moreover, the algo-

rithm also generates a decreasing cost function, leading to closed-loop stability. In

summary, the proposed framework guarantees primal feasible solutions and MPC

stability using a finite number of iterations with bounded suboptimality.

2 Boundary conditions

Our approach aims at large-scale interconnected systems with constrained discrete-

time linear time-invariant dynamics where some of the individual constraints can

also be defined over more than one subsystem (coupling constraints). This class in-

cludes a wide range of applications, e.g., water and power distribution networks,

urban traffic networks, industrial processes, arrays of mechanical actuators, and cli-

mate control systems, among others [8, 9, 6, 12, 7]. Mathematically, let M be the

number of subsystems (N = {1, . . . ,M}), and let the dynamical model of each sub-

system be represented in the following form:

xi
k+1 =

M

∑
j=1

Ai jx
j
k +Bi ju

j
k, i ∈ N (1)

The corresponding centralized state-space model is written in a compact form:

xk+1 = Axk +Buk (2)

where xk = [(x1
k)

T (x2
k)

T . . .(xM
k )T ]T ,uk = [(u1

k)
T (u2

k)
T . . .(uM

k )T ]T , A = [Ai j]i, j∈N

and B = [Bi j]i, j∈N .

We formulate an MPC problem using a terminal penalty and a terminal constraint

set. At a particular time step t the MPC optimization problem is defined as follows:

min
u,x

t+Np−1

∑
k=t

(

xT
k Qxk +uT

k Ruk

)

+ xT
t+Np

Pxt+Np (3)

s.t. xi
k+1 = ∑

j∈N i

Ai jx
j
k +Bi ju

j
k, i ∈ N , k = t, . . . , t +Np −1 (4)

xk ∈ X , k = t +1, . . . , t +Np −1 (5)

xt+Np ∈ Xf ⊂ X (6)

uk ∈ U , k = t, . . . , t +Np −1 (7)

ui
k ∈ Ωi, i ∈ N , k = t, . . . , t +Np −1 (8)

xt = x(t) ∈ X (9)
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where u = [uT
t , . . . ,u

T
t+Np−1]

T , x = [xT
t+1, . . . ,x

T
t+Np

]T , the matrices Q, P, and R are

block-diagonal and positive definite, the constraint sets U , X , and Xf are convex

polytopes and have nonempty interiors, and each local constraint set Ωi is a hyper-

box. Each subsystem i is assigned a neighborhood, denoted by N i, containing sub-

systems that have direct dynamical interactions with subsystem i, including itself.

Note that the coupled constraints involving control inputs are represented by the set

U in (7), which does not incorporate local constraints that are captured by Ωi in (8).

The initial state xt is the current state at time step t. Notice that the MPC formulation

(3)–(9) does not incorporate a terminal zero-point constraint (xt+Np = 0). Moreover,

the approach proposed in this chapter does not handle any equality constraints on the

states except for the dynamical constraints (4), since the corresponding constraint

sets would have an empty interior, which would prevent constraint tightening, the

key idea of this approach.

As U , X , and Xf are polytopes, the constraints (5) and (6) are represented by

linear inequalities. Moreover, the state vector x is affinely dependent on u. Hence,

we can eliminate the state variables xt+1, . . . ,xt+Np and transform the constraints

(4), (5), and (6) into linear inequalities on the input variable u. Eliminating the state

variables in (3)–(9) leads to an optimization problem in the following form:

f ∗t = min
u

f (u,xt) (10)

s.t. g(u,xt)≤ 0 (11)

u ∈ Ω̃ (12)

where f is a convex quadratic function, g = [g1, . . . ,gm]
T with gi, i = 1, . . . ,m affine

functions, and Ω̃ =Ω ×·· ·×Ω (Np times) where Ω =Ω1×·· ·×ΩM , is a hyperbox.

Note that f (u,xt)> 0,∀u 6= 0,xt 6= 0, since Q, P, and R are positive definite.

In addition, our approach also makes use of the following assumptions:

Assumption 2.1 There exists a block-diagonal feedback gain K such that the ma-

trix A+BK is Schur1 (i.e., K yields a decentralized stabilizing control law for the

unconstrained aggregate system).

Assumption 2.2 The terminal constraint set Xf is strictly positively invariant for

the closed-loop system with xk+1 =(A+BK)xk, i.e., if x∈ int(Xf) then (A+BK)x∈
int(Xf). In addition, for any state in Xf, the control input generated by the terminal

controller should satisfy the input constraints, i.e., −Kx ∈ U ∩Ω , ∀x ∈ Xf.

Assumption 2.3 The Slater condition holds for the constraint (11), i.e., there exists

a feasible vector that satisfies (11) with strict inequality constraints [1]. It is also

assumed that prior to computing the control input to be implemented in each time

step t, a Slater vector ūt is available, such that

{

g j(ūt ,xt)< 0, j = 1, . . . ,m
ūt ∈ Ω̃

(13)

1 A matrix is Schur if all of its eigenvalues are inside the unit circle.
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Assumption 2.4 At each time step t, the following inequality holds:

f (ut−1,xt−1)> f (ūt ,xt) (14)

For later reference, we define ∆t > 0 which can be computed before time step t as

follows:

∆t = f (ut−1,xt−1)− f (ūt ,xt) (15)

Assumption 2.5 For each xt ∈ X , the Euclidean norm of g(u,xt) is bounded:

∃Lt : Lt ≥ ‖g(u,xt)‖2,∀u ∈ Ω̃ (16)

Assumptions 2.1 and 2.2 are almost standard in MPC, except that in Assump-

tion 2.2 we require strict positive invariance instead of the milder condition of pos-

itive invariance that is often employed in MPC literature. Assumptions 2.3–2.5 will

help us to provide bounds on the constraint violation and the suboptimality of the

solution. These assumptions can be satisfied if the search domain is bounded, i.e.,

there is a lower bound and an upper bound for every control input, which is usu-

ally the case in MPC. Assumption 2.4 implies that the decreasing property of the

cost function can be obtained directly by using ūt as the solution at time step t, i.e.,

with the choice ut = ūt . However, this choice will likely deteriorate the performance

of the MPC controller due to the increasing conservativeness of ūt as t increases.

Therefore, our approach will make use of ūt only as a starting point, based on which

a new solution is computed at every time step t. Moreover, we have developed a

method in [4, 2] to find ūt in every time step t ≥ 1, which makes Assumption 2.4

easy to fulfill. A summary of this method is given later in Remark 1.

The communication architecture is assumed to be hierarchical, i.e., there is a co-

ordinator for computing common parameters and performing limited communica-

tion with all agents. Each agent only communicates with the coordinator and a small

number of other agents (belonging to set N i) that are considered as its neighbors.

3 Description of the approach

Our approach aims at solving a tightened version of problem (10)–(12) in a hier-

archical manner by using a dual decomposition technique. We first construct the

tightened problem and its dual problem, and then describe the algorithm.

3.1 Initialization

Prior to applying our algorithm to solve the MPC optimization problem at each

time step t, there is an initialization which includes two main tasks: formulating the



Hierarchical MPC with guaranteed feasibility for coupled systems 5

tightened problem to be solved, and determining a sufficient number of iterations to

be performed in that time step.

3.1.1 Formulation of the tightened problem

At the beginning of each MPC step t, a new Slater vector ūt (cf. Assumption 2.3)

should be determined. Based on this ūt , a value ct is computed such that:

0 < ct < min
j=1,...,m

{−g j(ūt ,xt)} (17)

Then we construct the tightened problem:

f ′t
∗
= min

u
f (u,xt) (18)

s.t. g′(u,xt)≤ 0 (19)

u ∈ Ω̃ (20)

with the tightened constraint:

g′(u,xt), g(u,xt)+1mct (21)

where g′(u,xt) = [g′1, . . . ,g
′
m]

T , and 1m is a vector of ones with m elements.

We denote the dual variable as µ ∈ R
m
+ and define the Lagrangian function:

L̃ (u,µ ,xt), f (u,xt)+µT g′(u,xt) (22)

A bound Lt on the 2-norm of the constraints g should be given (cf. Assump-

tion 2.5). Using (16) and the triangle inequality of the 2-norm, we will get L′
t =

Lt + ct as a norm bound for g′, i.e., L′
t ≥ ‖g′(u,xt)‖2,∀u ∈ Ω̃ .

Using the Slater vector ūt , we then compute ∆t using (15). After that we choose

two parameters αt > 0 and εt > 0 such that αtL
′
t
2/2+ εt ≤ ∆t . Later αt will be used

as the step size of the algorithm for maximizing the dual function, and εt will be the

desired suboptimality of the algorithm for minimizing the Lagrangian function.

Remark 1. In [4, 2], we describe a method to update Lt and to construct a new Slater

vector ūt for each time step t ≥ 1. In summary, Lt is updated by taking into account

the change of the initial state from xt−1 to xt ; and the new ūt is constructed by

shifting the previous solution ut−1 one-step ahead and adding the terminal state and

terminal input, which are feasible due to Assumption 2.2. For the first MPC step,

i.e., t = 0, these values can be computed offline as follows.

In order to determine L0, we formulate a maximization problem to find the max-

imum 2-norm of g(u,x0), in which u ∈ Ω̃ and x0 ∈ X . This optimization problem

has a convex cost function and a convex constraint set, and hence the maximum

will occur at one of the vertices of the constraint set. As a consequence, finding the
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solution of this maximization problem is straightforward by evaluating the 2-norm

of g at all the vertices. The maximal function value is then assigned to L0.

For finding ū0, we can start with a guess for ct , then tighten the constraints using

(21), and use a centralized solver to find a feasible point of the constraints g′(u,xt)≤
0. If this problem is feasible, then the feasible input sequence obtained can be set as

ū0, and we may increase ct to find a better Slater vector. If this problem is infeasible,

then we reduce ct until a feasible solution is obtained, which can be used as ū0.

3.1.2 Determination of the number of iterations

The problem (18)–(20) will be solved by a nested iteration. In the outer loop, the

dual function is maximized using a projected gradient method in combination with

an averaging scheme that provides bounds for the constraint violation and the cost

function. In the inner loop, a hierarchical optimization algorithm is used to pro-

vide - with a desired precision - an approximate solution to the minimization of

the Lagrangian function. The outer loop is executed for k̃t iterations, each of which

includes p̃t iterations of the inner loop.

The algorithm is simple and is presented in Section 3.2. Before starting the iter-

ative algorithm, we let a coordinator determine k̃t and p̃t .

As described in [4, 2], we can determine a sufficient minimum number of outer

iterations k̃t as follows:

k̃t ≥
1

αtct

(

3

γt

f (ūt ,xt)+
αtL

′
t
2

2γt

+αtL
′
t

)

(23)

where γt = min j=1,...,m{−g′j(ūt ,xt)} = min j=1,...,m{−g j(ūt ,xt)}− ct . The number

of inner iterations p̃t can be computed by:

p̃t ≥ logφ

εt

ΛM maxi Di

(24)

where Λ is the Lipschitz constant of the Lagrangian function L̃ over the set Ω̃ , Di

is the diameter of the set Ω̃i with respect to the Euclidean norm, i.e., ‖ui
1 −ui

2‖2 ≤

Di,∀ui
1,u

i
2 ∈ Ω̃i, with Ω̃i , Ωi × ·· · ×Ωi (Np times). The value φ ∈ [0,1) is the

contraction modulus of the Jacobi algorithm, i.e., the decay rate of the distance

from a current iterate to the optimizer, and can be computed by [4]:

φ = max
i

{

max

{

2γ
(

λmax(Hii)+∑
j 6=i

σ̄(Hi j)
)

−1,

1−2γ
(

λmin(Hii)−∑
j 6=i

σ̄(Hi j)
)

}

}

(25)

where Hi j with i, j ∈ {1, . . . ,M} denotes the submatrix of H (the Hessian of the

Lagrangian function), containing entries at rows belonging to subsystem i and
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columns belonging to subsystem j. The notation λmax(Hii) and λmin(Hii) stands

for the maximum and minimum eigenvalue of Hii, respectively, while σ̄(Hi j) de-

notes the maximum singular value of Hi j. Note that depending on the matrices

Hi j, i, j ∈ {1, . . . ,M}, the Jacobi algorithm in the inner loop may or may not con-

verge. When φ computed by (25) falls into [0,1), then it means the Jacobi algorithm

converges and can be used. Otherwise, another algorithm should be used in the inner

loop instead of the Jacobi algorithm; in this case a hierarchical conjugate gradient

method can be employed, see [3] for more details.

3.2 The proposed algorithm

In the following, we present our proposed algorithm for solving the MPC problem

at each time step t. Note that prior to applying the algorithm, we need to determine

the Lagrangian and the parameters εt ,αt as described in the previous section.

Algorithm 1 Hierarchical Primal Feasible method with Dual Approximate Gra-

dient (HPF-DAG)

1. Outer loop: Set µ(0) = 0m. For k = 0, . . . , k̃t , find u(k),µ(k+1) such that:

L̃ (u(k),µ(k),xt)≤ min
u∈Ω̃

L̃ (u,µ(k),xt)+ εt (26)

µ(k+1) = PR
m
+

{

µ(k)+αtd
(k)

}

(27)

where PR
m
+

denotes the projection onto the nonnegative orthant, d(k)= g′
(

u(k),xt

)

is an εt-subgradient of the dual function at µ(k).

Inner loop:

• Solve problem (26) in a distributed way with a Jacobi algorithm. For p =
0, . . . , p̃t , every subsystem i computes:

ui(p+1) =arg min
ui∈Ω̃i

L̃ (u1(p), . . . ,ui−1(p),ui,

ui+1(p), . . . ,uM(p),µ(k)) (28)

where Ω̃i is the local constraint set for control variables of subsystem i.

• Define u(k) , [u1( p̃t)
T , . . . ,uM( p̃t)

T ]T , which is guaranteed to satisfy (26).

2. Compute û(k̃t ) = 1

k̃t
∑

k̃t

l=0 u(l), and take ut = û(k̃t ) as the solution of (10)–(12).

Note that the computations (27) and (28) are performed by the subsystems, with

synchronization provided by the coordinator. While solving the local problem (28),

each subsystem needs to communicate with its neighbors to get the latest update for

constructing the proper cost function in the current inner loop iteration.
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4 Availability of theoretical results

In this section, we recall the theoretical guarantees of our method in the form of two

propositions.

Proposition 1. Suppose Assumptions 2.1–2.5 hold. Construct g′ as in (21). Let the

outer loop (26)–(27) with µ(0)= 0m be iterated for k= 0, . . . , k̃t . Then û(k̃t ) computed

in Algorithm 1 is a feasible solution of (10)–(12).

This result is based on the bound of the constraint violation. Let g′
+

denote the

constraint violation, i.e., g′
+ = max{g′,0m}, then the primal average sequence

û(k) = 1
k ∑k

l=0 u(l) generated at iteration k ≥ 1 satisfies:

∥

∥

∥

∥

[

g′
(

û(k),xt

)]+
∥

∥

∥

∥

2

≤
1

kα̃t

(

3

γt

[ f (ūt ,xt)− q̃′
∗
t ]+

α̃tL
′
t
2

2γt

+ α̃L′
t

)

(29)

The proof for (29) and Proposition 1 can be found in [4]. Proposition 1 guarantees

that the solution of the algorithm is feasible for implementation.

Let us recall that the optimization problem formulation is motivated by an MPC

problem for which Assumption 2.4 holds. The following proposition shows that the

cost function of the MPC problem is a decreasing function.

Proposition 2. Suppose Assumptions 2.1–2.5 hold. Then the solution û(k̄t ) gener-

ated by Algorithm 1 satisfies the following inequality:

f (ut ,xt)< f (ut−1,xt−1), ∀t ∈ N\{0} (30)

This result is made possible using the upper bound on the cost function that is asso-

ciated to the primal average generated by Algorithm 1:

f
(

û(k),xt

)

≤ f ′t
∗
+

∥

∥µ(0)
∥

∥

2

2

2kα̃t

+
α̃tL

′
t
2

2
+ εt (31)

The proof for (31) and Proposition 2 can be found in [4]. This result leads to closed-

loop stability, by using the cost function f (ut ,xt) as a Lyapunov function.

The idea of constraint tightening is used often to ensure robustness of MPC,

such as when designing robust distributed MPC for the case of decoupled systems

[5, 10]. However, to the best of our knowledge it has not been applied for the case

of coupled systems. In our proposed framework, we use constraint tightening to

provide a feasible solution to the coupled constraints, rather than aiming to achieve

an explicit robustness property. We believe that this framework can also be extended

for robust hierarchical MPC where coupled constraints are present.
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5 Availability of application results

In this section, we demonstrate an application of the proposed algorithm for a sys-

tem of irrigation canals, where the objective is to regulate the water flows. Irriga-

tion canals are large-scale systems, consisting of many interacting components, and

spanning vast geographical areas. For the most efficient and safe operation of these

canals, maintaining the water levels close to pre-specified reference values is crucial,

both under normal operating conditions as well as in extreme situations. Manipula-

tion of the water levels and flows in irrigation canals is typically done using devices

such as pumps and gates.

The example irrigation canal to be considered is a 4-reach canal system as illus-

trated in Figure 1. In this system, water flows from an upstream reservoir through

the reaches, under the control of 4 gates and a pump at the end of the canal system

that discharges water. More details about modeling of this system can be found in

[2].

The control design is based on the master-slave control paradigm, in which the

master controllers compute the flows through the gates, while each slave controller

uses the local control actuators to guarantee the flow set by the master controller

[11]. We now apply the proposed hierarchical MPC method to design the master

controllers.

reach 1

reach 2

reach 3

reach 4

gate 1

gate 2

gate 3

gate 4

pump

upstream

reservoir

Fig. 1 Example of connected canals for water transportation

The Algorithm HPF-DAG is used in this example, and it generates at every time

step t a feasible solution with respect to the physical constraints:

xmin ≤ xt+k ≤ xmax, k = 1, . . . ,Np (32)

umin ≤ ut+k ≤ umax, k = 0, . . . ,Np −1 (33)
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The constraints described in (32) are then transformed into the inequality con-

straint g(u,xt) ≥ 0 after the state variables are eliminated, and the constraints (33)

are cast into the form u ∈ Ω̃ introduced earlier.

The closed-loop simulation is performed for 20 time steps. In each time step t,

Algorithm 1 is used to generate a solution to the MPC optimization problem (3)–

(9), with the number of outer loop iterations k̃t determined by (23), and the number

of inner loop iterations p̃t determined by (24). Then the first control input in the

solution generated by Algorithm 1 is used to simulate the system, and the routine

restarts with the next time step. In every time step, we also solve the same optimiza-

tion problem by a centralized solver to get the optimal solution and the optimal cost,

for comparison purposes.

In Figure 2, we plot the evolutions of cost functions associated with different

MPC solutions. At every time step, we compare the optimal cost, the cost associ-

ated with the initial feasible solution ūt , the cost generated by Algorithm 1 (i.e.,

associated with ut), and the upper bound of the resulting cost (see (31)). Although

it is easy to obtain closed-loop stability with this example, the comparison of the

cost nevertheless confirms that the upper bound of the cost is always respected by

the result of the Algorithm HPF-DAG. Moreover, as t increases, the upper bound is

closer to the optimal cost, thus the performance of the Algorithm HPF-DAG is also

closer to the optimal centralized MPC performance.

In Figure 3, the number of outer loop iterations k̃t and the number of inner loop

iterations p̃t , are plotted for each sampling step. The corresponding CPU time re-

quired to run Algorithm 1 at each sampling step is shown in Figure 4. The CPU time

is measured by implementing all the computations in one PC, running MATLAB on

Windows with an Intel(R) Core(TM) i7 CPU at 2.30 GHz and with 8 GB RAM.

We can see that the overall computation time for the simulation is long, since in ev-

ery sampling period, there must be k̃t × p̃t ×M small optimization problems solved,

where M is the number of subsystems (in this example M = 4). If the algorithm is

simulated in a distributed setting, the computations would be divided between the

M subsystems, thus the computation time would be much less than what is indicated

by this simulation. More details of the simulation example can be found in [2].

6 Conclusions and discussion for extensions

In this chapter, we have presented a constraint tightening approach for solving MPC

optimization problems involving large-scale linear systems with coupling in dynam-

ics and constraints. This new approach provides guaranteed feasibility and stability

after a finite number of iterations. The method is realized as a hierarchical algorithm,

called HPF-DAG, in which the coordinator is in charge of determining the common

parameters and the number of iterations, while the main computational tasks are di-

vided up between the subsystems. We have provided the steps for implementation

of this algorithm for the case of using a positive definite cost function and linear

constraints. Future extensions of this approach can include the consideration of pos-
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Fig. 2 Comparison of cost function evolutions in the simulation example.

0 5 10 15 20
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time step t

k
m

a
x

t, 
p
m

a
x

t

 

 

Outer loop iterations

Innerloop iterations

Fig. 3 Number of iterations in Algorithm HPF-DAG at each time step.
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Fig. 4 Aggregate computation time over all subsystems for the simulation of Algorithm 1 at each

time step.

itive semidefinite cost (i.e., some states and inputs are allowed to have zero penalty

weights), and more general (nonlinear) convex constraints. These extensions would

affect the convergence rate of the Jacobi algorithm used in the inner loop, hence the

number of inner iterations would change, or in some cases we would need to replace

the Jacobi algorithm with another, more suitable one. Other topics for extensions in-

clude the a posteriori choice of the solution between either the Slater vector ūt or

the primal average û(k̃t ) generated by the algorithm HPF-DAG; or determining op-

timal αt , ct , and εt parameters for fastest execution, while taking into account the

communication effort.
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