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Exact and Approximate Approaches to the Identification of

Stochastic Max-Plus-Linear Systems

Samira S. Farahani · Ton van den Boom · Bart De

Schutter

Abstract Stochastic max-plus linear systems, i.e., perturbed systems that are linear in the

max-plus algebra, belong to a special class of discrete-event systems that consists of sys-

tems with synchronization but no choice. In this paper, we study the identification problem

for such systems, considering two different approaches. One approach is based on exact

computation of the expected values and consists in recasting the identification problem as

an optimization problem that can be solved using gradient-based algorithms. However, due

to the structure of stochastic max-plus linear systems, this method results in a complex op-

timization problem. The alternative approach discussed in this paper, is an approximation

method based on the higher-order moments of a random variable. This approach decreases

the required computation time significantly while still guaranteeing a performance that is

comparable to the one of the exact solution.

Keywords Stochastic discrete event systems · System identification · Stochastic max-plus-

linear systems · Analytic integration · Approximation · Moments

1 Introduction

Discrete-event systems form a large class of dynamic systems in which the evolution of

the system is specified by the occurrence of certain discrete events, unlike continuous dy-

namic systems where the state of the system changes as time progresses. Some examples

of discrete-event systems are telecommunication networks, railway networks, manufactur-

ing systems, parallel computing, traffic control systems, etc. For such systems there ex-

ist different modeling frameworks such as queuing theory, (extended) state machines, for-

mal languages, automata, temporal logic models, generalized semi-Markov processes, Petri

nets, and computer simulation models (Cassandras and Lafortune, 1999; Ho, 1992; Peter-

son, 1981). Models of such systems are in general nonlinear in conventional algebra. How-

ever, there exists an important class of discrete event systems, namely the max-plus-linear

(MPL) systems, for which the model is linear in the max-plus algebra (Baccelli et al, 1992;

Cuninghame-Green, 1979; Heidergott et al, 2006). The class of MPL systems consists of

discrete-event systems with synchronization but no choice. Synchronization requires the
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availability of several resources at the same time, whereas choice appears, e.g., when some

user must choose among several resources (Baccelli et al, 1992). Typical examples of such

systems are serial production lines, production systems with a fixed routing schedule, and

railway networks. In stochastic systems, processing times and/or transportation times are as-

sumed to be stochastic quantities, since in practice such stochastic fluctuations can, e.g. be

caused by machine failure or depreciation (Olsder et al, 1990). Some results on (stochastic)

MPL systems including analysis, controller design, etc., can be found in (Akian, 2007; Bac-

celli et al, 1992; Başar and Bernhard, 1995; Bemporad et al, 2003; Heidergott et al, 2006;

Mairesse, 1994; McEneaney, 2004; Olsder et al, 1990; Resing et al, 1990; Somasundaram

and Baras, 2011).

The aim of this paper is to identify the model parameters of a stochastic MPL system

defined by a state space model. Most identification methods for MPL discrete-event sys-

tems use a transfer function approach (Boimond et al, 1995; Gallot et al, 1997) while state

space models have certain advantages: they explicitly take the initial state of the system into

account, they can reveal “hidden” behavior such as unobservable, unstable modes, the ex-

tension from SISO to MIMO is more intuitive and elegant for state space models, and the

analysis is often easier. Some examples of state space identification methods for determin-

istic MPL systems are presented in (De Schutter et al, 2002; Schullerus and Krebs, 2001a,b;

Schullerus et al, 2003). In the current paper, our focus is on the identification of stochastic

MPL systems in which modeling errors, noise, and/or disturbances are present. In stochas-

tic MPL systems the influence of noise and disturbances are often max-plus-multiplicative

(Baccelli et al, 1992), unlike for conventional linear systems where noise is usually consid-

ered to be additive. The noise and disturbances result in a perturbation of system parameters.

Consequently, in the identification method, the stochastic properties of the systems have to

be taken into account. To this end, we present two different approaches where one is based

on exact computation of the expected values using numerical or analytic integration and the

other one is an approximation method. In the first approach, we show that the resulting iden-

tification problem can be solved using gradient-based search techniques. However, when the

order of the stochastic system increases, the computational complexity of the first approach

increases drastically. To decrease the computational complexity, we also propose an alterna-

tive approximation approach that is based on the idea of the method of Farahani et al (2010)

in which only normally distributed noise has been considered. In the current paper, we ex-

tend this method such that it is applicable to a much broader range of distributions. This

method is based on moments of a random variable and when we have an analytic expression

for moments, it simplifies the computations considerably. Hence, we obtain a much faster

and more efficient way to solve the identification problem for stochastic MPL systems with-

out increasing the computational complexity and with a comparable performance to the first

approach (for the case study considered in this paper).

The structure of this paper is as follows. Section 2 gives a concise description of the

max-plus algebra and stochastic MPL systems. In Section 3, an identification problem for

stochastic MPL systems is described. Section 4 discusses the first approach, which consists

of numerical and analytic integration (in particular in the case of piecewise polynomial

probability density functions), to solve the identification problem. Section 5 introduces the

second approach, based on the higher-order moments, and describes how it reduces the

complexity of the identification problem. The error of this approximation is discussed in

this section as well. In Section 6 we provide a brief discussion on complexity analysis of

the two approaches. Section 7 presents two worked examples in which both approaches are

applied and their performance is examined. Finally, Section 8 concludes the paper.
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2 Max-Plus Algebra and Stochastic Max-Plus Linear Systems

In this section, we present a brief overview of the max-plus algebra, followed by a concise

description of stochastic max-plus-linear systems. For more information on these topics, the

interested reader is referred to (Baccelli et al, 1992; Cuninghame-Green, 1979; Heidergott

et al, 2006).

2.1 Max-Plus Algebra

Define Rε = R∪{ε} and ε = −∞. The main operations in max-plus algebra, as suggested

by its name, are maximization and addition:

x⊕ y = max(x,y)

x⊗ y = x+ y

for x,y ∈ Rε . Based on this definition, the zero element of the max-plus addition is defined

as ε , i.e., x⊕ ε = x, and the identity element of the max-plus multiplication as e = 0, i.e.,

x⊗e= x. The corresponding max-plus matrix operations are defined as (Baccelli et al, 1992)

(A⊕B)i j = ai j ⊕bi j = max(ai j,bi j)

(A⊗C)i j =
n⊕

k=1

aik ⊗ ck j = max
k=1,...,n

(aik + ck j)

for A,B ∈ R
m×n
ε and C ∈ R

n×p
ε . In this paper, we denote the i-th row of matrix A by Ai,· and

the j-th column by A·, j. To avoid confusion in the sequel, we drop the multiplication sign in

conventional algebra expressions while keeping the ⊗ sign in max-plus expressions.

Now let Smpns denote the set of max-plus-nonnegative-scaling functions, i.e., functions

f of the form

f (z) = max
i=1,...,m

(τi,1z1 + · · ·+ τi,nzn +ξi)

with variable z ∈ R
n
ε and constant coefficients τi, j ∈ R

+ and ξi ∈ R, where R
+ is the set of

the nonnegative real numbers. In the sequel, we stress that f is a function of z by writing

f ∈ Smpns(z). As shown by van den Boom and De Schutter (2004), the set Smpns is closed

under the operations ⊕,⊗, and the scalar multiplication by a nonnegative scalar.

2.2 Stochastic MPL Systems

Max-plus-linear systems form a special class of discrete-event systems with synchronization

but no choice. The state space representation of such systems is as follows (Baccelli et al,

1992; Cuninghame-Green, 1979):

x(k+1) = A(k)⊗ x(k)⊕B(k)⊗u(k) (1)

=
[

A(k) B(k)
]
⊗

[
x(k)
u(k)

]

(2)

= Q(k)⊗φ(k) (3)
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where

Q(k) =
[

A(k) B(k)
]
∈ R

n×m
ε , φ(k) =

[
x(k)
u(k)

]

∈ R
m
ε

with m = n+nu where n is the number of states and nu is the number of inputs, x(k) is the

state of the system at event step k, and u(k) is the input of the system at event step k. In fact

x(k) and u(k) contain the time instants at which the internal and the input event occurs for

the k-th time, respectively.

In a stochastic system, the system matrices A(k) and B(k) are perturbed by noise and/or

modeling errors. Following van den Boom et al (2003), these uncertainties will be presented

in a single framework, using one stochastic vector e(k) with a certain probability distribu-

tion. Note that the entries of the system matrices belong to Smpns(e(k)) (van den Boom and

De Schutter, 2004), i.e., A(k) ∈ S n×n
mpns(e(k)), B(k) ∈ S

n×nu
mpns (e(k)). In the sequel, we denote

the uncertain system matrices with the matrix Q(k) and the state and input vector with φ(k)
(cf. (3)).

In order to identify the unknown system parameters, we need to distinguish between the

parameters that are known a priori, i.e., the parameters that are either constant or determined

in advance such as the nominal transportation times in a production system, and the param-

eters that have to be identified. Therefore, the i-th row of the matrix Q(k) can be written

as:

Qi,·(k) = Ξi,·+θ T ∆ (i)+ eT (k)ΛS(i) (4)

where Ξ represents the parameters that are known a priori, θ is a vector of unknown pa-

rameters, e(k) = [e1(k), . . . ,ene(k)]
T is the stochastic vector and all its elements are assumed

to be independent random variables, the diagonal matrix Λ = diag(λ1, . . . ,λne) contains the

amplitude of the noise, and ∆ (i) and S(i) are selection matrices for the i-th row with ze-

ros and ones as entries. The role of the selection matrices is indeed to determine which

elements of the vectors θ and e(k) will appear in the i-th row of Q(k). For example for

the first element of the first row, i.e., i = 1, let ∆ (1) = [1 0 1]T and S(1) = [0 1 1]T ;

then θ T ∆ (1) = [θ1 θ2 θ3] · [1 0 1]T = θ1 + θ3 and eT (k)ΛS(1) = [e1(k) e2(k) e3(k)] ·
diag(λ1,λ2,λ3) · [0 1 1]T = e2(k)λ2 +e3(k)λ3. As mentioned before, the influence of noise

here is max-plus-multiplicative and as a result, it appears in the system matrices.

3 Identification of Stochastic Max-Plus Linear Systems

The identification procedure in this paper is based on input-state data. Note that in MPL

systems the state contains the time instants at which the state events occur. Since the state is

observable by assumption, these instants can be measured easily and so we usually have

full state information. We assume that the probability density function of e(k), denoted

by f (e), and the matrices Ξ ,∆ , and S are known a priori and that the only parameters

that have to be identified are the components of θ and the diagonal elements of Λ , de-

noted by λ = [λ1, . . . ,λne ]
T . Therefore, in the identification procedure we will derive es-

timates θ̂ and λ̂ for θ and λ , respectively. Consider the measured input-state sequence

{(umeas(k),xmeas(k))}
N
k=1 of a system of the form (3) and assume that the system parameters

θ̂ and λ̂ have to be identified using this sequence. Further, we assume that the input-state

sequence is sufficiently rich1 to capture all the relevant information about the system (see

1 Intuitively, this can be characterized as follows. Note that (3) and (4) imply that each component of

x(k + 1) can be written as a max expression of terms in which the unknown parameters θ and λ appear.
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also Schullerus and Krebs (2001b); Schullerus et al (2003)). Now consider the following

identification problem:

min
(θ̂ ,λ̂ )

J(θ̂ , λ̂ ) subject to λ̂ > 0 (5)

with

J(θ̂ , λ̂ ) =
N−1

∑
k=1

n

∑
i=1

(E[xi(k+1|k)]− xmeas,i(k+1))2
(6)

where E[·] denotes the expected value operator and E[xi(k + 1|k)] is the one-step-ahead

prediction of xi for event step k+1, using the knowledge from event step k. Considering (3)

and (4), we can rewrite the one-step-ahead prediction as

E[xi(k+1|k)] = E
[(

Ξi,·+ θ̂ T ∆ (i)+ eT (k)Λ̂S(i)
)
⊗φ(k)

]

and hence, the one-step-ahead prediction error will be given by

η̂i(k+1, θ̂ , λ̂ ) = E[xi(k+1|k)]− xmeas,i(k+1)

= E
[

max
j=1,...,m

(
ξi j + θ̂ T ∆

(i)
·, j + eT (k)Λ̂S

(i)
·, j +φ j(k)− xmeas,i(k+1)

)]
(7)

Now for a specific realization of the noise vector e(k), let:

ηi(k+1, θ̂ , λ̂ ,e(k)) = max
j=1,...,m

(
ξi j + θ̂ T ∆

(i)
·, j + eT (k)Λ̂S

(i)
·, j +φ j(k)− xmeas,i(k+1)

)

which is indeed a max-plus-nonnegative-scaling function. Hence,

η̂i(k+1, θ̂ , λ̂ ) = E[ηi(k+1, θ̂ , λ̂ ,e(k))]

To have a more compact notation, let αi j(k) = ξi j + φ j(k)− xmeas,i(k+ 1), Πi j = ∆
(i)
·, j , and

Γi j = diag((S(i))1, j, . . . ,(S
(i))ne, j). Since eT (k)Λ̂S

(i)
·, j is a scalar and Λ̂ is a diagonal matrix,

we have:

eT (k)Λ̂S
(i)
·, j = (S

(i)
·, j)

T Λ̂e(k) = λ̂ T Γi je(k)

Therefore, we can rewrite ηi(k+1, θ̂ , λ̂ ,e(k)) as

ηi(k+1, θ̂ , λ̂ ,e(k)) = max
j=1,...,m

(αi j(k)+Π T
i j θ̂ + λ̂ T Γi je(k)) (8)

Hence, it is only left to compute the expected value of ηi(k + 1, θ̂ , λ̂ ,e(k)), i.e., η̂i(k +

1, θ̂ , λ̂ ), for which different methods are proposed in Sections 4 and 5.

4 First Approach: Numerical or Analytic Integration

In this section, first we show how the computation of η̂i(k+1, θ̂ , λ̂ ) leads to the computation

of an integral. Then we propose two different methods to deal with the integration.

An input signal is then said to be sufficiently rich if it is such that each of these terms is the maximal one

sufficiently often (this is also related to the idea of persistent excitation in conventional system identification

(Ljung, 1999)).
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4.1 Computation of the Expected Value

By considering the definition of the expected value, we can compute η̂i(k+ 1, θ̂ , λ̂ ) as fol-

lows:

η̂i(k+1, θ̂ , λ̂ ) = E[ηi(k+1, θ̂ , λ̂ ,e(k))]

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
ηi(k+1, θ̂ , λ̂ ,e) f (e)de (9)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
max

j=1,...,m
(αi j(k)+Π T

i j θ̂ + λ̂ T Γi je) f (e)de (10)

=
m

∑
j=1

∫

· · ·
∫

e∈Ωi j(θ̂ ,λ̂ ,k)

(αi j(k)+Π T
i j θ̂ + λ̂ T Γi je) f (e)de (11)

where de = de1, . . . ,dene and the polyhedral sets Ωi j(θ̂ , λ̂ ,k), i = 1, . . . ,n, j = 1, . . . ,m are

defined such that

int(Ωiℓ)∩ int(Ωiν) = /0 for ℓ 6= ν

where int(Ωi j) denotes the interior of Ωi j, and such that for all e ∈ Ωi j(θ̂ , λ̂ ,k),

ηi(k+1, θ̂ , λ̂ ,e) = αi j(k)+Π T
i j θ̂ + λ̂ T Γi je

and that for any i it holds that
⋃m

j=1 Ωi j(θ̂ , λ̂ ,k) = R
ne , i.e., for all realizations of e, the j-th

term in (8) gives the maximum, and the sets Ωi j(θ̂ , λ̂ ,k) cover the whole space of Rne and

only overlap at the boundaries of the regions2.

Remark 1 Note that the sets Ωi j, i = 1, . . . ,n, j = 1, . . . ,m are polyhedra. This follows from

the fact that Ωi j is described by a system of linear inequalities. In fact, for e ∈ Ωi j(θ̂ , λ̂ ,k)
we have:

max
j=1,...,m

(αi j(k)+Π T
i j θ̂ + λ̂ T Γi je) = αi j(k)+Π T

i j θ̂ + λ̂ T Γi je.

Hence, αi j(k)+Π T
i j θ̂ + λ̂ T Γi je ≥ αiℓ(k)+Π T

iℓ θ̂ + λ̂ T Γiℓe for ℓ= 1, . . . ,m.

Proposition 1 The function η̂i(k + 1, θ̂ , λ̂ ), defined in (7), is convex in θ̂ and λ̂ , and its

subgradients with respect to θ̂ and λ̂ are

gi,θ̂ (θ̂ , λ̂ ,k) =
m

∑
j=1

( ∫

· · ·
∫

e∈Ωi j(θ̂ ,λ̂ ,k)

f (e)de
)

Πi j (12)

g
i,λ̂ (θ̂ , λ̂ ,k) =

m

∑
j=1

( ∫

· · ·
∫

e∈Ωi j(θ̂ ,λ̂ ,k)

eT f (e)de
)

Γi j (13)

respectively.

2 If there are two identical affine arguments in the max expression in (10), then the corresponding sets Ωi j

coincide. So in general the Ωi j sets either coincide or they only overlap at the boundaries (see also Remark

1). For the sake of simplicity of the exposition, we assume here that any identical arguments in the max

expression in (10) have already been eliminated.
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Proof The proof of this proposition is the straightforward application of the definition of a

convex function. Consider vectors θ̂0 and λ̂0 with the same size as θ̂ and λ̂ , respectively.

Recall that (cf. (11))

η̂i(k+1, θ̂0, λ̂0) =
m

∑
j=1

∫

· · ·
∫

e∈Ωi j(θ̂0,λ̂0,k)

(αi j(k)+Π T
i j θ̂0 + λ̂ T

0 Γi je) f (e)de

Then, using the fact that
⋃m

j=1 Ωi j(θ̂0, λ̂0,k) = R
ne , there holds for any θ̂ and λ̂ :

η̂i(k+1, θ̂ , λ̂ ) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
max

j=1,...,m
(αi j(k)+Π T

i j θ̂ + λ̂ T Γi je) f (e)de

=
m

∑
j=1

∫

· · ·
∫

e∈Ωi j(θ̂0,λ̂0,k)

max
j=1,...,m

(αi j(k)+Π T
i j θ̂ + λ̂ T Γi je) f (e)de

≥
m

∑
j=1

∫

· · ·
∫

e∈Ωi j(θ̂0,λ̂0,k)

(αi j(k)+Π T
i j θ̂ + λ̂ T Γi je) f (e)de (14)

Note that the sets Ωi j(·, ·,k) in (14) are computed for θ̂0 and λ̂0, whereas for η̂i(k+1, θ̂ , λ̂ ),

they are computed for θ̂ and λ̂ (cf. (11)). Now consider:

m

∑
j=1

∫

· · ·
∫

e∈Ωi j(θ̂0,λ̂0,k)

(αi j(k)+Π T
i j θ̂ + λ̂ T Γi je) f (e)de

=
m

∑
j=1

∫

· · ·
∫

e∈Ωi j(θ̂0,λ̂0,k)

(αi j(k)+Π T
i j θ̂0 + λ̂ T

0 Γi je) f (e)de

+
m

∑
j=1

∫

· · ·
∫

e∈Ωi j(θ̂0,λ̂0,k)

(Π T
i j (θ̂ − θ̂0)) f (e)de+

m

∑
j=1

∫

· · ·
∫

e∈Ωi j(θ̂0,λ̂0,k)

((λ̂ − λ̂0)
T Γi je) f (e)de

=
m

∑
j=1

∫

· · ·
∫

e∈Ωi j(θ̂0,λ̂0,k)

(αi j(k)+Π T
i j θ̂0 + λ̂ T

0 Γi je) f (e)de

+
m

∑
j=1

( ∫

· · ·
∫

e∈Ωi j(θ̂0,λ̂0,k)

f (e)de
)

Π T
i j (θ̂ − θ̂0)+

m

∑
j=1

( ∫

· · ·
∫

e∈Ωi j(θ̂0,λ̂0,k)

eT f (e)de
)

Γ T
i j (λ̂ − λ̂0)

= η̂i(k+1, θ̂0, λ̂0)+gT

i,θ̂
(θ̂0, λ̂0,k)(θ̂ − θ̂0)+gT

i,λ̂
(θ̂0, λ̂0,k)(λ̂ − λ̂0)

with gi,θ̂ and g
i,λ̂ defined in (12) and (13), respectively. Hence, we conclude that

η̂i(k+1, θ̂ , λ̂ )≥ η̂i(k+1, θ̂0, λ̂0)+gi,θ̂ (θ̂0, λ̂0,k)(θ̂ − θ̂0)+g
i,λ̂ (θ̂0, λ̂0,k)(λ̂ − λ̂0)

which proves that η̂i is convex in θ̂ and λ̂ , and that gi,θ̂ and g
i,λ̂ are subgradients 3 of η̂i

with respect to θ̂ and λ̂ . �

3 For the case that f (e) is a continuous function, η̂i(k+1, θ̂ , λ̂ ) is continuously differentiable and since it

is a convex function, the subgradients are unique and they are equal to the gradients.
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Therefore, J(θ̂ , λ̂ ) in the identification problem (5) can be written as

J(θ̂ , λ̂ ) =
N

∑
k=1

n

∑
i=1

(

η̂i(k+1, θ̂ , λ̂ )
)2

(15)

with the gradients

∇θ̂ J(θ̂ , λ̂ )=
N

∑
k=1

n

∑
i=1

2η̂i(k+1, θ̂ , λ̂ )gi,θ̂ (θ̂ , λ̂ ,k)

∇λ̂ J(θ̂ , λ̂ )=
N

∑
k=1

n

∑
i=1

2η̂i(k+1, θ̂ , λ̂ )g
i,λ̂ (θ̂ , λ̂ ,k).

Consequently, despite the fact that J(θ̂ , λ̂ ) is not convex anymore since η̂i(k+1, θ̂ , λ̂ ) is not

always positive, the optimal θ̂ and λ̂ can be found using gradient-based search methods (see

e.g. (Pardalos and Resende, 2002, Chapter 5)).

Note that to compute the cost function (15), we first need to find the value of η̂i(k+

1, θ̂ , λ̂ ), which leads to the solution of integrals (9) or (11). The rest of this section is dedi-

cated to two different methods that solve the above-mentioned integrals.

4.2 Numerical Integration

To obtain the value of η̂i(k+1, θ̂ , λ̂ ), one can compute the integral (9) using numerical in-

tegration. The common methods for numerical integration are (non)adaptive integration,

(non)iterative integration, exponential quadrature, Monte Carlo integration, the Nyström

method, the Quasi-Monte Carlo method, and the Multi-step method (Davis and Rabinowitz,

1984). However, numerical integration is in general both cumbersome and time-consuming,

and it becomes even more complicated as the probability density function f becomes more

and more complex. Hence, in the following, an alternative method is proposed based on

analytic integration.

4.3 Analytic Integration for Piecewise Polynomial Probability Density Functions

As mentioned, numerical integration is not an optimal way of computing the integral (9),

since it is quite complex and time-inefficient. One way to avoid this complexity is to consider

a piecewise polynomial probability density function defined on polyhedral sets. In this case,

either the stochastic vector has a piecewise polynomial probability density function or we

approximate the real probability density function with a piecewise polynomial probability

density function.

Let f (e) be a piecewise polynomial function defined on polyhedral sets Pℓ, ℓ= 1, . . . ,np,

such that

np
⋃

ℓ=1

Pℓ = R
ne

int(Pi)∩ int(Pj) = /0 for i 6= j
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where int(Pi) denotes the interior of Pi, and for e ∈ Pℓ the probability density function is

given by fℓ(e), where

fℓ(e) =
M1

∑
i1=0

M2

∑
i2=0

. . .
Mne

∑
ine=0

ζi1,i2,...,ine
e

i1
1 e

i2
2 · · ·e

ine
ne

for some integers M1, . . . ,Mne and coefficients ζi1,i2,...,ine
∈ R. Consider the signal η(k +

1, θ̂ , λ̂ ). Let Ψi jℓ(θ̂ , λ̂ ,k) = Ωi j(θ̂ , λ̂ ,k)∩Pℓ for j = 1, . . . ,m, ℓ= 1, . . . ,np. Then by Remark

1, Ψi jℓ(θ̂ , λ̂ ,k) is a polyhedron, and η̂i(k+1, θ̂ , λ̂ ) can be written as

η̂i(k+1, θ̂ , λ̂ ) =
np

∑
ℓ=1

m

∑
j=1

∫

· · ·
∫

e∈Ψi jℓ(θ̂ ,λ̂ ,k)

(αi j(k)+Π T
i j θ̂ + λ̂ T Γi je) fℓ(e)de. (16)

This is a sum of integrals of polynomial functions in e and then can be solved analytically

for each polyhedron Ψi jℓ (Büeler et al, 2000; Lasserre, 1998). Note that if a piecewise poly-

nomial probability density function is used as an approximation of “true” non-polynomial

probability function, the quality of the approximation can be improved by increasing the

number of sets np.

5 Second Approach: Approximation Method

As will be discussed in Section 6, the complexity of the method of Section 4.3, increases

exponentially as ne increases and polynomially as n and nu increase. It also increases in

the case of having non-piecewise polynomial probability density functions, such as normal

probability density function, that cannot be directly applied to the first approach and hence,

have to be approximated by piecewise polynomial probability density functions. Therefore,

in this section, we propose to adopt and extend the approach presented in (Farahani et al,

2010), which is based on the p-th moment of a stochastic random variable, in order to

approximate E[ηi(k+1, θ̂ , λ̂ ,e(k))] and to significantly decrease the computational burden.

Note that this extended approach is now applicable to a wide range of distributions, while

in (Farahani et al, 2010) the method was only proposed for the case of normally distributed

noise. As will be shown in Section 6, the complexity of this method in general increases

quadratically as n increases, linearly as nu increases, and polynomially as ne increases, which

offers a great advantage compared to the first approach.

5.1 Description of the Approximation Method

This approximation approach is inspired by the relation between the ∞-norm and the p-

norm. Assume that x = [x1, . . . ,xm]
T is a vector in R

m; accordingly, for p ≥ 1, ‖x‖p =
(
|x1|

p + · · ·+ |xm|
p
)1/p

defines the p-norm and ‖x‖∞ = max(|x1|, . . . , |xm|) defines the ∞-

norm of x. The relation between these norms is as follows (Golub and Van Loan, 1996):

‖x‖∞ ≤ ‖x‖p ≤ m1/p‖x‖∞

Theorem 1 (Jensen’s Inequality (Rudin, 1987)) Let x be an integrable real-valued ran-

dom variable and let ϕ a concave function such that ϕ(x) is integrable. Then E [ϕ(x)] ≤
ϕ (E [x]).
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Now by assuming that x is an integrable stochastic vector, and by considering the monotonic-

ity and linearity of the expected value operator, we can derive the following inequalities:

E
[
max(x1, . . . ,xm)

] (i)

≤ E
[
max(|x1|, . . . , |xm|)

]

(ii)

≤ E
[
(|x1|

p + · · ·+ |xm|
p)1/p

]

(iii)

≤

(
m

∑
j=1

E
[
|x j|

p
]
)1/p

(17)

where the last inequality is the result of applying Jensen’s inequality for concave functions,

since ϕ(x) = x1/p is a concave function for p ≥ 1 and x > 0, and in our case the argument x

is ∑m
j=1 |x j|

p which is positive and integrable by our assumption.

Inequality (i) reduces to an equality if all variables x j are nonnegative. Hence, in order

to reduce the error in inequality (i), we define x j = y j − L for some offset L such that x j

is almost always positive. Note that if y j is from a distribution with a finite domain (such

as the uniform distribution), L can be defined such that L ≤ y j for j = 1, . . . ,m and hence,

inequality (i) turns into an equality. However, if y j has no finite bounds (such as in case

of the normal distribution), inequality (i) never reduces to an equality and we can only

decrease the error by defining L such that it is less than or equal almost all y j, j = 1, . . . ,m.

For example if y j, j = 1, . . . ,m are normally distributed with mean µ j and variance σ j, then

L can be defined as L = min j=1,...,m(µ j −3σ j). This choice of L has been made based on the

3σ -rule, which states that 99.7% of observations of a normally distributed random variable

with mean µ and standard deviation σ falls within the interval [µ −3σ ,µ +3σ ].

Remark 2 For a positive even integer p = 2q, q ∈ N\{0}, we have E[xp] = E[|x|p]. Hence,

without loss of generality, we can use E[xp] in our problem by only considering even values

for p in the sequel. So from now on, p is an even integer larger than or equal to 2.

Now let4 yi j = αi j +Π T
i j θ̂ + λ̂ T Γi je (cf. Section 3, eq. (8)). Hence, the random variable

xi j = yi j −L can be written in a compact form as xi j = βi j + γT
i j e where βi j = αi j +Π T

i j θ̂ −L

and γi j = (λ̂ T Γi j)
T . Now by adopting (17) and considering (8), we have:

E[ηi(k+1, θ̂ , λ̂ ,e(k))]−L = E[max(xi1, . . . ,xim)]

≤

(
m

∑
j=1

E
[
x

p
i j

]
)1/p

=

(
m

∑
j=1

E
[
(βi j + γT

i j e)
p
]
)1/p

=

(
m

∑
j=1

E
[
( βi j
︸︷︷︸

zi j,0

+γi j,1e1
︸ ︷︷ ︸

zi j,1

+ · · ·+ γi j,ne ene
︸ ︷︷ ︸

zi j,ne

)p
]
)1/p

(∗)
=

(
m

∑
j=1

E

[

∑
k0+k1+···+kne=p

(
p

k0,k1, . . . ,kne

) ne

∏
t=0

z
kt
i j,t

])1/p

4 In the rest of this section, the index k will be dropped (except for ηi and η̂i) for the sake of simplicity of

notation.
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=

(
m

∑
j=1

∑
k0+k1+···+kne=p

p!

k0!k1! · · ·kne !
E
[ ne

∏
t=0

z
kt
i j,t

]
)1/p

(∗∗)
=

(
m

∑
j=1

∑
k0+k1+···+kne=p

p!

k0!k1! · · ·kne !

ne

∏
t=0

E
[
z

kt
i j,t

]
)1/p

(18)

where (∗) is based on the multinomial theorem for (zi j,0+ · · ·+zi j,ne)
p, which is the general-

ization of the binomial theorem to polynomials (Graham et al, 1994), and (∗∗) is due the fact

that, by assumption, the elements of the stochastic vector e, i.e., e1, . . . ,ene are independent

and for independent random variables Z1, . . . ,Zne , E[∏
ne
t=1 Zt ] = ∏

ne
t=1E[Zt ].

Consequently, we can approximate the function η̂i(k+1, θ̂ , λ̂ ) =E[ηi(k+1, θ̂ , λ̂ ,e(k))]

by η̂app,i(k+1, θ̂ , λ̂ ) for an appropriate choice of p where

η̂app,i(k+1, θ̂ , λ̂ ) =

(
m

∑
j=1

∑
k0+k1+···+kne=p

p!

k0!k1! · · ·kne !

ne

∏
t=0

E
[
z

kt
i j,t

]
)1/p

+L (19)

where zi j,0 = αi j +Π T
i j θ̂ −L and zi j,t = (λ̂ T Γi j)tet for t = 1, . . . ,ne.

In the approximation function η̂app,i(k+1, θ̂ , λ̂ ), we have to compute the kt -th moment

of each random variable zi j,t , t = 0, . . . ,ne and j = 1, . . . ,m. By definition, the κ-th moment

of a random variable z with can be computed as follows:

E[zκ ] =
∫ ∞

−∞
zκ f (z)dz (20)

where f (z) is the probability density function of z and without loss of generality, we assume

that κ is an even integer larger than or equal to 2 (cf. Remark 2). Note that since zi j,0 =

αi j +Π T
i j θ̂ −L does not include any elements of the stochastic vector e and hence, it is not

a random variable, we have E[zκ
i j,0] = zκ

i j,0 for any integer κ .

In general, moments of a random variable can be finite or infinite. Hence, to be able to

apply η̂app,i(k+1, θ̂ , λ̂ ) as an approximation of η̂i(k+1, θ̂ , λ̂ ), we need to consider random

variables with finite moments for which a closed-form expression exists, such as variables

with a uniform distribution, normal distribution, Beta distribution, etc. Note that if moments

do not have a closed-form, one has to solve the integral (20) numerically. In that case, there

is no advantage of using this approximation method since it is not time-efficient any more,

and using numerical or analytic integration presented in Sections 4.2 and 4.3 would even

be better options. In the following, we present some examples of finite moments of few

distributions that have a closed-form as well: the uniform distribution, the Beta distribution,

and the normal distribution. To find the moments of other distributions, the interested reader

is referred to (Papoulis, 1991). For the case of a uniformly distributed random variable z on

an interval [a,b], i.e., z ∼ U (a,b), the κ-th moment can be computed as

E[zκ ] =
1

κ +1

κ

∑
l=0

albκ−l (21)

and for a random variable z that has a Beta distribution with parameters α and β , i.e., z ∼
B(α ,β ), the κ-th moment can be written in a recursive form as

E[zκ ] =
α +κ −1

α +β +κ −1
E(zκ−1). (22)
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In case of a normally distributed random variable z with mean µ and variance σ2, i.e.,

z ∼N (µ,σ2), the κ-th moment has a closed-form that can be expressed as (Willink, 2005):

E
[
zκ
]
= σκ i−κ Hκ(iµ/σ) (23)

where

Hκ(z)≡ (−1)κ exp(z2/2)
dκ

dzκ
exp(−z2/2)

is the κ-th Hermite polynomial. Note that the right-hand side of (23) is in fact real because

Hκ(z) contains only even powers of z if κ is even (note that here we assume that κ = 2q, q ∈
N \ {0}). Considering equations (26.2.51) and (22.3.11) in Abramowitz and Stegun (1964)

leads to

Hκ(z) = κ!

κ/2

∑
l=0

(−1)lzκ−2l

2l l!(κ −2l)!
(24)

where κ/2 ∈ N\{0} since κ is an even integer in our case.

Remark 3 For the case of a normally distributed stochastic vector e, the random variable

xi j = βi j + γT
i j e is also normally distributed with a certain mean and standard deviation, us-

ing the property of the normal distribution that sum of the independent normally distributed

random variables has also a normal distribution (Dekking et al, 2005). Hence, we can im-

mediately compute the p-th moment in (17) and we do not need to use (18). In this way, our

computation will be faster since we have less terms (compare (17) with (18)). In general, this

remark is valid for all distributions that are preserved under the summation and for which a

closed form of their higher-order moments exists, such as Poisson and Gamma distributions

(Papoulis, 1991).

Furthermore, we can obtain gradients of η̂app,i(θ̂ , λ̂ ) with respect to θ̂ and λ̂ . Recall

that zi j,0 = αi j +Π T
i j θ̂ −L and zi j,t = (λ̂ T Γi j)tet for j = 1, . . . ,m and t = 1, . . . ,ne with the

stochastic vector e= [e1, . . . ,ene ]
T and Γi j being a diagonal matrix. Hence, only zi j,0 depends

on θ̂ , and the rest of zi j,t , t = 1, . . . ,ne depend only on λ̂ . Accordingly, by applying the chain

rule, we obtain the following subgradients:

∇θ̂ η̂app,i(k+1, θ̂ , λ̂ ) =

(
m

∑
j=1

∑
k0+k1+···+kne=p

p!

k0!k2! · · ·kne !

ne

∏
t=0

E
[
z

kt
i j,t

]
)1/p−1

×

(
m

∑
j=1

∑
k0+k1+···+kne=p−1

(p−1)!

k0!k2! · · ·kne !
k0z

k0−1
i j,0 Πi j

ne

∏
t=1

E
[
z

kt
i j,t

]
)

and

∇λ̂ η̂app,i(k+1, θ̂ , λ̂ ) =

(
m

∑
j=1

∑
k0+k1+···+kne=p

p!

k0!k2! · · ·kne !

ne

∏
t=0

E
[
z

kt
i j,t

]
)1/p−1

×

(
m

∑
j=1

∑
k0+k1+···+kne=p

(p−1)!

k0!k2! · · ·kne !
z

k0
i j,0

ne

∑
ℓ=1

kℓ(Γi j)ℓℓE[eℓz
kℓ−1
i j,ℓ ]

ne

∏
t=1
t 6=ℓ

E
[
z

kt
i j,t ]

)
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As a result, we can approximate J(θ̂ , λ̂ ) in (6) by replacing η̂i(k+1, θ̂ , λ̂ ) with η̂app,i(k+

1, θ̂ , λ̂ ) as follows:

Japp(θ̂ , λ̂ ) =
N−1

∑
k=1

n

∑
i=1

(

η̂app,i(k+1, θ̂ , λ̂ )
)2

(25)

with the gradients

∇θ̂ Japp(θ̂ , λ̂ )=
N−1

∑
k=1

n

∑
i=1

2η̂app,i(k+1, θ̂ , λ̂ )∇θ̂ η̂app,i(k+1, θ̂ , λ̂ )

∇λ̂ Japp(θ̂ , λ̂ )=
N−1

∑
k=1

n

∑
i=1

2η̂app,i(k+1, θ̂ , λ̂ )∇λ̂ η̂app,i(k+1, θ̂ , λ̂ )

and solve the optimization problem by means of a gradient-based optimization method,

such as a steepest descent method or a Quasi-Newton (DFP, BFGS) method (Pardalos and

Resende, 2002).

5.2 On the Error of the Approximation Method

Note that E[max(x1, . . . ,xm)] in (17) is bounded from above and from below. Its upper bound

has been presented in (17) and its lower bound can be obtained by using Jensen’s inequality

for convex functions (the max function in this case) (Boyd and Vandenberghe, 2004). Hence,

max(E[x1], . . . ,E[xm])≤ E[max(x1, . . . ,xm)]≤

(
m

∑
j=1

E
[
|x j|

p
]
)1/p

(26)

Consequently, the error of approximating E[max(x1, . . . ,xm)] by its upper bound in (17) is

always bounded from above by

(
m

∑
j=1

E
[
|x j|

p
]
)1/p

−E[max(x1, . . . ,xm)]≤

(
m

∑
j=1

E
[
|x j|

p
]
)1/p

−max(E[x1], . . . ,E[xm])

(27)

and since in our case x j, j = 1, . . . ,m are assumed to have finite moments, this upper bound

is finite and the error of the approximation cannot be larger than this value.

Since the error bound (27) is a rough upper bound, we introduce another upper bound for

the approximation error that is tighter than (27). This new upper bound is exact for the case

of having a stochastic vector that has a probability distribution with a bounded domain (such

as in case of a uniform distribution), and is an approximate upper bound for the case that

the stochastic vector has a probability distribution with an unbounded domain (such as for

the normal distribution). To obtain the new upper bound, we consider the three inequalities

in (17) and their corresponding error. The first error, due to (i), approaches zero if L be-

comes more and more negative for the case of a probability distribution with an unbounded

domain. In case of a probability distribution with a bounded domain this error is zero for

an appropriate choice of L. Regardless of the type of the probability distribution, the sec-

ond error due to (ii) approaches zero if p →+∞, since by definition ‖x‖∞ = limp→+∞ ‖x‖p.

However, the third error, which is in fact the error of Jensen’s inequality, needs more discus-

sion. In (Simić, 2009a, Theorem5 2.1) and (Simić, 2009b, Theorem 2.1) two upper bounds

5 This theorem is in fact a special case of the results appeared in (Pečarić and Beesack, 1987), as explained

in (Ivelić and Pečarić, 2011)
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for Jensen’s inequality are presented for the fractional and the absolute error, respectively.

For a (strictly) positive, twice continuously differentiable, concave function f defined on an

interval [a,b], Jensen’s inequality can be stated in the form

1 ≤
f (E[x])

E[ f (x)]

for which an upper bound can be formulated as follows (Simić, 2009a):

1 ≤
f (E[x])

E[ f (x)]
≤ max

q∈[0,1]
[

f (qa+(1−q)b)

q f (a)+(1−q) f (b)
] := S f (a,b)

and it has been proven in Simić (2009a) that there exists a unique q0 for which S f (a,b) is

maximal. In a similar way, the absolute error can be also defined as follows (Simić, 2009b):

For a differentiable, concave function f defined on an interval [a,b] we have

0 ≤ f (E[x])−E[ f (x)]≤ max
ω∈[0,1]

[ f (ωa+(1−ω)b)−ω f (a)− (1−ω) f (b)] := Tf (a,b)

and again it has been shown that there exists a unique ω0 for which Tf (a,b) is maximal

(Simić, 2009b).

In our case the concave function is f (x) = x1/p and since we assume that p is a positive

even integer greater than or equal to 2, the argument x has to be larger or equal to zero, which

is the case since x =∑m
j=1 x

p
j . Note that with this choice of p, f (x) is in fact a strictly concave

function. Now, by substituting f in the above formulas and determining the optimal value

of q and ω for each case, the following expressions are obtained for S f (a,b) and Tf (a,b):

S f (a,b) =
( 1

p
(ab

1
p+1 −a2b

1
p −a

1
p b2 +a

1
p+1

b)

−( p−1
p
)(a

1
p+1 +b

1
p+1 −a

1
p b−ab

1
p )

) 1
p
·
−( p−1

p
)(a

1
p+1 +b

1
p+1 −a

1
p b−ab

1
p )

−a
1
p b

1
p+1 −a

1
p+1

b
1
p +a

2
p b+ab

2
p

Tf (a,b) = (
a−b

p(a
1
p −b

1
p )
)

1
p−1 −

( 1

a−b
[(a

1
p −b

1
p )(

a−b

p(a
1
p −b

1
p )
)

p
p−1 )−a

1
p b+ab

1
p ]
)

(28)

Note that from the above formulas for different values of a,b and p, we can conclude the

following:

if (a → ∞ or b → ∞) and (p < ∞) :

{

S f (a,b)→ ∞

Tf (a,b)→ ∞

if (a < ∞ and b < ∞) and (p → ∞) :

{

S f (a,b)→ 1

Tf (a,b)→ 0

if (a = 0 and b < ∞) and (p < ∞) :

{

S f (a,b)→ ∞

Tf (a,b)< ∞

Therefore, to have finite upper bounds for Jensen’s inequality, a and b have to be finite,

and a 6= 0 for computing S f (a,b). Note that for the case of a probability distribution with

a bounded domain, a and b can be easily obtained. Assume that each xi j = yi j −L belongs

to the interval [ci j,1,ci j,2], and since L ≤ yi j for all j = 1, . . . ,m, we can conclude that 0 ≤
ci j,1 ≤ ci j,2 and hence, c

p
i j,1 ≤ c

p
i j,2. Therefore,

c
p
i j,1 ≤ x

p
i j ≤ c

p
i j,2 ⇒

m

∑
j=1

c
p
i j,1

︸ ︷︷ ︸

a

≤
m

∑
j=1

x
p
i j

︸ ︷︷ ︸

x

≤
m

∑
j=1

c
p
i j,2

︸ ︷︷ ︸

b

(29)
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However, if we have a probability distribution with an unbounded domain, we need to define

an approximate a and b. For example, assume that xi j = yi j −L is normally distributed, i.e.,

xi j ∼ N (µi j,σ
2
i j) for j = 1, . . . ,m, which by nature is not bounded. However, since by 3σ -

rule, each xi j is in the interval [µi j − 3σi j − L,µi j + 3σi j − L] with probability 99.7%, we

make an assumption that

µi j −3σi j −L ≤ yi j −L ≤ µi j +3σi j −L ⇒ ci j,1 ≤ xi j ≤ ci j,2

where ci j,1 := µi j −3σi j −L and ci j,2 := µi j +3σi j −L. Since we have L = min j(µi j −3σi j),
it follows that 0 ≤ ci j,1 ≤ ci j,2 and consequently c

p
i j,1 ≤ c

p
i j,2. Hence,

c
p
i j,1 ≤ x

p
i j ≤ c

p
i j,2 ⇒

m

∑
j=1

c
p
i j,1

︸ ︷︷ ︸

a

≤
m

∑
j=1

x
p
i j

︸ ︷︷ ︸

x

≤
m

∑
j=1

c
p
i j,2

︸ ︷︷ ︸

b

(30)

Note that these error bounds are only an approximation, since we leave out the cases where

xi j > µi j +3σi j −L and xi j < µi j −3σi j −L for j = 1, . . . ,m.

As mentioned above, for finite a and b, if p→∞ then S f (a,b) converges to 1 and Tf (a,b)
converges to 0. This suggests that in order to get a good approximation, p should not be

selected too small. However, since in our case both a and b depend on p (as shown in (29)

and (30)), they will approach infinity if p → ∞ and consequently both S f (a,b) and Tf (a,b)
become infinite. This suggests that p should not be selected too large either. Hence, there is

a trade-off between the choice of p and the magnitude of the (approximation) error.

Moreover, in our case a = 0 is very improbable to occur. Recall that the random variable

xi j has the following form:

xi j = αi j +Π T
i j θ̂ + λ̂ T Γi je−L

where all the elements of e are independent. Hence, a = 0 only if all the elements of the

vector αi and matrices Πi and Γi j are equal, and this is very unlikely to be the case. Conse-

quently, by considering the cases in which a is not zero, we can compute both upper bounds

S f (a,b) and Tf (a,b), and if a = 0, we can only use Tf (a,b) as an upper bound for Jensen’s

inequality.

6 Complexity analysis of the two proposed approaches

Even if the integral in (16) can be computed analytically, the computational load is still quite

heavy. This is because the method in Section 4.3 contains two time-consuming steps: In the

first step all polyhedra Ψi jℓ have to be specified. Note that Ψi jℓ(θ̂ , λ̂ ,k) = Ωi j(θ̂ , λ̂ ,k)∩Pℓ
where the number of polyhedra Ωi j is equal to nm = n2+nu ·n and the number of polyhedra

Pℓ is np. Hence, in the worst case the number of polyhedra Ψi jℓ that has to be considered is

O(n(n+ nu)np), which becomes more and more time-consuming as np,nu, and n become

larger. In the second step, the integral over each of these regions has to be calculated, for

which in case of a uniform probability density function, we need to compute all the vertices

of each polyhedronΨi jℓ. As explained in (Mattheiss and Rubin, 1980), we have the following

upper bound for the number of the vertices of a polytope defined by m (non-redundant)

inequality constraints in an ne-dimensional space:

(
m−⌊ ne+1

2
⌋

m−ne

)

+

(
m−⌊ ne+2

2
⌋

m−ne

)



16 Samira S. Farahani et al.

This means that in our case with m = n+ nu inequality constraints in an ne-dimensional

space, the number of vertices for the worst case can be O((n+ nu)
⌊ ne

2 ⌋) if m ≫ ne ≫ 1,

which is again time-consuming as n,nu and ne increase. In the case of having other piece-

wise polynomial probability density functions, the order of complexity of the second step

becomes even bigger since then, the integral computation is more complex than in the case

of the uniform distribution. Accordingly, the complexity of the whole procedure in the worst

case is of the order O(nnp(n+nu)
⌊ ne

2 ⌋) for the first approach in the case of a uniformly dis-

tributed noise.

However, due to the structure of the second approach, none of the two above-mentioned

steps are present. Hence by considering (19), the total number of terms in the first sum

is m = n+ nu and in the second sum, i.e., the multinomial sum, is
(

p+ne−1
p

)
and assum-

ing that ne ≫ p > 1, the order of the error for this sum is O( n
p
e

p!
). Also, the total num-

ber of the expected values that have to computed is pne. Also, since i changes from 1 to

n, there are n terms. Hence, the complexity of this approximation method is of the order

O(n(n+ nu)ne p
(

p+ne−1
p

)
) = O(n(n+ nu)ne p n

p
e

p!
), which increases polynomially as n,nu, or

ne increase and exponentially as p increases.

Hence, the complexity order of these two methods shows that the second approach is

computationally more time-efficient than the first one.

7 Example

In this section we present two examples to study the performance of the first and the second

approach. In the first example, we consider a uniformly distributed noise vector, which has a

bounded domain, and we compare the performance of the first and the second approach with

each other and with the approach that uses Monte Carlo simulation for the computation of

the expected values. In the second example, a normally distributed noise vector, which has

no bounded domain, is considered. Note that if we apply the analytic integration approach

of Section 4.3 to the case with normally distributed random variables, we would need an

approximation using piecewise-polynomial functions. This would introduce approximation

errors as well as an increase in computational complexity. Hence, to avoid the additional

complexity, we do not compare the performance of these two methods with one another

in this example. We only compare the performance of the second approach with the first

approach using the numerical integration (cf. Section 4.2) and with the one Monte Carlo

simulation for the computation of the expected values.

7.1 Example 1: uniform distribution

In this example we apply the first method to estimate the parameters θ and λ , for the case

with uniformly distributed noise. We consider the following state space model:

x(k) = A(k)⊗ x(k−1)⊕B(k)⊗u(k) (31)

y(k) =C(k)⊗ x(k) (32)

with the system matrices

A(k) =

[
θ1(k) 0

ε θ2(k)

]

B(k) =

[
θ3(k)
θ4(k)

]

C(k) =
[

0 0
]



Exact and Approximate Approaches to the Identification of Stochastic Max-Plus-Linear Systems 17

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

k −−−>

u
(k

) 
−

−
−

>

Fig. 1 The first 40 samples of the input signal u(k) for the first and the second example.

to obtain a system of the form (1), where the true parameter vector θ is given by

θ =
[

θ1 θ2 θ3 θ4

]T
=
[

0.3 0.3 0.7 0.6
]T

These parameters are perturbed by uniformly distributed noise components et(k) with et(k)∼
U (−1,1) for t = 1, . . . ,4, and with scaling factor

λ =
[

λ1 λ2 λ3 λ4

]T
=
[

0.3 0.3 0.3 0.3
]T

.

In this simulation study we simulate the system for 400 event steps, i.e., for k = 1, . . . ,400.

The parameter estimation is done with input-state data where the input signal is a staircase

signal with an average slope of about 1.83, given by

u(k) = 5.5 ·
(

1+ ⌊k/3⌋
)

where ⌊x⌋ denotes the largest integer less than or equal to x. The input signal u(k) in shown

in Figure 1 for k = 1, . . . ,40.

As a first step, we estimate the parameter θ for a deterministic model, i.e., a noiseless

model with λ̂ =
[

0 0 0 0
]T

, using the residuation-based estimation techniques described

by (Baccelli et al, 1992; Cuninghame-Green, 1979; Menguy et al, 2000). Note that in this

case, we do not expect to have a good estimation since we are ignoring the effect of noise.

The optimization result is as follows:

θ̂ =
[

0.0167 0.0009 0.4056 0.3011
]T

.

As we expected, due to the absence of a noise model the estimation fails and the estimated

parameters are quite far from the true values.

The second step is to estimate the parameters θ and λ for the stochastic system (31)-

(32). We minimize the cost function (15) based on the one-step ahead prediction, i.e., we

predict the behavior of the system at the event step k + 1 based on the information that

we have at the event step k. We use a multi-start, sequential quadratic programming (SQP)
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method, considering 30 different initial values that are chosen randomly with both larger

and smaller values than the real ones, to start the optimization with, and then we report the

estimated parameters for which the cost function has the lowest value.

Methods to compute Monte Carlo Numerical Analytic Approximation

the expected value simulation integration integration method

θ̂






0.2824

0.2944

0.6910

0.5885











0.2976

0.3018

0.6967

0.5898











0.2841

0.2926

0.6954

0.5808











0.3012

0.2823

0.6746

0.5991






λ̂






0.1575

0.3882

0.6224

0.0027











0.2838

0.4694

0.4529

0.0896











0.4591

0.3239

0.0858

0.2700











0.0596

0.0670

0.2613

0.0479






CPU time 73549 s 44992 s 1523 s 1024 s

Table 1 Estimation results for θ and λ , using four different methods to calculate the expected value in (7)

with uniformly distributed noise, and the average computation time (CPU time) of each method.

We use four different methods to compute the expected value in (7): Monte Carlo sim-

ulation (Kalos and Whitlock, 2008), numerical integration (cf. Section 4.2), the analytic

integration method explained in Section 4.3, and the approximation method of Section 5 (cf.

(19)). By means of experiments, we have found out that p = 14 gives good approximation

in this specific example. The results of the optimization are presented in Table 1. As shown,

the estimated parameter θ̂ is quite close to the exact value of θ for the above-mentioned

methods. However, for λ we do not have a good estimation. Note that, in general, in pre-

diction error identification, one can obtain the correct system model, i.e., θ , but it is much

more difficult to estimate the noise model, i.e., λ (Goodwin and Payne, 1977; Ljung, 1999).

The reason that the analytic integration method of Section 4.3 and the numerical inte-

gration give different results (cf. Table 1) is – apart from the numerical integration accuracy

– mainly due to the fact that here we have independent experiments with different random

initial values. As reported in Table 1, for 400 event steps, the computation time6 of the op-

timization procedure for one initial value using the approximation method and using the

analytic integration approach is quite close (it is about a factor 1.5 lower for the approx-

imation method) since both methods are analytic. However, the computation time of the

optimization problem using the analytic integration approach is about a factor 30 lower than

using numerical integration with 105 samples. If we increase the number of samples to 107

the computation time using numerical integration becomes about a factor 3000 larger than

the one using the analytic integration, and for 1010 it is not even tractable anymore. For the

numerical integration the relative error7 between the analytic integration and the numeri-

cal integration using 105 samples is 0.03% and using 107 samples is 0.008%. Based on a

trade-off between the CPU time and the relative error, it has been decided to do the experi-

ments with 105 samples. The computation time of the optimization procedure using Monte

Carlo simulation, reported in Table 1, is also for 105 samples and the relative error between

6 These times were obtained running Matlab 7.5.0 (R2007b) on a 2.33 GHz Intel Core Duo E655 processor.
7 The relative error is defined as

|x0−x|
|x| where x is the true value and x0 is the estimated value.
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the analytic integration and the Monte Carlo simulation using this number of samples is

0.06% and using 107 samples, it is 0.003%. Hence, due to the same trade-off as before, we

chose 105 samples. As a result, by comparing the CPU times of these four methods we can

conclude that the analytic integration method 4.3 and the approximation method of Section

5 are considerably faster (at least 30 times and 45 times, respectively) than the numerical

integration and the Monte Carlo simulation.

7.2 Example 2: normal distribution

Here we consider the same input-output stochastic max-plus-linear system as the one in

Example 7.1. The true parameter vector θ is the same as before, i.e.,

θ =
[

θ1 θ2 θ3 θ4

]T
=
[

0.3 0.3 0.7 0.6
]T

except that now, each of its elements is perturbed by one of the noise components et(k), t =
1, . . . ,4 that are independent and have a standard normal distribution, i.e., et(k)∼ N (0,1),
with the scaling factor8

λ =
[

λ1 λ2 λ3 λ4

]T
=
[

0.1 0.1 0.1 0.1
]T

.

We also consider the same input signal as the one specified in Example 7.1.

Similar to the previous example, first we estimate the parameter θ for a determinis-

tic model, using the mentioned residuation-based estimation techniques. The optimization

result is as follows:

θ̂ =
[

0.0725 −0.0218 0.8416 0.7035
]T

.

As we expected and as we have also seen in Example 7.1, by neglecting the effect of noise,

we do not obtain a good estimation.

As the next step, we estimate the parameters θ and λ for the above-mentioned stochastic

system (31)-(32). To this end, we minimize the cost function (15) using three different meth-

ods: Monte Carlo simulation, the direct numerical integration of (9), and the approximation

method of Section 5 (cf. (19)). As we did in Example 7.1, we minimize these cost functions

based on the one-step ahead prediction, using a multi-start, SQP method with 30 different

initial values, and reporting the estimated parameter with the lowest cost function value.

We have chosen p = 30 for the approximation method. As before, this choice was done by

means of experiments, for which we obtain good approximation in this specific example.

The estimation results are presented in Table 2.

Comparing the results, we can conclude that the approximation method gives a good

estimation for θ that is very close to the results obtained from the exact solution using

numerical integration and Monte Carlo simulation. Similar to the first example, again we

obtain an unsatisfactory estimation for λ . Note that the estimated values for λ using numer-

ical integration is very close to the exact values. However, this result is random and is not

repeated using different initial values.

Recall that one of the goals of using the proposed approximation method (19) is to de-

crease the computation time. For 400 event steps, the computation times of the optimization

procedure using the three above-mentioned methods are presented in Table 2. As explained

8 Note that here due to the 3σ -rule, we choose λ one third of the one in Example 7.1.
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Methods to compute Monte Carlo Numerical Approximation

the expected value simulation integration method

θ̂






0.3030

0.2984

0.6881

0.5940











0.3092

0.2969

0.6974

0.5937











0.2750

0.2824

0.6799

0.5781






λ̂






0.0449

0.0417

0.0479

0.0398











0.0976

0.1016

0.1236

0.0945











0.0409

0.0400

0.0403

0.0419






CPU time 110796 s 83890 s 899 s

Table 2 Estimation results for θ and λ , using three different methods to calculate the expected value in (7)

with a normally distributed noise, and the average computation time (CPU time) of each method.

in Example 7.1, the reported CPU time for Monte Carlo simulation and numerical integra-

tion in this example is also for 105 samples. Therefore, the approximation method increases

the time efficiency significantly (it is about 80 times faster than the two other methods) while

still guaranteeing a comparable performance to the exact solution.

8 Conclusions

This paper has discussed the identification problem of stochastic max-plus-linear systems.

Since we deal with stochastic systems, the solution of this problem leads to the compu-

tation of an expected value. We have proposed two approaches to for the computation of

this expectation. The first approach uses either numerical integration or analytic integration.

The analytic integration method can be applied to distributions that have a piecewise affine

polynomial probability density function, or when their probability density functions can be

approximated by such functions. The second approach is an approximation method based

on higher-order moments of a random variable and we applied it with the assumption of

having an error vector with independent components. This method is applicable to any dis-

tribution with finite moments, and it involves no analytic or numerical integration provided

that a closed-form expression of the higher-order moments of that random variable exists.

Since both the analytic integration method and the approximation method, using closed-

form moments, result in an analytic solution, they are computationally much faster than the

numerical integration or the Monte Carlo simulation. Moreover, since in the first and the

second approach, an explicit expression for the gradient can be calculated, the parameter

estimation can be done using gradient-based optimization methods.

One topic for future research is the development of algorithms for stochastic max-plus

linear systems based on input-output data (instead of input-state data) or with only partial

state information, based on the approaches proposed in this paper. Another interesting topic

is to explore the possibilities of improving the estimation of the noise amplitude. Yet another

topic would be to find a method to specify the most appropriate order of moments p, in

order to obtain a better estimation in the second approach. It is also interesting to apply the

proposed approaches to solve the identification problem of other classes of discrete-event

systems such as max-min-plus systems and max-min-plus-scaling systems.
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