
Delft University of Technology
Delft Center for Systems and Control

Technical report 13-004

Optimal trajectory planning for trains – A
pseudospectral method and a mixed

integer linear programming approach∗

Y. Wang, B. De Schutter, T.J.J. van den Boom, and B. Ning

If you want to cite this report, please use the following reference instead:
Y. Wang, B. De Schutter, T.J.J. van den Boom, and B. Ning, “Optimal trajectory
planning for trains – A pseudospectral method and a mixed integer linear programming
approach,” Transportation Research Part C, vol. 29, pp. 97–114, Apr. 2013. doi:10.
1016/j.trc.2013.01.007

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/13_004.html

https://doi.org/10.1016/j.trc.2013.01.007
https://doi.org/10.1016/j.trc.2013.01.007
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/13_004.html


Optimal Trajectory Planning for Trains — A pseudospectral

method and a mixed integer linear programming approach

Yihui Wanga,b,∗, Bart De Schuttera, Ton J.J. van den Booma, Bin Ningb

aDelft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands
bState Key Laboratory of Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, P.R. China

Abstract

The optimal trajectory planning problem for train operations under constraints and fixed arrival

time is considered. The varying line resistance, variable speed restrictions, and varying max-

imum traction force are included in the problem definition. The objective function is a trade-

off between the energy consumption and the riding comfort. Two approaches are proposed to

solve this optimal control problem. First, we propose to use the pseudospectral method, a state-

of-the-art method for optimal control problems, which has not used for train optimal control

before. In the pseudospectral method, the optimal trajectory planning problem is recast into a

multiple-phase optimal control problem, which is then transformed into a nonlinear program-

ming problem. However, the calculation time for the pseudospectral method is too long for the

real-time application in an automatic train operation system. To shorten the computation time,

the optimal trajectory planning problem is reformulated as a mixed-integer linear programming

(MILP) problem by approximating the nonlinear terms in the problem by piecewise affine func-

tions. The MILP problem can be solved efficiently by existing solvers that guarantee to return the

global optimum for the proposed MILP problem. Simulation results comparing the pseudospec-

tral method, the new MILP approach, and a discrete dynamic programming approach show that

the pseudospectral method has the best control performance, but that if the required computation

time is also take into consideration, the MILP approach yields the best overall performance. More

specifically, for the given case study the control performance of the pseudospectral approach is

about 10% better than that of the MILP approach, and the computation time of the MILP ap-

proach is two to three orders of magnitude smaller than that of the pseudospectral method and

the discrete dynamic programming approach.

Keywords: trajectory planning, train operation, MILP, pseudospectral method

1. Introduction

Nowadays, a number of high-speed lines and dedicated urban rapid transit railway systems

with short headways are operated with a high degree of automation (Hansen and Pachl, 2008).
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This requires an advanced train control system to fulfill safety and operational requirements,

such as the European Train Control System, which includes the equipment on board of the trains

as well as in the control center (Midya and Thottappillil, 2008). An advanced train control

system enables the energy-efficient driving of trains, which becomes more and more important

because of the rising energy prices and environmental concerns (Liu and Golovicher, 2003).

The automatic train operation (ATO) subsystem of the advanced train control system drives

the train according to an optimal trajectory and recalculates it when the operational conditions

change (Peng, 2008). Therefore, it is important to design an efficient algorithm to find the opti-

mal speed-position reference trajectory. The present paper proposes two approaches to determine

the optimal trajectory, viz. the pseudospectral method and the mixed-integer linear programming

approach.

In fact, the optimal control problem of train operations was solved firstly by applying the

maximum principle by Ichikawa (1968). From the point view of optimal control, there are three

basic numerical approaches for solving the optimal control problem: dynamic programming,

indirect methods, and direct methods (Dielh et al., 2006). In the following, we will briefly

present the research about the optimal control of trains in the literature for each of these three

categories.

Dynamic programming simplifies a complicated problem by breaking it down into simpler

subproblems in a recursive manner. The result obtained by the calculation is in the form of a

feedback control law in tabular form. Franke et al. (2002) solved the optimal control problem by

discrete dynamic programming and compared the results with those of sequential quadratic pro-

gramming. They concluded that discrete dynamic programming deals better with the nonlinear

optimal problem. Ko et al. (2004) also applied dynamic programming to optimize the optimal

reference trajectory. The original problem is then transformed into a multi-stage decision process

and can be solved in an acceptable time with their improvements. It is known that approximations

need to be made, usually by discretization, when dynamic programming is applied to discrete-

time systems with continuous state spaces (Dielh et al., 2006). This discretization leads to the

“curse of dimensionality”, which means exponential growth of the computation cost with respect

to the dimension of the state space.

In an indirect method, the calculus of variations is used to obtain the first-order necessary con-

ditions for optimality (Bryson and Ho, 1975; Pontryagin, 1962). A Hamiltonian boundary-value

problem results from these necessary conditions. For a train with discrete control inputs, i.e. the

traction/braking force can only take some discrete values, Howlett (2000) used the Karush-Kuhn-

Tucker condition to determine the optimal switching times, for a given fixed discrete-valued con-

trol sequence. For a train with continuous control inputs, Howlett (1990) simplified the analysis

by using Pontryagin’s principle to reformulate the problem as a finite-dimensional constrained

optimization problem where the unknown switching times are the variables. Later on, Khmelnit-

sky (2000) gave a comprehensive analysis of the optimal trajectory planning problem with a con-

tinually varying gradient and speed restrictions. The maximum principle was applied to obtain

optimal operation regimes (i.e. maximum traction, cruising, coasting, and maximum braking)

and their sequences. The drawback of indirect methods is that the boundary-value problem is

often difficult to solve due to strong nonlinearity and instability.

In a direct method, the continuous-time optimal control problem is transformed into a non-

linear programming problem (Bettes, 2001). The resulting nonlinear programming problem is

then solved by variants of well-developed algorithms, such as SNOPT (Gill et al., 2002) and

IPOPT (Wächter and Biegler, 2006). Direct methods can easily handle inequality constraints

on states and inputs (Dielh et al., 2006). Over the last decade, a particular class of direct meth-
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ods, called pseudospectral methods, have risen to prominence in the numerical optimal control

area (Elnagar et al., 1995). Pseudospectral methods were researched widely in the 1970s for

solving partial differential equations (PDEs) in fluid dynamics (Canuto et al., 1988). Later on,

they became an important methodology for the numerical solution of PDEs. From the 1990s on,

pseudospectral methods were applied to solving optimal control problems (Gong et al., 2007),

such as orbit transfers, lunar guidance, magnetic control. Recently, the scope of application has

been broadened as a result of significant progress in large-scale computation. However, to the

authors’ best knowledge, pseudospectral methods have not been applied to trajectory planning of

trains. Therefore, the pseudospectral method is used for the first time to solve the train trajectory

planning problem in this paper.

On the other hand, multi-parametric quadratic programming is used in (Vašak et al., 2009) to

calculate the optimal control law for train operations. The nonlinear train model with quadratic

resistance is approximated by a piecewise affine function. Inspired by (Vašak et al., 2009), in

Wang et al. (2011) we proposed to solve the optimal trajectory problem as a mixed integer linear

programming (MILP) problem, which can be solved efficiently using existing commercial and

free solvers (Linderoth and Ralphs, 2005; Atamtürk and Savelsbergh, 2005). In the current paper,

the MILP approach is extended in the following three aspects: we now allow different coefficients

for the piecewise function for each space interval, we also approximate the nonlinear maximum

traction force by piecewise affine functions, and we consider a more realistic model for the line

resistance. The performance of the pseudospectral method and the MILP approach is compared

with the discrete dynamic programming approach proposed in (Franke et al., 2002). Franke et al.

(2002) concluded that the performance of the discrete dynamic programming approach is better

than the sequential quadratic programming approach and the coasting strategy obtained by the

maximum principle. Therefore, we have selected the discrete dynamic programming approach

as the third approach for the comparison of the case study.

The remainder of this paper is structured as follows. In Section 2 the nonlinear model of train

operations is presented and the optimal trajectory planning problem is formulated. In Section 3

the optimal trajectory planning problem is recast as an multi-phase optimal control problem,

which can be solved by the pseudospectral method. In Section 4 the nonlinear train model is

formulated as a mixed logical dynamic model by approximating the nonlinear terms by piecewise

functions and the optimal control problem is recast as an MILP problem. Section 5 illustrates

with a case study how to calculate the optimal reference trajectory by the pseudospectral method

and the MILP approach and it also compares these two approaches with the discrete dynamic

programming approach. We conclude with a short discussion of some topics for future work in

Section 6.

2. Problem description

2.1. Train Model

In the literature on train optimal control, usually the mass-point model of train is used (Franke

et al., 2003). The motion of a train can then be described by the following simple continuous-time

model (Liu and Golovicher, 2003):

mρ
dv

dt
= u(t)−Rb(v)−Rl(s,v), (1)

ds

dt
= v, (2)
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Figure 1: Maximum traction force in dependency of train speed

where m is the mass of the train, ρ is a factor to consider the rotating mass (Hansen and Pachl,

2008), v is the velocity of the train, s is the position of the train, u is the control variable, i.e. the

traction or braking force, which is bounded by the maximum traction force umax and the maxi-

mum braking force umin, umin ≤ u ≤ umax, Rb(v) is the basic resistance including roll resistance

and air resistance, and Rl(s,v) is the line resistance caused by track grade, curves, and tunnels.

The maximum traction force umax is often considered as constant in the literature (Howlett,

2000). However, in reality it is a function of the velocity v. Due to the maximum adhesion and the

characteristics of the power equipment (Hansen and Pachl, 2008), the diagram of the maximum

traction force umax(v) normally looks like the one shown in Figure 1 (Hansen and Pachl, 2008).

This diagram is described as a group of hyperbolic or parabolic formulas in (Hansen and Pachl,

2008), where each formula approximates the actual traction force for a certain speed interval.

For example, if the train speed v belongs to interval [v j,v j+1], then the maximum traction force

can be written as

umax(v) = c1, j + c2, jv+ c3, jv
2, v ∈ [v j,v j+1], (3)

or

umax(v) = ch, j/v, v ∈ [v j,v j+1], for j = 1,2, · · · ,M−1 (4)

where v j, v j+1, c1, j, c2, j, c3, j, and ch, j are determined by the characteristics of the train.

According to the arguments for the maximum braking force given in (Hansen and Pachl,

2008), the full braking effort is reserved for an emergency stop. Under normal circumstances the

train driver or automatic train operation system brakes in a comfort mode, where the maximum

force for the service breaking is 0.75 times that of the emergency braking, i.e. the full braking

effort. On the other hand, the braking effort (including the maximum braking effort) is considered

as constant by some common safety systems, such as the European Train Control System and

the German continuous train control system (Hansen and Pachl, 2008). Therefore, the maximum

force for service braking is taken to be constant in this paper.

In practice, according to the Strahl formula (Rochard and Schmid, 2000) the basic resistance

Rb(v) can be described as

Rb(v) = m(a1 +a2v2),
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where the coefficients a1 and a2 depend on the train characteristics and the wind speed, which

can be calculated from the data known about the train.

The line resistance Rl(s,v) caused by track slope, curves, and tunnels can be described

by (Mao, 2008)

Rl(s,v) = mgsinα(s)+ fc(r(s))+ ft(lt(s),v), (5)

where g is the gravitational acceleration, α(s), r(s), and lt(s) are the slope, the radius of the

curve, and the length of the tunnel along the track, respectively. The curve resistance fc(·) and

the tunnel resistance ft(·) are given by empirical formulas. An example of such an empirical

formula of the curve resistance is Roeckl’s formula (Huerlimann and Nash, 2003):

fc(r(s)) =
6.3

r(s)−55
m for r(s)≥ 300 m,

fc(r(s)) =
4.91

r(s)−30
m for r(s)< 300 m.

When running in tunnels, the train experiences a higher air resistance that depends on the tunnel

form, the smoothness of tunnel walls, the exterior surface of the train, and so on. An example of

an expression for the tunnel resistance is as follows (Huerlimann and Nash, 2003; Gao, 2008). If

there is a limiting gradient1 in the tunnel, then an empirical formula for the tunnel resistance is

ft(lt(s),v) = 1.296 ·10−9lt(s)mgv2.

If there does not exist a limiting gradient, the tunnel resistance can be calculated by the following

empirical formula:

ft(lt(s),v) = 1.3 ·10−7lt(s)mg.

For the tracks outside the tunnels, the tunnel resistance is equal to zero.

2.2. Optimal Control Problem

As stated in (Liu and Golovicher, 2003), reference trajectory planning for trains can be for-

mulated as an optimal control problem. The traction or braking force u then is the control vari-

able. The state variables are the train position s and speed v. The objective function to be

minimized could be the trip time, the energy consumption for a given trip time, or the total oper-

ation cost (a weighted sum of energy consumption and trip time). In this paper, we consider the

objective criterion as the energy consumption in a fixed time span [0,T ] with T determined by a

fixed or a flexible timetable (Hansen and Pachl, 2008; D’Ariano et al., 2008), or being the result

of a rescheduling operation of railway traffic after disturbances (Krasemann, 2012). In addition,

the riding comfort is considered, which is expressed as a function of the change of the control

variable u, since reducing the number of transitions and the rate of change of u may improve

passenger comfort (Chang and Xu, 2000). The objective function can thus be written as:

J =
∫ T

0

(

u(t) · v(t)+λ ·
∣

∣

∣

du(t)

dt

∣

∣

∣

)

dt (6)

1A limiting gradient is defined as the maximum railway gradient that can be climbed without the help of a second

power unit.
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where J is the weighted integral of the energy consumption and riding comfort and λ is the

weight. This function will be minimized subject to the train dynamics (1) and (2), the constraints

umin ≤ u(t)≤ umax(v) (7)

0 ≤ v(t)≤Vmax(s) (8)

and the boundary conditions

s(0) = sstart, v(0) = vstart, (9)

s(T ) = send, v(T ) = vend, (10)

where the maximum allowable velocity Vmax(s) depends on the train characteristics and the line

conditions, and as such it is usually a piecewise constant function of the coordinate s (Liu and

Golovicher, 2003; Khmelnitsky, 2000); sstart and vstart are the position and the velocity at the

beginning of the route; send and vend are the position and the velocity at the end of the route.

As proposed in some previous works (Liu and Golovicher, 2003; Franke et al., 2003; Khmel-

nitsky, 2000; Howlett, 2000), it is better to choose the position s as an independent variable rather

than the time t. On the one hand, the choice of the position s as the independent variable will

simplify the consideration of track-related data, such as line resistance and speed limits. On the

other hand, the analytical and numerical study of the optimal control problem will be signifi-

cantly simplified then. Furthermore, Khmelnitsky (2000) chose the total energy of the train and

time t as states where the total energy includes kinetic and potential energy. Similarly, Franke

et al. (2003) used kinetic energy per mass unit and time as states. The choice of kinetic energy

instead of speed v will facilitate the study of the optimal control problem, because this choice

eliminates some (but not all) of the model nonlinearities. Therefore, we also choose kinetic en-

ergy per mass unit Ẽ = 0.5v2 and time t as states, and the position s as the independent variable.

The continuous-time model (1) and (2) can then be rewritten as the following continuous-space

model 2:

mρ
dẼ

ds
= u(s)−Rb(

√

2Ẽ)−Rl(s,v), (11)

dt

ds
=

1√
2Ẽ

. (12)

The optimal control problem corresponding to (6)-(10) can be stated as: minimize the following

objective function

J =
∫ send

sstart

(

u(s)+λ ·
∣

∣

∣

du(s)

ds

∣

∣

∣

)

ds (13)

subject to the model (11) and (12), the constraints

umin ≤ u(s)≤ umax(v), (14)

0 ≤ Ẽ(s)≤ Ẽmax(s), (15)

2The transformation from dv
dt

to dẼ
ds

goes as follows:

dv

dt
=

dv

ds

ds

dt
= v

dv

ds
=

dẼ

ds

where Ẽ = 0.5v2.
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and the boundary conditions,

Ẽ(sstart) = Ẽstart, Ẽ(send) = Ẽend, (16)

t(sstart) = 0, t(send) = T, (17)

where Ẽmax(s) = 0.5V 2
max(s), Ẽstart = 0.5v2

start, and Ẽend = 0.5v2
end. An assumption should be

noted for the above equations. It is assumed that the unit kinetic energy Ẽ(s) satisfies Ẽ(s) ≥
Emin > 0 with Emin a small positive number, which means the train’s speed is always strictly

larger than zero, i.e. the train travels nonstop. Khmelnitsky (2000) states that this assumption is

not restrictive in practice for two reasons. First, the speed of the initial start and the terminal stop

can be approximated by small nonzero velocities. Second, stops at an intermediate point of the

trip will in principle not be planned deliberately in the optimal control design for a single train’s

operation.

Different types of rolling stock can be modeled by the mass-point model, whose parameters,

such as mass, maximum traction force, and resistance coefficients, may vary according to dif-

ferent types of rolling stock. The existing infrastructure of tracks can be described accurately

by using the line resistance (5), which includes track slope, curves, tunnels. In addition, the

signaling aspects and the disturbances caused by other trains are assumed to be taken care of

by a lower control level. Furthermore, different train categories (high speed trains, regional and

intercity trains, freight trains) can be handled in a higher control level by timetable design, which

specifies different running times and dwell times for each train. The approaches proposed in this

paper can then be applied to obtain the optimal trajectory for each trip between two stations to

save energy and ensure the passenger comfort based on the given timetable.

2.3. An assumption about the line resistance

The line resistance Rl(s,v) caused by track slope, curves, and tunnels is a nonlinear function

of the train’s position and speed. In order to simplify the consideration of the line resistance, we

rewrite Rl(s,v) in (5) as

Rl(s,v) = R̃l(s)+at(s)v
2, (18)

where R̃l(s) are the terms that do not depend on the train’s speed. In the sequel of this paper,

R̃l(s) and at(s) are assumed to be piece-wise constant functions, which can be written as

R̃l(s) = R̃
(i)
l for s ∈ [s

(i)
0 ,s

(i)
f ],

at(s) = a
(i)
t for s ∈ [s

(i)
0 ,s

(i)
f ],

(19)

for i = 1,2, · · · ,NR, where NR is the number of the piece-wise constant subfunctions, s
(1)
0 = sstart

is the position at the beginning of the route, s
(NR)
f = send is the position at the end of the route,

and s
(i+1)
0 = s

(i)
f for i = 1,2, · · · ,NR −1. Therefore, the line resistance can be written as

Rl(s,v) = R̃
(i)
l +a

(i)
t v2, for s ∈ [s

(i)
0 ,s

(i)
f ]. (20)

3. Solution approach 1– Pseudospectral Method

3.1. Brief introduction to the pseudospectral method

The pseudospectral method directly formulates the original optimal control problem into

an nonlinear programming problem, which can be solved numerically using a sparse nonlinear
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programming solver to find approximate locally optimal solutions (Elnagar et al., 1995). It is

shown by approximation theory and practice that the pseudospectral method is well suited for

approximating smooth functions, integrations, and differentiations (Canuto et al., 1988). All

those approximations are relevant to optimal control problems, e.g., the differential equations of

the optimal control problem can then be approximated by algebraic equations (Ross and Fahroo,

2003). The main advantage of the pseudospectral method is the exponential rate of convergence

and another advantage is that it is possible to achieve good accuracy with coarse grids (Canuto

et al., 1988; Gong et al., 2008).

In the pseudospectral method, the state and control functions are approximated using or-

thogonal polynomials based on interpolation at orthogonal collocation points (Fornberg and

Sloan, 1994), such as the commonly used Legendre-Gauss-Lobatto points, which are the roots

of (1− x2)
dLN(x)

dx
, where LN is the Legendre polynomial of order N (Canuto et al., 1988). The

derivative of the approximated state can be expressed in terms of the approximated state vec-

tor by using a differentiation matrix at the collocation points (Ross and Fahroo, 2004). When

the optimal control problem includes discontinuities in states, controls, objective functional, or

dynamic constraints, the pseudospectral method is employed in the form of a multiple-phase ap-

proach, where the problem is divided into a relatively small number of subintervals and global

collocation is performed in each subinterval (Ross and Fahroo, 2004).

There exist several commercial and free packages that implement the pseudospectral method:

PROPT (Rutquist and Edvall, 2008) and DIDO (Ross, 2004) are examples of commercial soft-

ware that run under Matlab. A Matlab-based open source tool that uses the Gauss pseudospectral

method is GPOPS (Rao et al., 2010). PSOPT is an open source optimal control package written

in C++, including Legendre and Chebyshev pseudospectral discretizations (Becerra, 2010b).

3.2. Formulation of the optimal trajectory planning problem

We can reformulate the train trajectory planning problem (11)-(17) into the following general

optimal control problem with Np phases (Ross and Fahroo, 2004; Becerra, 2010a). It is worth to

note that Np is not equal to NR of (19)-(20), but it will in general be larger. The objective function

(13) to be minimized can be rewritten as

J =
Np

∑
i=1

[

∫ s
(i)
f

s
(i)
0

[

u(i)(s)+λ
∣

∣

∣

du(i)(s)

ds

∣

∣

∣

]

ds

]

. (21)

Given that non-smoothness causes problems in nonlinear programming, a smooth version of the

absolute value function can be written as

∣

∣σ
∣

∣≈ ψ(σ) =
σ2

√
σ2 + c2

, (22)

where c is a constant deciding the smoothness of the function. Thus, the smooth objective func-

tion can be written as

J =
Np

∑
i=1

[

∫ s
(i)
f

s
(i)
0

[

u(i)(s)+λψ
(du(i)(s)

ds

)]

ds

]

. (23)

The objective function (23) is subject to the differential constraints

ẋ(i)(s) = φ (i)
(

x(i)(s),u(i)(s),s
)

, s ∈ [s
(i)
0 ,s

(i)
f ], (24)
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where x(i)(s) is the state of the system in the ith phase, i.e., x(i)(s) =
[

E(i)(s) t(i)(s)
]T

, and

the functions φ (i)(·) are defined by model equations (11)-(12) and the piece-wise line resistance

(20). The path constraints of the optimal control problem are defined by (3), (4), and (14).

Note that the path constraints caused by the maximum traction force are non-smooth. They

can be approximated by smooth constraints by introducing a smooth version of the Heaviside

function H(σ), defined as H(σ) = 1, if σ > 0, and H(σ) = 0 otherwise (Kanwal, 1983). The

approximation is implemented as

H(σ)≈ 0.5(1+ tanh(σ/h)) (25)

where h > 0 is a small real number. The path constraints can then be written as

h
(i)
L ≤ h(i)

(

x(i)(s),u(i)(s),s
)

≤ h
(i)
U , s ∈ [s

(i)
0 ,s

(i)
f ]. (26)

For the train trajectory planning problem, the initial position of the (i+1)th phase is equal to the

final position of the ith phase, so one of the phase boundary constraints can be written as

s
(i+1)
0 − s

(i)
f = 0. (27)

In addition, the states and control variable are continuous across the phase boundary, which can

be written as

x(s
(i+1)
0 )− x(s

(i)
f ) = 0, (28)

u(s
(i+1)
0 )−u(s

(i)
f ) = 0. (29)

In general, phase boundary constraints (Betts, 1998; Becerra, 2010a) that link all the states

and controls across the boundaries can be included in

ΨL ≤ Ψ(x(1)(s
(1)
0 ),u(1)(s

(1)
0 ),x(1)(s

(1)
f ),u(1)(s

(1)
f ),s

(1)
0 ,s

(1)
f ,

x(2)(s
(2)
0 ),u(2)(s

(2)
0 ),x(2)(s

(2)
f ),u(2)(s

(2)
f ),s

(2)
0 ,s

(2)
f ,

...

x(Np)(s
(Np)
0 ),u(Np)(s

(Np)
0 ),x(Np)(s

(Np)
f ),u(Np)(s

(Np)
f ),s

(Np)
0 ,s

(Np)
f )≤ ΨU.

(30)

Note that (27)-(29) are special cases of (30) with ΨL,i = ΨU,i.

The bound constraints can be written as

u
(i)
L ≤ u(i)(s)≤ u

(i)
U , s ∈ [s

(i)
0 ,s

(i)
f ],

x
(i)
L ≤ x(i)(s)≤ x

(i)
U , s ∈ [s

(i)
0 ,s

(i)
f ].

(31)

This multiple-phase optimal control problem can be solved using the pseudospectral method.

However, the computation of the pseudospectral method is in general too slow for the real-time

application of ATO system. When the operational conditions (e.g. speed limits or trip time)

change while the train is driving (e.g. due to an accident or bad weather conditions), the ATO

system needs to recalculate the optimal trajectory. If the algorithm of the ATO system takes a

large computation time to calculate the optimal trajectory, then it is too late for the train to react

9



timely. Therefore, in the next section we propose a more efficient approach, i.e. mixed integer

linear programming (MILP) approach, to calculate the optimal trajectory.

It is worth to note that the optimal solution of the pseudospectral method satisfies the nec-

essary (but not always sufficient) conditions of optimality (Rutquist and Edvall, 2008). So it is

guaranteed that the returned solution cannot be improved by an infinitesimal change in the tra-

jectory, but there may exist completely different trajectories that yield a better performance. On

the contrary, an MILP problem can be solved efficiently by existing solvers that guarantee the

global optimum for the proposed MILP problem.

4. Solution approach 2 – MILP approach

In Wang et al. (2011), the nonlinear model of the train is transcribed into a piecewise affine

(PWA) model by approximating the nonlinear terms through PWA functions. Furthermore, the

PWA model can then be formulated as a mixed logical dynamic (MLD) model by applying some

transformation properties from Williams (1999). The original optimal control problem is then

transformed into an MILP problem based on the MLD model. The line resistance is considered

as a piecewise constant function in Wang et al. (2011), while in reality the train experiences a

higher air resistance when running in tunnels. Therefore, in this paper the quadratic term of

the velocity is included in the line resistance. In addition, the nonlinear function f (E) = 1

2
√

2E

appearing in the time equation is approximated by a PWA function with 3 subfunctions in Wang

et al. (2011). In order to achieve additional accuracy, we use different coefficients for each space

interval. Furthermore, the maximum traction force is considered as a constant in Wang et al.

(2011); however, in reality it is a nonlinear function of the velocity, which is approximated by a

PWA function in this paper.

For the MILP approach, we split the position horizon [sstart,send] into N intervals (with N ≥
NR) to get a discrete-space model similarly as the one in (Franke et al., 2003). We assume that

the track and train parameters as well as traction or breaking force can be considered as constant

in each interval [sk,sk+1] with length ∆sk = sk+1 − sk, for k = 1,2, . . . ,N. Note that s1 = sstart

and sN+1 = send. By redefining the discretization of the interval [sstart,send] if necessary, we can

assume without loss of generality that R̃l(s) and at(s) (cf. Section 2.3) are of the following form:

R̃l(s) = R̃l,k for s ∈ [sk,sk+1],

at(s) = at,k for s ∈ [sk,sk+1].

for k = 1,2, · · · ,N.

4.1. Transformation properties

First, we introduce three properties according to (Williams, 1999). Consider the statement

f̃ (x̃)≤ 0, where f̃ : Rn → R is affine, x̃ ∈ χ with χ ⊂ R
n and let

M̃ = max
x̃∈χ

f̃ (x̃), m̃ = min
x̃∈χ

f̃ (x̃). (32)

If we introduce the logical variable δ ∈ {0,1}, then the following equivalence holds:

[ f̃ (x̃)≤ 0]⇔ [δ = 1] is true iff

{

f̃ (x̃)≤ M̃(1−δ )
f̃ (x̃)≥ ε +(m̃− ε)δ

(33)
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where ε is a small positive number (typically the machine precision) that is introduced to trans-

form a strict equality into a non-strict inequality, which fits the MLD and MILP frameworks (Be-

mporad and Morari, 1999).

The product of two logical variables δ1δ2 can be replaced by an auxiliary logical variable

δ3 = δ1δ2, i.e. [δ3 = 1]↔ [δ1 = 1]∧ [δ2 = 1], which is equivalent to







−δ1 +δ3 ≤ 0,
−δ2 +δ3 ≤ 0,

δ1 +δ2 −δ3 ≤ 1.
(34)

Moreover, the product δ f̃ (x̃) can be replaced by the auxiliary real variable z = δ f̃ (x̃), which

satisfies [δ = 0]⇒ [z = 0] and [δ = 1]⇒ [z = f̃ (x̃)]. Then z = δ f̃ (x̃) is equivalent to















z ≤ M̃δ ,
z ≥ m̃δ ,

z ≤ f̃ (x̃)− m̃(1−δ ),
z ≥ f̃ (x̃)− M̃(1−δ ).

(35)

It is noted that (33), (34), and (35) yield linear inequalities since f̃ is affine.

4.2. The mixed logical dynamic (MLD) model

In the interval [sk,sk+1], the differential equation of the kinetic energy (11) can now be rewrit-

ten as
dẼ

ds
=

1

mρ
u(k)− 2(a2 +at,k)

ρ
Ẽ(s)− 1

ρ
(a1 + R̃l,k),

where u(k) is a constant in the interval [sk,sk+1]. By defining ζ = 1
mρ , ηk = − 2(a2+at,k)

ρ , γk =

− 1
ρ (a1 + R̃l,k), this equation can be rewritten as

dẼ

ds
= ζ u(k)+ηkẼ(s)+ γk. (36)

We have to solve this differential equation with initial condition Ẽ(sk) = E(k). For the sake of

simplicity, we use E(k) as a short-hand notation for Ẽ(sk) from now on. Then we obtain the

following formula for E(k+1):

E(k+1) = eηk∆sk E(k)+(eηk∆sk −1)
ζ

ηk

u(k)+(eηk∆sk −1)
γk

ηk

with E(1) = Ẽstart and E(N + 1) = Ẽend. Defining ak = eηk∆sk , bk = (eηk∆sk − 1) ζ
ηk

and ck =

(eηk∆sk −1) γk
ηk

, the above equation can be simplified as follows:

E(k+1) = akE(k)+bku(k)+ ck. (37)

Note that this is an affine equation. As regards the differential equation of time (12), we approx-

imate it by using a trapezoidal integration rule (Atkinson, 1978):

t(k+1) = t(k)+
1

2

(

1
√

2E(k)
+

1
√

2E(k+1)

)

∆sk (38)
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Figure 2: The PWA approximation of the nonlinear function f (E)

with t(1) = 0. In addition, the nonlinear part in this equation is approximated by a PWA function.

There are various methods for approximating functions in a PWA way, see e.g., the overview

by Azuma et al. (2010). In this paper, we first select the number of regions of the PWA function

and then optimize the interval lengths and parameters of the affine functions using least-squares

optimization, minimizing the squared difference between the original function and the approx-

imation. Recall that Emin denotes the minimum kinetic energy. Define the maximum kinetic

energy

Emax = max
k=1,2,...,N

(Emax(k)) = max
k=1,2,...,N

(1

2
v2

max(k)
)

.

In Wang et al. (2011), the nonlinear function f (E) = 1

2
√

2E
is approximated over the interval

[Emin,Emax] by a PWA function with 3 affine subfunctions (shown as Figure 2) . However, the

speed limit depends on the space interval, i.e. different space intervals may have different speed

limit, which may be less than the overall maximum of the speed limit. Therefore, if we adapt

these coefficients of PWA approximations depending on the space interval index k, i.e. we can

have different PWA subfunctions for different space intervals within valid speed intervals. In

this way the approximation error will be reduced. For example, if we consider an approximation

using 3 affine subfunctions (cf. Figure 2), the PWA approximation3 of the nonlinear function

f (E(k)) = 1

2
√

2E(k)
can be written as

fPWA(E(k)) =







α1,kE(k)+β1,k for E0,k ≤ E(k)≤ E1,k,
α2,kE(k)+β2,k for E1,k ≤ E(k)≤ E2,k,
α3,kE(k)+β3,k for E2,k ≤ E(k)≤ E3,k,

(39)

with E0,k = Emin and E3,k = Emax(k) for the interval [sk,sk+1]. Furthermore, the values of E1,k

and E2,k are determined by the least-squares optimization.

Now the time dynamics (38) can be approximated as

t(k+1) = t(k)+(αl,kE(k)+βl,k +αm,k+1E(k+1)+βm,k+1)∆sk, (40)

3The approximation error can be reduced by taking more regions.
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when El−1,k ≤ E(k)≤ El,k, Em−1,k+1 ≤ E(k+1)≤ Em,k+1, with l,m ∈ {1,2,3}.

Furthermore, the maximum traction force umax is a nonlinear function of the velocity as we

mentioned before, which can be reformulated as a nonlinear function of the kinetic energy. In

a similar way as the approximation of the nonlinear function f (E(k)), we can obtain the PWA

approximation of the maximum traction force. If we consider an approximation using4 3 affine

subfunctions (cf. (39)), then the approximation can be written as

umax,PWA(E(k)) =







λ1,kE(k)+µ1,k for E4,k ≤ E(k)≤ E5,k,
λ2,kE(k)+µ2,k for E5,k ≤ E(k)≤ E6,k,
λ3,kE(k)+µ3,k for E6,k ≤ E(k)≤ E7,k,

(41)

with E4,k = Emin and E7,k = Emax(k) and where the values of E5,k and E6,k are decided by the

approximation process.

The above PWA model with PWA constraints can be transformed into an MLD model by

introducing some auxiliary logical variables (Bemporad and Morari, 1999). First consider (39).

In order to transform this equation, we introduce auxiliary logical variables δ1(k) and δ2(k),
defined as

[E(k)≤ E1,k]⇔ [δ1(k) = 1],

[E(k)≤ E2,k]⇔ [δ2(k) = 1].
(42)

Then we get

fPWA(E(k)) =δ1(k)δ2(k)[α1,kE(k)+β1,k]+ (1−δ1(k))δ2(k)[α2,kE(k)+β2,k]

+ (1−δ1(k))(1−δ2(k))[α3,kE(k)+β3,k]. (43)

Since the maximum and minimum values of E(k) are Emax(k) and Emin, according to the trans-

formation property (33), the logical conditions (42) can be rewritten as linear inequalities. Fur-

thermore, the auxiliary logical variable δ3(k) is introduced to replace the product δ1(k)δ2(k).
The condition δ3(k) = δ1(k)δ2(k) can be rewritten as a system of linear inequalities accord-

ing to (34). By defining new auxiliary variables z1(k) = δ1(k)E(k), z2(k) = δ2(k)E(k), and

z3(k) = δ3(k)E(k), which can be expressed as a system of linear inequalities according to (35),

the function fPWA(E(k)) can be rewritten as

fPWA(E(k)) =
[

−α3,k α2,k −α3,k α1,k −α2,k +α3,k

][

z1(k) z2(k) z3(k)
]T

+
[

−β3,k β2,k −β3,k β1,k −β2,k +β3,k

][

δ1(k) δ2(k) δ3(k)
]T

+α3,kE(k)+β3,k,
(44)

In order to deal with the PWA constraints of the maximum traction force (cf. (41)), an

auxiliary logical variable δ4(k) and δ5(k) is introduced that defined by

[E(k)≤ E5,k]⇔ [δ4(k) = 1],

[E(k)≤ E6,k]⇔ [δ5(k) = 1].
(45)

Similar to (42), the logical conditions (45) can be recast as linear inequalities by applying

transformation property (33). In addition, another binary variable δ6(k) is introduced simi-

larly as δ3(k), and it is defined as δ6(k) = δ4(k)δ5(k). Furthermore, auxiliary variables z4(k) =

4For M affine subfunctions with M > 3 a similar procedure can be used.
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δ4(k)E(k), z5(k) = δ5(k)E(k), and z6(k) = δ6(k)E(k) are defined in order to write the constraints

into a system of linear inequalities. The PWA constraints u(k) ≤ umax,PWA(E(k)) can then be

written as

u(k)≤
[

−λ3,k λ2,k −λ3,k λ1,k −λ2,k +λ3,k

][

z4(k) z5(k) z6(k)
]T

+
[

−µ3,k µ2,k −µ3,k µ1,k −µ2,k +µ3,k

][

δ4(k) δ5(k) δ6(k)
]T

+λ3,kE(k)+µ3,k.
(46)

Now the dynamics of the system can be rewritten as the following MLD model

x(k+1) = Akx(k)+Bku(k)+C1,kδ (k)+C2,kδ (k+1)+D1,kz(k)+D2,kz(k+1)+ ek, (47)

where

x(k) =
[

E(k) t(k)
]T

,Ak =

[

ak 0

∆sk(α3,k +akα3,k+1) 1

]

,Bk =

[

bk

∆skα3,k+1bk

]

,

C1,k = ∆sk

[

0 0 0 0 0 0

−β3,k β2,k −β3,k β1,k −β2,k +β3,k 0 0 0

]

,

C2,k = ∆sk

[

0 0 0 0 0 0

−β3,k+1 β2,k+1 −β3,k+1 β1,k+1 −β2,k+1 +β3,k+1 0 0 0

]

,

D1,k = ∆sk

[

0 0 0 0 0 0

−α3,k α2,k −α3,k α1,k −α2,k +α3,k 0 0 0

]

,

D2,k = ∆sk

[

0 0 0 0 0 0

−α3,k+1 α2,k+1 −α3,k+1 α1,k+1 −α2,k+1 +α3,k+1 0 0 0

]

,

and ek =

[

ck

∆sk(α3,k+1ck +β3,k +β3,k+1)

]

.

The MLD model (47) is subject to the linear constraints of the form (33), (34), and (35) resulting

from the transformation as well as the upper bound and lower bound constraints for E(k), t(k),
and u(k). All these constraints can be written more compactly as

R1,kδ (k)+R2,kδ (k+1)+R3,kz(k)+R4,kz(k+1)≤ R5,ku(k)+R6,kx(k)+R7,k, (48)

with appropriately defined coefficient matrices Ri,k, for i = 1,2, . . . ,7.

The objective function (13) can be discretized as

J =
N

∑
k=1

u(k)∆sk +
N−1

∑
k=1

λ |∆u(k)|, (49)

where ∆u(k) = u(k+1)−u(k). We introduce a new variable ω(k) to deal with the absolute value

of ∆u(k), and we add the linear inequalities:

ω(k)≥ u(k+1)−u(k),

ω(k)≥ u(k)−u(k+1).
(50)

Since λ > 0, minimizing (49) is equivalent to minimizing

J̃ =
N

∑
k=1

u(k)∆sk +
N−1

∑
k=1

λω(k). (51)

subject to (50). Indeed, it is easy to verify that when we minimize the objective function (51)

subject to (50), the optimal value of ω(k) will be equal to |∆u(k)|, so (49) will also be minimized.
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4.3. The mixed linear programming problem (MILP)

Now the optimal control problem can be recast as a mixed integer linear programming

(MILP) problem, where some of decision variables are binary (i.e. δ̃ ) and some are real variables

(i.e. ũ, ω̃, z̃) with

ũ =











u(1)
u(2)
...

u(N)











, δ̃ =











δ (1)
δ (2)
...

δ (N +1)











, z̃ =











z(1)
z(2)
...

z(N +1)











, ω̃ =











ω(1)
ω(2)
...

ω(N −1)











,

Furthermore, if we define Ṽ =
[

ũT δ̃ T z̃T ω̃T
]T

, the equivalent formulation of the opti-

mal control problem is obtained as follows:

min
Ṽ

CT
J Ṽ , (52)

subject to

F1Ṽ ≤ F2x(1)+ f3 (53)

F4Ṽ = F5x(1)+ f6 (54)

where CJ =
[

∆s1 · · · ∆sN 0 · · · 0 λ · · · λ
]T

. This can be shown as follows. The

constraints for the MILP problem (48) are considered for k = 1,2, . . . ,N. We can substitute x(k)
in the constraints by using the state equation (47) recursively. The substituted form is obtained

as the following expression:

x(k) =
[ k−1

∏
j=1

A j

]

x(1)+
k−1

∑
i=1

[ k−1

∏
j=i+1

A j

]

Biu(i)+
[ k−1

∏
j=2

A j

]

C1,1δ (1)

+
k−1

∑
i=2

[ k−1

∏
j=i+1

A j

]

(AiCi−1,2 +Ci,1)δ (i)+Ck−1,2δ (k)

+
[ k−1

∏
j=2

A j

]

D1,1z(1)+
k−1

∑
i=2

[ k−1

∏
j=i+1

A j

]

(AiDi−1,2 +Di,1)z(i)

+Dk−1,2z(k)+
k−1

∑
i=1

[ k−1

∏
j=i+1

A j

]

ei.

In addition, the end point condition x(N+1)= [Eend T ]T needs to be considered in (54). Because

we know the value of x(N + 1), the values of αm and βm in (40) are also known. So the state

equation at the end point can be written as

x(N +1) = ANx(N)+BNu(N)+C1,Nδ (N)+D1,Nz(N)+ eN

where AN =

[

aN 0

∆sN(α3,N +αm,N+1aN) 1

]

, BN =

[

bN

∆sNαm,N+1bN

]

, and

eN =

[

cN

∆sN(αm,N+1cN +βm,N+1 +β3,N)

]

. By properly defining F1, F2, f3, F4, F5, and f6, we can

write all these constraints in the form (53) and (54).

The MILP problem (52)-(54) can be solved by several existing commercial and free solvers,

such as CPLEX, Xpress-MP, GLPK (see e.g. (Linderoth and Ralphs, 2005; Atamtürk and Savels-

bergh, 2005)).
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Figure 3: The speed limits along the track

5. Case Study

In order to demonstrate the performance of the pseudospectral method and the MILP ap-

proach, we use a case study (inspired by Vašak et al. (2009)) to compare these two approaches

to discrete dynamic programming (DDP) approach proposed in (Franke et al., 2002). Franke

et al. (2002) evaluated the performance of the coasting strategy obtained by the maximum prin-

ciple, the sequential quadratic programming approach, and the DDP approach when solving this

optimal trajectory planning problem and concluded that DDP yields the best performance.

In the case study of (Vašak et al., 2009), the track length between the departure station and

arrival station is 10 km. In Vašak et al. (2009), there were no speed limit and grade profile.

We add them as shown in Figure 3 and Figure 4. The rolling stock includes an SBB Re 460

locomotive (Gerber, 2001; Franke et al., 2002; Schank, 2011), whose parameters are shown in

Table 1. The rotating mass factor is often chosen as 1.06 in the literature (Hansen and Pachl,

2008) and therefore we also adopt this value. According to the assumption made in Section 2.2,

the unit kinetic energy should be larger than zero. In this test case, the minimum kinetic energy

is chosen as 0.1 J. The maximum traction force of the SBB Re 460 locomotive is a nonlinear

function of the train’s velocity and the maximum value of this function is 300 kN as shown

in Figure 1. The objective function of the optimal train control problem considered here is a

weighted sum of the energy consumption and passenger comfort, where the nominal weight 5 of

the passenger comfort is 0.2 in this case study. The total running time for this trip is given by the

timetable or the rescheduling process. Here, the total running time given is 450 s, which consists

of the minimum running time plus 5% running time supplements. Two cases will be considered

here:

• Case A: the maximum traction force is constant.

5So we take

J =
Jec

Jec,nom
+0.2

Jpc

Jpc,nom
(55)

where Jec and Jpc are the energy consumption and passenger comfort respectively, and Jec,nom and Jpc,nom are the nominal

values of Jec and Jpc, which are determined by running the test case study.
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Figure 4: The grade profile of the track

Table 1: Parameters of train and line path

Property Symbol Value

Train mass [kg] m 5.07 ·105

Basic resistance [N/kg] Rb 0.014+2.564 ·10−5v2

Mass factor ρ 1.06

Line length [m] sT 104

Minimum kinetic energy [J] Emin 0.1

Maximum braking force (regular)[N] umin −4.475 ·105

• Case B: the maximum traction force is a nonlinear function of the velocity as shown in

Figure 1.

5.1. Case A: the maximum traction force is constant

In Case A, just like the case study in (Vašak et al., 2009), we assume that the maximum

traction force Emax is constant: Emax = 300 kN. First, the optimal trajectory planning problem

is solved using PSOPT (Becerra, 2010a), which implements a pseudospectral method. In this

case study, the problem is solved using the Legendre pseudospectral discretizations, with local

automatic mesh refinement, starting with 40 nodes.

Second, the problem is solved using the MILP approach. Since the maximum traction force is

constant, in this case the linear constraints caused by the PWA constraints (41) of the maximum

traction force will not be considered here. In this paper, the PWA approximations of the nonlinear

function f (E) = 1

2
√

2E
depend on the space interval index k as stated in Section 4.2, i.e. we can

have different PWA subfunctions for different space intervals. In Figure 3 there are five speed

limits, i.e. 15 m/s, 20 m/s, 30 m/s, 40 m/s, and 50 m/s. Therefore, five different approximations

with 2 subfunctions of f (E) are obtained, the parameters of which are given in Table 2. In

addition, we introduce two additional PWA approximations of f (E) for the first segment and the

last segment. Indeed, since the lowest speed in these two segments is a small positive number
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Table 2: The PWA approximations of the nonlinear function f (E)

αm βm Em −Em+1Approx. No. Segment m
[(s/m)3] [s/m] [(m/s)2]

Segment 1 −5.0943 ·10−4 0.0767 0.1−71.2
Approx. 1

Segment 2 −1.7393 ·10−4 0.0528 71.2−112.5

Segment 1 −3.1153 ·10−4 0.0665 0.1−115
Approx. 2

Segment 2 −6.7188 ·10−5 0.0384 115−200

Segment 1 −9.4977 ·10−5 0.0443 0.1−240
Approx. 3

Segment 2 −2.3470 ·10−5 0.0272 240−450

Segment 1 −4.4240 ·10−5 0.0346 0.1−415
Approx. 4

Segment 2 −9.6462 ·10−6 0.0202 415−800

Segment 1 −1.8122 ·10−5 0.0251 0.1−640
Approx. 5

Segment 2 −6.2127 ·10−6 0.0175 640−1250

Table 3: PWA approximations of the nonlinear function f (E) for the first and the last segment

αm βm Em −Em+1Approx. No. Segment m
[(s/m)3] [s/m] [(m/s)2]

Segment 1 −4.6463 ·10−4 0.0734 0.1−80.8
Approx. 6

Segment 2 −4.6463 ·10−4 0.0734 80.8−312.5

Segment 1 −1.4458 ·10−4 0.0534 0.1−229.9
Approx. 7

Segment 2 −1.4514 ·10−6 0.0235 229.9−450

near zero, a high weight should be given to the low speed interval. The parameters of the PWA

approximations for the first and the last segment are given in Table 3.

The length ∆sk for the interval [sk,sk+1] depends on the speed limits, gradient profile, tunnels,

and so on. In addition, if the number of space intervals N is larger, then the computation time

of the MILP approach will be longer, but the accuracy will be better. According to the speed

limits and grade profile given in Figure 3 and Figure 4, the length of each interval is chosen to

equal 500 m, i.e. ∆sk = 500 m for k = 1,2, . . . ,20, which provides a good balance between the

computation time and the accuracy. As MILP solver, we use CPLEX, implemented through the

cplex interface function of the Matlab Tomlab toolbox. For the DDP approach, the continuous

nonlinear model of train (11)-(12) is discretized in space. The number of the space intervals

is 100 and the length of each space interval is 100 m. To compute the optimal trajectory with

DDP, we use a matlab function for dynamic programming that was introduced in (Sundström and

Guzzella, 2009).

The optimal solution of the pseudospectral method using PSOPT, which is obtained after 7

mesh refinement iterations, has 179 nodes. The calculation time for PSOPT is 6 min and 10 s on a

1.8 GHz Intel Core2 Duo CPU running a 64-bit Linux operating system and the computation time

for DDP is 2 min and 8 s with 100 space intervals as shown in Table 4. However, the calculation

time for the MILP approach is 0.32 s on the same CPU and operation system as above, which is
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Figure 5: The optimal control inputs with constant maximum traction force for the following approaches: MILP, PSOPT,

and DDP

much shorter than the calculation time of PSOPT and DDP.

Figure 5 shows the optimal control inputs with constant maximum traction force, where

the dotted line, the solid line, and the dashed line represent the results calculated by PSOPT,

MILP, and DDP, respectively. It can be seen from Figure 5 that the results obtained by these

three approaches show a similar trend, but there exist more discrete changes but with a smaller

magnitude in the control signals of PSOPT and DDP. This is mainly caused by the larger number

of space intervals: there are 178 and 100 space intervals in PSOPT and DDP, respectively, but

in the MILP approach, there are just 20 space intervals. The optimal control inputs calculated

by these three approaches are applied to the nonlinear continuous-time train model (1)-(2). The

differential equation of the nonlinear model is solved numerically using a variable step Runge-

Kutta method and the obtained speed-position trajectories for the train are shown in Figure 6.

The dashed line shows the speed limit for the trip, which is caused by the characteristics of

the train, line, etc. The dotted line, the solid line, and the dash-dotted line show the optimal

trajectories obtained using control inputs generated by PSOPT, MILP, and DDP, respectively.

It can be observed that these optimal trajectories are below the speed limit, which means that

the speed constraints are satisfied, i.e. there is no speed limit violation. In addition, we can see

from Figure 6 that the optimal trajectories obtained using control inputs generated by PSOPT

and DDP are smoother than the one obtained with the MILP approach, which is mainly caused

by the number of space intervals as stated before.

In Table 4, the values of the objective function, the computation time, and the constraints

violations (i.e. speed limit violation, end position violation, end kinetic energy violation, and

end time violation) are compared for the control inputs generated by PSOPT, MILP and DDP

applied to the nonlinear continuous-time train model (1)-(2). The values of the objective function

obtained by the PSOPT, the MILP, and the DDP approach are 2.424×108 and 2.696 ×108, and

2.482×108, respectively. The relative differences of the MILP and DDP control performance are

11.2% and 2.4% of that of the pseudospectral method. Therefore, the pseudospectral approach

yields the smallest objective value and the constraints violations for the pseudospectral method
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Figure 6: The trajectories generated by the nonlinear continuous-time train model (1)-(2) using optimal control inputs

with constant maximum traction force for the following approaches: MILP, PSOPT, and DDP

Table 4: Performance comparison of PSOPT, MILP, and DDP for Case A

PSOPT MILP DDP

Jmin 2.424 ·108 2.696 ·108 2.482 ·108

CPU time [s] 370 0.32 128

End position send violation [m] 0 0 0

End kinetic energy Eend violation [m/s2] 0.1 0.005 0.596

End time Tend violation [s] 0.496 9.560 6.049

Speed limit violation No No No

are also small. This means the pseudospectral method produces the best performance if the

computation time is not considered. But when also considering the computation time and the

constraint violations of the end point conditions (i.e. the final position, speed, and running time of

the train), the MILP approach provides the best overall performance among the three approaches.

It is worth to note that we apply a trapezoidal integration rule to approximate the time differ-

ential equation (12) and then use PWA functions to approximate the nonlinear function (38) in

the MILP approach. Therefore, the end time violation in Table 4 of the MILP approach is caused

by these approximations. In Wang et al. (2011), where the nonlinear function f (E) = 1

2
√

2E
is

approximated by the PWA approximation with 3 subfunctions shown in Figure 1, the approxima-

tion error of the running time is around 20 s (i.e. around 5% of the total running time). However,

in this paper the PWA approximations with 2 subfunctions of the nonlinear function depend on

the space interval index k and this results in a reduction of an approximation error of the running

time to 10 s (i.e. around 2% of the total running time). Furthermore, we can make the error even

smaller by adjusting the PWA approximations according to Footnote 3, but then the CPU time

goes up.
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Table 5: The coefficients of the varying maximum traction force

c1, j c2, j c3, j v j − v j+1Segment j
[kg · m/s2] [kg/s] [kg/m] [m/s]

1 3.000 ·105 −1.125 ·103 0 0-22.22

2 7.263 ·105 −2.726 ·104 3.128 ·102 22.22-38.89

3 4.237 ·105 −1.120 ·104 1.000 ·102 38.89-50

Table 6: The coefficients of the PWA approximation of maximum traction force

Segment m λm [kg/m] µm [kg· m/s2] Em −Em+1 [(m/s)2]

1 −2.9396 ·102 4.1992 ·105 0.1−500

2 −0.9637 ·102 3.2112 ·105 500−1250

5.2. Case B: the maximum traction force is a nonlinear function

Now we consider the case with a varying maximum traction force as shown in Figure 1,

the coefficients of which according to (3) are listed in Table 5 (Gerber, 2001; Franke et al.,

2002; Schank, 2011). In PSOPT, non-smooth path constraints can be handled by introducing a

smooth version of the Heaviside function (see Section 3.2). In the MILP approach we need to

approximate the nonlinear maximum traction force by PWA functions as shown in (41), whose

coefficients also depends on the space interval index k. Here, for simplicity, we just use one PWA

approximation with two affine subfunctions for all k. The parameters of the PWA function are

listed in Table 6.

Figure 7 shows the optimal control inputs with varying maximum traction force, which is a

nonlinear function shown in Figure 1. The dotted line, the solid line, and the dashed line in Figure

7 represent the optimal control inputs obtained using PSOPT, MILP, and DDP, respectively.

When we compare Figure 7 to Figure 5, the maximum traction force in Figure 7 is no longer

equal to 300 kN for the MILP approach in the space interval [3000,4000], but it becomes smaller

and smaller when the speed grows. This is caused by the varying maximum traction force, which

is decreasing when the speed goes up. Similar results can be observed for the optimal inputs

calculated by PSOPT and DDP. Figure 8 shows the speed-position trajectories for the train under

varying maximum traction force constraints when applying these inputs to the nonlinear train

model (1)-(2). The dashed line, the dotted line, the solid line, and the dash-dotted line show

the speed limits and the trajectories obtained using control inputs generated by PSOPT, MILP,

and DDP, respectively. These trajectories are still below the speed limit, so there is no speed

limit violation. In addition, we can see from Figure 8 that the slopes of these three optimal

trajectories obtained in the space interval [3500,5000] are smaller than those of Figure 6, because

the maximum traction force is becoming smaller with the increase of the train’s speed.

The values of the objective function, the computation time, and the constraints violations

are compared for PSOPT, MILP, and DDP in Table 7. Similar as the results in Case A, the

pseudospectral approach obtains the minimum objective function value 2.625 · 108 J, which is

higher than that in Table 4 (this is due to the inclusion of the constraint of the varying maximum

traction force). The relative differences of the MILP and DDP approach in control performance

are 7.4% and 2.2% when compared to that of the pseudospectral method. When this problem is

solved using PSOPT, with local automatic mesh refinement, starting with 40 nodes, after 7 mesh

refinement iterations the final solution obtained has 199 nodes. The calculation time is 19 min
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Figure 7: The optimal control inputs with varying maximum traction force for the following approaches: MILP, PSOPT,

and DDP

Table 7: Performance comparison of PSOPT, MILP, and DDP for Case B

PSOPT MILP DDP

Jmin 2.625 ·108 2.819 ·108 2.683 ·108

CPU time [s] 1147 0.54 134

End position send violation [m] 0 0 0

End kinetic energy Eend violation [m/s2] 0.1 0.005 0.0328

End time Tend violation [s] 0 4.170 5.404

Speed limit violation No No No

and 7 s. Compared with the problem in Case A, 20 nodes are added and the computation time

is almost 13 min longer. For the DDP approach, the computation time is 2 min and 14 s, which

is 6 s longer than that of Case A. In the MILP approach, for each space interval an extra binary

variable and an auxiliary real variable are introduced in the MLD model compared with Case A

as shown in (46) and (47), since the maximum traction force is considered as a nonlinear function

that is approximated by a PWA approximation with 2 subfunctions. Therefore, 40 variables are

added to the MILP problem since the number of the space intervals is 20. The computation time

is now 0.54 s, which is longer than the 0.32 s in Case A, but it still is much shorter than the

pseudospectral method and the DDP approach. Similar to the results shown in Table 4, there are

no speed limit violations and the end kinetic energy violation is very small. Furthermore, the

end time violation for the pseudospectral method is also very small, but for the MILP and DDP

approach this violation is about 1% of the total running time. Therefore, it is concluded that the

pseudospectral approach obtains the best control performance, which considers the value of the

objective function and the constraints violations. However, when the computation time is also

taken into consideration, the MILP approach yields the best overall performance.
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Figure 8: The trajectories generated by the nonlinear continuous-time train model (1)-(2) using optimal control inputs

with varying maximum traction force for the following approaches: MILP, PSOPT, and DDP

6. Conclusions and Future Work

In the current paper, the optimal trajectory planning problem for trains is considered. We

have proposed two approaches to solve this problem: the pseudospectral method and the mixed

integer linear programming (MILP) approach. In the pseudospectral method, the optimal tra-

jectory planning problem is formulated as a multiple-phase optimal control problem based on

piecewise line resistance and speed limits. The constraints caused by the varying maximum trac-

tion force are defined as nonlinear path constraints. In the MILP approach, the nonlinear train

operation model is formulated as a mixed logical dynamical model by using piece-wise affine

(PWA) approximations. The variable line resistance (including variable grade profile, tunnels,

curves) and speed restrictions are considered, which are included in the constraints of the mixed

logical dynamic model. Furthermore, the optimal control problem is recast as an MILP problem,

which can be solved efficiently by existing solvers. The case study shows that the pseudospec-

tral method has the best control performance and the MILP has the best overall performance if

the computation time is included. In addition, the computation time of the MILP approach is

much shorter compared with the pseudospectral method and the discrete dynamic programming

approach. The relative difference between the performance of the MILP approach and that of the

pseudospectral approach is about 10%.

When the timetable is known, the two approaches proposed in this paper (i.e. the MILP

and the pseudospectral approach) can be applied to calculate the optimal trajectory for trains

between stations to save energy and to ensure passenger comfort. If there are some disturbances

in the network, then one could use a rescheduling approach to reorder trains and determine new

timetables (Hansen and Pachl, 2008; D’Ariano et al., 2008). Next, the affected trains have to

optimize their trajectories according to the new timetable. In this case, the trajectory planning

problem needs to be solved quickly to satisfy the real-time requirements; so then the MILP

approach could be applied since it gives the best trade-off between computational speed and

accuracy.
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An extensive comparison and assessment of the pseudospectral method, the MILP approach,

and other approaches in the literature for various case studies and a wide range of scenarios

will be a topic for future work. In addition, in this paper we focus on the trajectory planning

for a single train between two stations with the assumption that the constraints and disturbances

caused by signaling systems and other trains are handled by the lower control level. However, in

practice these constraints and disturbances are significant for the capacity of the railway network,

and therefore some interesting conflict detection and resolution approaches have been proposed

to manage these constraints and disturbances during the rescheduling phases (D’Ariano and

Albrecht, 2006; D’Ariano et al., 2007; Corman et al., 2009). In future work, we will combine

these conflict detection and resolution approaches with the trajectory planning approaches pro-

posed in this paper to solve the trajectory planning for multiple trains. There we will also use

the MILP approach (including hierarchical and distributed optimization if the problem grows too

large). Furthermore, the pseudospectral and MILP solvers used in this paper are general-purpose

solvers. By making use of the specific structure and properties of the optimal trajectory planing

problem, significant speed-ups can be expected. Therefore, in the future we will develop tailored

pseudospectral and MILP solvers for the optimal trajectory planing problem for trains.

Moreover, a typical automatic train operation system consists of two levels of control actions.

The high-level control is calculating the optimal reference trajectory, as shown in this paper. In

the future, we will also focus on the low-level control of the automatic train operation system,

which is used to make the train track the pre-planned reference trajectory via certain control

methods, such as model predictive control (Camacho and Bordons, 1995), robust control (Green

and Limebeer, 1995), and adaptive control (Tao, 1995).
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