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Optimal Routing for Automated Highway Systems

Lakshmi Dhevi Baskara,∗, Bart De Schuttera, Hans Hellendoorna

aDelft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628

CD, Delft, The Netherlands

Abstract

We present a routing guidance approach that can be used in Automated Highway
Systems (AHS). We consider automated highway systems in which intelligent
vehicles organised in platoons drive to their destination, controlled by a hierar-
chical control framework. In this framework there are roadside controllers that
provide speed and lane allocation instructions to the platoons. These roadside
controllers typically manage single stretches of highways. A collection of high-
ways is then supervised by so-called area controllers that mainly take care of the
route guidance instructions for the platoons and that also coordinate the various
roadside controllers in their area. In this paper we focus on the optimal route
choice control problem for the area controllers. In general, this problem is a
nonlinear integer optimisation problem with high computational requirements,
which makes the problem intractable in practice. Therefore, we first propose
a simplified but fast simulation model to describe the flows of platoons in the
network. Next, we show that the optimal route choice control problem can
be approximated by a mixed-integer linear problem. Later, we describe a new
METANET-like model to describe the flow of platoons in the AHS. With a sim-
ple case study we illustrate that both approaches result in a balanced trade-off
between optimality and computational efficiency.

Highlights:
> We consider efficient route guidance control for platoons of autonomous vehi-
cles. > The first control approach we propose is based on mixed-integer linear
programming. > The second approach uses real-valued nonlinear programming.
> Both provide a balanced trade-off between optimality and computational ef-
ficiency.

Keywords:
Automated Highway Systems, Routing, Optimal Control

1. Introduction

Recurring traffic congestion problems and their related costs have resulted
in various solution approaches. One of these involves the combination of the
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existing transportation infrastructure and equipment with advanced technolo-
gies from the field of control theory, communication, and information technol-
ogy. This results in integrated traffic management and control systems, called
Automated Highway Systems (AHS), that incorporate intelligence in both the
roadside infrastructure and the vehicles. Although this step is considered to be
a long-term solution, this approach is capable of offering significant increases in
the performance of the traffic system [12, 20, 35].

In the AHS we consider all vehicles are assumed to be fully automated with
throttle, braking, and steering commands being determined by automated on-
board controllers. Such complete automation of the driving tasks allows to
organise the traffic in platoons, i.e., a closely spaced group of vehicles travelling
together with short intervehicle distances [34, 38]. Platoons can travel at high
speeds and to avoid collisions between platoons at these high speeds, a safe
interplatoon distance of about 20–60m should be maintained. Also, the vehicles
in each platoon travel with small intraplatoon distances of about 2–5m, which
are maintained by the automated on-board speed and distance controllers. By
travelling at high speeds and by maintaining short intraplatoon distances, the
platoon approach allows more vehicles to travel on the network, which improves
the traffic throughput [10, 23].

Intelligent Vehicles (IVs) in the AHS can sense the driving environment us-
ing sensors and can provide assistance to the driver (via warnings or advisories)
or can take complete control of the vehicle itself to achieve an efficient vehi-
cle operation [8, 30, 40]. These vehicle control systems can thus shift driving
tasks such as steering, braking, and throttle control from drivers to the on-
board controllers in the vehicles. This complete control of driving tasks leads to
automated driving, which in turn allows the vehicles’ activities to be fully con-
trolled by the traffic control and management systems. Such IVs with complete
automation also reduce the negative effects of driver delays and errors.

In [3], we have proposed a hierarchical traffic management and control frame-
work for AHS that builds upon earlier research in this field such as the PATH
framework [34]. The proposed architecture consists of a multi-level control struc-
ture with local controllers at the lowest level and one or more higher supervisory
control levels (see Figure 1). In this framework there are roadside controllers
that provide speed and lane allocation instructions to the platoons. These road-
side controllers typically manage single stretches of highways. A collection of
highways is then supervised by so-called area controllers that mainly take care
of the route guidance instructions for the platoons and that also coordinate the
various roadside controllers in their area. In this paper, we will concentrate on
how the area controllers can determine optimal routes for the platoons using
optimal control. We use model-based predictive control to control the traffic
system. Therefore, a traffic model is required. In general, traffic flow models
can be categorised as microscopic, mesoscopic, or macroscopic models [18].

The choice of the appropriate prediction model depends on the level of detail
required and also on the computational requirements. Microscopic traffic flow
models become mathematically intractable for large-scale traffic systems due
to the high computational requirements. They are in fact more suitable for
simulation purposes and for off-line evaluation of control strategies than for
on-line model-based control. On the other hand, macroscopic models are less
detailed and thus less accurate than microscopic traffic flow models, but due to
their fast execution they are well-suited for on-line model-based control.
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If we would optimise the routes for each platoon using a microscopic traf-
fic flow model, the optimal route choice problem would lead to mixed-integer
nonlinear optimisation over the routes (integer variables) and e.g., speeds (real
variables). In general, such optimisation problems are hard to solve and have
high computational requirements. Therefore, we will develop a macroscopic
traffic model for AHS in this paper.

This paper is an extended and improved version of the conference papers
[4, 5]. In particular, a more detailed and improved account of each of the rout-
ing approaches is given, the analysis of the macroscopic flow model for intelligent
vehicles is expanded, and the approaches is integrated into an overall hierarchi-
cal control framework for AHS. The paper is organised as follows. In Section 2
we briefly recapitulate the new hierarchical IV-based traffic control framework
of [3]. Next, we focus on the route guidance tasks of the area controllers and
we present a simplified flow model and the corresponding optimal route guid-
ance problem in Section 3. We consider both the static case (with constant
demands) and the dynamic case (with time-varying demands). In general, the
dynamic case leads to a nonlinear non-convex optimisation problem, but we
show that this problem can be approximated using mixed-integer linear pro-
gramming (MILP). We present a simple example that illustrates that the MILP
approximation provides a good trade-off between optimality and computational
efficiency. In Section 4 we propose an alternative approach based on a macro-
scopic traffic flow model for human drivers (METANET). We present the basic
METANET model for human drivers and we explain how it can be adapted to
platoons. Next, we use this model to determine optimal splitting rates at the
network nodes. This yields an optimisation problem with real-valued variables
only, which thus results in a computation complexity that is much lower than the
original mixed-integer optimisation problem. This approach is also illustrated
using a case study. Section 6 concludes the paper.

2. Automated highway systems (AHS)

We now briefly present the hierarchical control framework for AHS we have
proposed in [3]. This framework is inspired on the PATH platoon concept
[19, 38, 39] and it distributes the intelligence between the roadside infrastruc-
ture and the vehicles using control measures such as intelligent speed adaption,
adaptive cruise control, lane allocation, on-ramp access control, route guidance,
etc. to prevent congestion and to improve the performance of the traffic net-
work. The control architecture consists of a multi-level control structure with
local controllers at the lowest level and one or more higher supervisory control
levels as shown in Figure 1. The layers of the framework can be characterised
as follows:

• The vehicle controllers present in each vehicle receive commands from
the platoon controllers (e.g., set-points or reference trajectories for speeds
(for intelligent speed adaption), headways (for adaptive cruise control),
and paths) and they translate these commands into control signals for the
vehicle actuators such as throttle, braking, and steering actions.

• The platoon controllers receive commands from the roadside controllers
and are responsible for control and coordination of each vehicle inside the
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Platoon controller

Supraregional controller

Regional controllerRegional controller

Area controller Area controller

Roadside controller Roadside controller

Platoon controller

Vehicle controllerVehicle controller

Figure 1: The hierarchical control framework for AHS

platoon. The platoon controllers are mainly concerned with actually exe-
cuting the interplatoon manoeuvres (such as merges with other platoons,
splits, and lane changes) and intraplatoon activities (such as maintaining
safe intervehicle distances).

• The roadside controllers control a part of a highway or an entire highway.
The main tasks of the roadside controllers are to assign speeds for each
platoon, safe distances to avoid collisions between platoons, appropriate
platoon sizes, and ramp metering values at the on-ramps. The roadside
controllers also give instructions for merging, splitting, and lane changes
to the platoons.

• The higher-level controllers (such as area, regional, and supraregional con-
trollers) provide network-wide coordination of the lower-level and middle-
level controllers. In particular, the area controllers provide area-wide dy-
namic route guidance for the platoons, and they supervise and coordinate
the activities of the roadside controllers in their area by providing set-
points and control targets. In turn, a group of area controllers could be
supervised or controlled by a regional controller, and so on.

The lower levels in this hierarchy deal with faster time scales (typically in the
milliseconds range for the vehicle controllers up to the seconds range for the
roadside controllers), whereas for the higher-level layers the frequency of updat-
ing can range from a few times per minute (for the area controllers) to a few
times per hour (for the supraregional controllers).

In this paper, we will focus on the area controllers and in particular on how
optimal routes can be determined for the platoons.

3. Optimal route choice control in AHS using mixed-integer linear
programming

3.1. Approach

In principle, the optimal route choice control problem in AHS consists in
assigning an optimal route to each individual platoon in the network. How-
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Figure 2: Piecewise constant time-varying demand profile Do,d for the dynamic case

ever, this results in a huge nonlinear integer optimisation problem with a high
computational complexity and high computational requirements, making the
problem intractable in practice. So, since considering each individual platoon is
too computationally intensive, we consider streams of platoons instead (charac-
terised by (real-valued) demands and flows expressed in vehicles per hour). The
routing problem will then be recast as the problem of determining the flows on
each link as explained later on in this section. For larger networks, we use the
spatial division offered by the overall control framework that apply area and
regional controllers [6].

Once these flows are determined, they can be implemented by roadside con-
trollers at the links and at the nodes. So the area controllers provide flow
targets to the roadside controllers, which then have to control the platoons that
are under their supervision in such a way that these targets are met as well as
possible. This corresponds to slowing down or speeding up platoons on the links
if necessary (in combination with lane allocation and on-ramp access timing),
and to steering them into a certain direction depending on the splitting rates for
the flows. In case of unpredictable congestion caused by incidents or accidents
on the road, the roadside controller will inform the area controller about the
congestion in terms of reduced capacities of the links.

3.2. Set-up

We consider the following set-up. The highways in the traffic network are
considered to be divided into links. We have a transportation network with a
set of origin nodes O, a set of destination nodes D, and a set of internal nodes
I. Define the set of all nodes as V = O∪I ∪D. Nodes can be connected by one
or more (unidirectional) links. The links correspond to freeway stretches. The
set of all links is denoted by L.

For each origin-destination pair (o, d) ∈ O × D we define the set Lo,d ⊆ L

of links that belong to some route going from o to d. For every link l ∈ L we
define the set Sod,l of origin-destination pairs (o, d) ∈ O×D such that l belongs
to some route going from o to d.

For each pair (o, d) ∈ O ×D, there is a constant demand Do,d (in the static
case) or a dynamic, piecewise constant demand pattern Do,d(·) as shown in
Figure 2 with Do,d(k) the demand of vehicles at origin o with destination d in
the time interval [kTs, (k + 1)Ts) for k = 0, . . . ,K − 1 with K the simulation
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horizon and Ts the simulation time step (we assume that beyond T = KTs the
demand is 0).

For each link1 l ∈ L in the network there is a maximal capacity Cl. We
assume that there is a fixed average speed vl on each link l. Let τl denote the
average travel time on link l: τl =

ℓl
vl

where ℓl is the length of link l. We denote

the set of incoming links for node v ∈ V by Lin
v , and the set of outgoing links by

Lout
v . Note that for origins o ∈ O we have Lin

o = ∅ and for destinations d ∈ D

we have Lout
d = ∅.

The aim is now to assign actual (real-valued) flows xl,o,d (in the static case)
or xl,o,d(k) (in the dynamic case2) for every pair (o, d) ∈ O × D and every
l ∈ Lo,d, in such a way that the given performance criterion (e.g., the total time
spent in the network) is minimised subject to operational constraints (e.g., the
capacity of the links should not be exceeded).

For the optimal route choice problem we now consider four cases with a
gradually increasing complexity:

1. static case with sufficient network capacity,

2. static case with queues at the boundaries of the network only,

3. dynamic case with queues at the boundaries of the network only,

4. dynamic case with queues inside the network.

Note that Cases 2 and 3 with queues at the boundaries of the network can
actually occur in practice if the admission and routing control of vehicles is
such that the vehicles are only allowed to enter the network if they will later
on not encounter any bottleneck3 on their prescribed route to their destination.
In these cases the network itself will always be congestion-free and queues can
only arise at the boundaries of the network.

For the dynamic cases (Cases 3 and 4) we will focus on optimal control for
the sake of simplicity of the expositions, but the proposed approach can also
be included in a model predictive control framework (MPC) [26]. MPC is an
on-line, sampling-based, discrete-time receding horizon control approach that
uses (numerical) optimisation and an explicit prediction model to determine
the optimal values for the control measures over a given prediction period. One
of the main advantages of MPC is that it can handle various hard constraints on
the inputs and states of the system. In addition, MPC has a built-in feedback
mechanism due to the use of a receding horizon approach, and it is easy to tune.
We will discuss MPC in more detail in Section 4.4.

3.3. Static case with sufficient network capacity

In this case we assume that there is a constant demand for each origin-
destination pair and that the total network capacity is such that the entire
demand can be processed, so that there will be no queues at the boundaries or
inside the network. Let us now describe the equations to model this situation.

1This approach can easily be extended to the case where also the internal nodes v ∈ I

have a finite capacity.
2More specifically, in the dynamic case xl,o,d(k) denotes the flow of vehicles from origin o

to destination d that enter link l in the time interval [kTs, (k + 1)Ts).
3Bottlenecks represent the places on network where capacity is restricted, which in their

turn may result in queues at or near those locations.
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For every origin node o ∈ O we have:

∑

l∈Lout
o ∩Lo,d

xl,o,d = Do,d for each d ∈ D. (1)

For every internal node v ∈ I and for every pair (o, d) ∈ O × D we have the
following conservation relation:

∑

l∈Lin
v ∩Lo,d

xl,o,d =
∑

l∈Lout
v ∩Lo,d

xl,o,d . (2)

We also have the following condition for every link l:

∑

(o,d)∈Sod,l

xl,o,d 6 Cl . (3)

Finally, the objective function is given as follows4:

Jlinks =
∑

(o,d)∈O×D

∑

l∈Lo,d

xl,o,dτlT , (4)

which is a measure for the total time the vehicles or platoons spend in the
network5. In order to minimise Jlinks we have to solve the following optimisation
problem:

min Jlinks s.t. (1)–(3) (5)

Clearly, this is a linear programming problem. The linear programming prob-
lems are efficiently solvable using (a variant of) the simplex method or an
interior-point method [32, Chapter 1].

Remark 1. In the derivation above we keep open the option of including origin-
destination dependent weights wo,d into the objective function Jlinks (e.g., to
influence long-distance traffic in a different way than local traffic). If such an
origin-destination dependent weighting is not required, the setting and the re-
sulting optimisation problem can be simplified by aggregating the flows for a
given destination d over all origins, i.e., by considering xl,d =

∑

o∈O
xl,o,d in-

stead of xl,o,d. A similar remark also holds for the other cases considered in the
remainder of the paper.

3.4. Static case with queues at the boundaries of the network only

In case the capacity of the network is less than the demand, then problem
(5) will not be feasible. In order to be able to determine the optimal routing in

4Recall that T = KTs is the length of the simulation period.
5Note however that in general, we could also consider other performance criteria such as

emissions, noise, fuel consumption, safety, . . .Moreover, if we want to put more emphasis on
certain routes or certain links, route weight factors wo,d or link weight factors wl could be
added in (4).
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this particular case, we have to take into account that queues might appear at
the origin of the network.

Let us first write down the equations for the flows inside the network.
For every origin node o ∈ O we have:

∑

l∈Lout
o ∩Lo,d

xl,o,d 6 Do,d for each d ∈ D. (6)

Equations (2) and (3) also hold in this case.
Let us now describe the behaviour of the queues. Since the actual flow out

of origin node o for destination d is given by

F out
o,d =

∑

l∈Lout
o ∩Lo,d

xl,o,d ,

the queue length at the origin o for vehicles or platoons going to destination
d will increase linearly with a rate Do,d − F out

o,d (note that by (6) this rate is
always non-negative). At the end of the simulation period (which has length T )
the queue length will be (Do,d −F out

o,d )T , and hence the average queue length is
1
2 (Do,d − F out

o,d )T . So the total time spent in the origin queues is

Jqueue =
∑

(o,d)∈O×D

1

2
(Do,d − F out

o,d )T
2

=
∑

(o,d)∈O×D

1

2

(

Do,d −
∑

l∈Lout
o

xl,o,d

)

T 2 .

In order to minimise the total time spent we have to solve the following optimi-
sation problem:

min (Jlinks + Jqueue) s.t. (2), (3), and (6). (7)

This is also a linear programming problem.

3.5. Dynamic case with queues at the boundaries of the network only

Now we consider a piecewise constant demand pattern for every origin-
destination pair. Moreover, we assume that the travel time τl on link l is an
integer multiple of Ts, say

6

τl = κlTs with κl an integer. (8)

Let qo,d(k) denote the partial queue length of vehicles at origin o going to
destination d at time instant t = kTs. In principle, the queue lengths should
be integers as their unit is “number of vehicles”, but we will approximate them
using reals.

For every origin node o ∈ O we now have:

∑

l∈Lout
o ∩Lo,d

xl,o,d(k) 6 Do,d(k) +
qo,d(k)

Ts
for each d ∈ D, (9)

6Alternatively we could define the approximate travel delay κl on link l as round( τl
Ts

).
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qconto,d qconto,d

t tkTs kTs(k + 1)Ts (k + 1)Ts
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−(Do,d(k)− F out
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Figure 3: Two possible cases for the evolution of the continuous-time queue length qcont
o,d

in

the time interval [kTs, (k + 1)Ts)

with by definition Do,d(k) = 0 for k > K, and qo,d(k) = 0 for k 6 0. Note

that the term
qo,d(k)

Ts
in (9) is due to the assumption that whenever possible and

feasible the queue is emptied in the next sample period, with length Ts.
Taking into account that every flow on link l has a delay of κl time steps before
it reaches the end of the link, we have

∑

l∈Lin
v ∩Lo,d

xl,o,d(k − κl) =
∑

l∈Lout
v ∩Lo,d

xl,o,d(k) (10)

for every internal node v ∈ I and for every pair (o, d) ∈ O×D, with xl,o,d(k) = 0
for k ≤ 0.
We also have the following condition for every link l:

∑

(o,d)∈Sod,l

xl,o,d(k) 6 Cl . (11)

Let us now describe the behaviour of the queues. Since the actual flow out
of origin node o for destination d in the time interval [kTs, (k+1)Ts) is given by

F out
o,d (k) =

∑

l∈Lout
o ∩Lo,d

xl,o,d(k) , (12)

the queue length at the origin o for vehicles going to destination d will increase
linearly with a rate Do,d(k) − F out

o,d (k) in the time interval [kTs, (k + 1)Ts).
Moreover, queue lengths can never become negative. Hence,

qo,d(k + 1) = max
(

0, qo,d(k) + (Do,d(k)− F out
o,d (k))Ts

)

(13)

In order to determine the time Jqueue,o,d(k) spent in the queue at origin o in
the time interval [kTs, (k + 1)Ts) for traffic going to destination d, we have to
distinguish between two cases depending on whether or not the continuous-time
queue length qconto,d becomes equal to zero inside7 the interval [kTs, (k + 1)Ts)

7So we are only in Case (b) if qcont
o,d

becomes equal to zero for some time t with kTs < t <

(k + 1)Ts, i.e., if qo,d(k) > 0 and qo,d(k) + (Do,d(k) − F out

o,d
(k))Ts < 0. All other situations

belong to Case (a).
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(see Cases (a) and (b) of Figure 3). For Case (b) we define

To,d(k) =
qo,d(k)

F out
o,d (k)−Do,d(k)

(14)

as the time offset after time instant kTs at which the queue length becomes zero.
Then we have

Jqueue,o,d(k) =











1

2
(qo,d(k) + qo,d(k + 1))Ts for Case (a),

1

2
qo,d(k)To,d(k) for Case (b).

Due to the denominator term in (14) Jqueue,o,d(k) is in general a nonlinear
function. Now assume that we simulate the network until time step Kend ≥ K

(e.g., until all queues and all flows have become8 equal to zero). Then we have

Jqueue =

Kend−1
∑

k=0

∑

(o,d)∈O×D

Jqueue,o,d(k) .

The time spent in the links is now given by (cf. also (4))

Jlinks =

Kend−1
∑

k=0

∑

(o,d)∈O×D

∑

l∈Lo,d

xl,o,d(k)κlT
2
s (15)

In order to minimise the total time spent we have to solve the following optimi-
sation problem with Jlinks still defined by (15):

min (Jlinks + Jqueue) s.t. (9)–(13). (16)

Due to the nonlinear expression for Jqueue,o,d(k) in Case (b) and due to the
presence of constraint (13) this is a nonlinear, non-convex, and non-smooth
optimisation problem. In general, such problems are difficult to solve and re-
quire multi-start local optimisation methods (such as Sequential Quadratic Pro-
gramming (SQP)) or global optimisation methods (such as genetic algorithms,
simulated annealing, or pattern search) [32]. However, in Section 3.7 we will
propose an alternative approximate solution approach based on mixed-integer
linear programming.

3.6. Dynamic case with queues inside the network

Now we consider the dynamic case with queues inside the network. If queues
are formed, we assume that they are formed at the end of the links and that
the queues are vertical. In fact, for the sake of simplicity and in order to obtain
linear equations, we assign the queues to the nodes instead of the links.

This case is similar to the case of Section 3.5, the difference being that (10)
is now replaced by (cf. also (9)):

∑

l∈Lout
v ∩Lo,d

xl,o,d(k) 6





∑

l∈Lin
v ∩Lo,d

xl,o,d(k − κl)



+
qv,o,d(k)

Ts
, (17)

8If this is not the case we have to add an end-point penalty on the queue lengths and flows
at time step Kend.
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for every internal node v ∈ I and for every pair (o, d) ∈ O ×D, where qv,o,d(k)
is the partial queue length at node v for vehicles or platoons going from origin
o to destination d at the time instant t = kTs. Moreover,

qv,o,d(k + 1) = max
(

0, qv,o,d(k) + (F in
v,o,d(k)− F out

v,o,d(k))Ts

)

with the flow into and out of the queue being given by

F in
v,o,d(k) =

∑

l∈Lin
v ∩Lo,d

xl,o,d(k − κl) (18)

F out
v,o,d(k) =

∑

l∈Lout
v ∩Lo,d

xl,o,d(k) . (19)

Similar to Jqueue,o,d(k) we also define the time Jqueue,v,o,d(k) spent in the queue
at node v in the time interval [kTs, (k + 1)Ts) for traffic going from origin o to
destination d, and we extend the definition of Jqueue into

Jqueue =

Kend−1
∑

k=0

∑

(o,d)∈O×D

(

Jqueue,o,d(k) +
∑

v∈I

Jqueue,v,o,d(k)
)

.

with Jqueue,v,o,d(k) defined with Case (a) and Case (b) in the same way as in
Section 3.5:

Jqueue,v,o,d(k) =











1

2

(

qv,o,d(k) + qv,o,d(k + 1)
)

Ts for Case (a),

1

2
qv,o,d(k)Tv,o,d(k) for Case (b).

For Case (b) we define

Tv,o,d(k) =
qv,o,d(k)

F out
v,o,d(k)− F in

v,o,d(k)
(20)

as the time offset after time instant kTs at which the queue length becomes
zero. This also results in a nonlinear, non-convex, and non-smooth optimisation
problem. However, in the next section we will show that this problem can also
be approximated using mixed-integer linear programming.

Remark 2. For the dynamic case with queues at the boundaries of the network
only, the area controllers will be designed to provide optimal flows in such a
way that once the vehicles enter the network, they will travel at their free-flow
speed without encountering traffic jams. When the traffic demand exceeds the
capacity of the network, queues will be created at one or more origins. Such
a congestion-free network comes at the price of increased queue lengths at the
origins. However, when the considered network is larger, then it would be a
better option for the control system to allow the vehicles to enter the network
rather than to create queues at the origin. In larger networks, the vehicles that
are allowed to enter the network would be more closer to their destinations than
when they would be waiting at origins. In a bigger network, making vehicles
wait at the periphery until the entire traffic congestion gets cleared throughout
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the entire network would be highly disadvantageous. On the other hand, allowing
vehicles to stay closer to their destination will result in less residual travel time,
which in particular is beneficial in case of dynamic traffic demands (with both
high and low demands over time) or when different parts of the network get
congested while other parts stay uncongested.

Therefore, we have also considered the dynamic case with queues inside the
network. Recall that we use vertical queues. There exist two possibilities to
represent the creation of queues inside the network. They can be assumed to be
created either at the nodes or at the end of the links. In the latter case, the queue
at the end of each link will be created by considering its own dynamics and also
the behaviour of flows on the adjacent links. However, assuming that queues may
arise on every link leads to nonlinear equations and a nonlinear optimisation
problem (see, e.g., [37] where a similar routing problem is considered for human
drivers). Therefore, we consider the queue formation to occur at the nodes
rather than on the links. Queues at the nodes, to a certain extent, can also
include spillback effects by using capacity constraints on links. When a link in
the network is so full, then the capacity constraint on that link would prevent
extra vehicles coming from upstream links to enter the given link. In this way
we can model spillback from one link to another

In addition, the model can also include restrictions on the number of vehicles
waiting in the queues, by imposing a maximum allowed queue length.

3.7. Approximation based on mixed-integer linear programming

Recall that the dynamic optimal route guidance problems of Sections 3.5
and 3.6 are nonlinear, non-convex, and non-smooth. Now we will show that by
introducing an approximation these problems can be transformed into mixed-
integer linear programming (MILP) problems, for which efficient solvers have
been developed [13].

First we consider the case with queues at the origins only, i.e., we consider the
optimisation problem (16). Apart from (13) this problem is a linear optimisation
problem.

Now we explain how (13) can be transformed into a system of linear equa-
tions by introducing some auxiliary boolean variables δ. To this aim we use the
following properties [7], where δ represents a binary-valued scalar variable, y a
real-valued scalar variable, and f a function defined on a bounded set X with
upper and lower bounds M and m for the function values:

P1: [f 6 0] ⇔ [δ = 1] is true if and only if

{

f 6 M(1− δ)
f > ǫ+ (m− ǫ)δ ,

where ǫ is a small positive number9 (typically the machine precision),

9We need this construction to transform a constraint of the form y > 0 into y > ǫ, as in
(mixed-integer) linear programming problems only non-strict inequalities are allowed.
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P2: y = δf is equivalent to















y 6 Mδ

y > mδ

y 6 f −m(1− δ)
y > f −M(1− δ) .

Depending on the order in which these properties are applied and in which
additional auxiliary variables are introduced, we may end up with more or less
binary and real variables in the final MILP problem. The number of binary
variables — and to a lesser extent the number of real variables — should be kept
as small as possible since this number has a direct impact of the computational
complexity of the final MILP problem.

To reduce the number of real variables in the final MILP problem, we first
eliminate F out

o,d (k) and we write (13) as

qo,d(k + 1) = max
(

0, qo,d(k) +
(

Do,d(k)−
∑

l∈Lout
o ∩Lo,d

xl,o,d(k)
)

Ts

)

. (21)

Note that this is a nonlinear equation and thus it does not fit the MILP
framework. Let Dmax,o,d = maxk Do,d(k) be the maximal demand for origin-
destination pair (o, d), let Fmax,o,d =

∑

l∈Lout
o ∩Lo,d

Cl be the maximal possible
flow out of origin node o towards destination d, and let qmax,o,d = Dmax,o,dTsKend

be the maximal origin queue length at origin o for traffic going to destination
d. If we define mo,d = −Fmax,o,dTs and Mo,d = qmax,o,d +Dmax,o,dTs, then we
always have

mo,d 6 qo,d(k) +
(

Do,d(k)−
∑

l∈Lout
o ∩Lo,d

xl,o,d(k)
)

Ts 6 Mo,d .

Next, we introduce binary variables δo,d(k) such that

δo,d(k) = 1 if and only if qo,d(k) +
(

Do,d(k)−
∑

l∈Lout
o ∩Lo,d

xl,o,d(k)
)

Ts > 0 .

Using Property P1 with the bounds mo,d and Mo,d this condition can be trans-
formed into a system of linear inequalities. Now we have (cf. (21))

qo,d(k + 1) = δo,d(k)
(

qo,d(k) +
(

Do,d(k)−
∑

l∈Lout
o ∩Lo,d

xl,o,d(k)
)

Ts

)

. (22)

This expression is still nonlinear since it contains a multiplication of a binary
variable δo,d(k) with a real-valued (linear) function. However, by using Property
P2 this equation can be transformed into a system of linear inequalities.
So by introducing some auxiliary variables δo,d(k) we can transform the orig-
inal nonlinear equation (13) into a system of additional linear equations and
inequalities.

Recall that Jqueue,o,d(k) is in general a nonlinear function due to the occur-
rence of Case (b) of Figure 3. However, if we also use the expression of Case
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(a) for Case (b), then we can approximate Jqueue,o,d(k) as
10

Jqueue,o,d(k) =
1

2
(qo,d(k) + qo,d(k + 1))Ts ,

which is a linear expression. Since Jlinks is also a linear expression (cf. (15)),
this implies that the overall objective function Jlinks + Jqueue is now linear. So
the problem (16) can be approximated by an MILP problem.

Several efficient branch-and-bound MILP solvers [13] are available for MILP
problems. Moreover, there exist several commercial and free solvers for MILP
problems such as, e.g, CPLEX, Xpress-MP, GLPK, or lp solve (see [1, 25] for
an overview). In principle, — i.e., when the algorithm is not terminated prema-
turely due to time or memory limitations, — these algorithms guarantee to find
the global optimum. This global optimisation feature is not present in the other
optimisation methods that can be used to solve the original nonlinear, non-
convex, non-smooth optimisation problem (16) such as multi-start SQP, genetic
algorithms, pattern search, etc. [32] Moreover, if the allowed computation time
is limited (as is often the case in on-line real-time traffic control), then it might
occur that the MILP solution can be found within the allotted time whereas
a global or multi-start local optimisation algorithm still did not converge to a
good solution. As a result, the MILP solution — even though it solves an ap-
proximated problem — might even perform better than the solution returned by
the prematurely terminated global and multi-start local optimisation method.
In general, we can say that the MILP solution often provides a good trade-off
between optimality and computational efficiency, as will be illustrated in the
case study of Section 3.8.

Using a similar reasoning as above we can also transform the routing problem
with queues inside the network of Section 3.6 into an MILP problem. Note
however that in this case the number of binary variables may become quite
large.

Some ways to reduce the complexity of the above approach are to embed
it in a model predictive control framework (cf. Section 4.4) (because then the
optimisation horizon is much shorter than the full simulation horizon currently
used due to the optimal control setting) or to reduce the number of partial
queues by only considering a limited set of most probable/allowed routes be-
tween each origin-destination pair. Moreover, if there are no origin-destination
dependent performance functions or constraints, we can combine the flows and
queues for the various origins at each link and node (see also Remark 1). This
will considerably reduce the number of variables.

3.8. Case study

In this section we present a simple case study involving a basic set-up to
illustrate the area-level control approach for AHS proposed in Section 2. In
particular, we will consider the dynamic case with queues at the origins of the
network only (cf. Section 3.5). First, we will describe the set-up and the details
of the scenario used for our simulation and next solve the resulting optimisation
problem (16). Finally, we will discuss and analyse the obtained results.

10This is exact for Case (a) and an approximation for Case (b). However, especially if Ts is
small enough, the error we then make is negligible.
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Figure 4: Set-up of case study network of Section 3.8

Period (min) 0–10 10–30 30–40 40–60
Do1,d1

(veh/h) 5000 8000 2500 0
Do1,d2

(veh/h) 1000 2000 1000 0

Table 1: Demand profiles used in the case study of Section 3.8

3.8.1. Scenario

We consider a simple network of highways with one origin o1 and two des-
tinations d1, d2, and three internal nodes v1, v2, and v3 (see Figure 4). The
network consists of three high-capacity links connecting o1 to v1, v2 to d1, and
v3 to d2, as well as six links connecting the internal nodes, allowing four possible
routes to each destination (e.g., d1 can be reached via l1, l2, l3+l5, and l4+l5).

We simulate a period of 60min. The simulation time step Ts is set to 1min.
The demand pattern is piecewise constant during the simulation period and is
given in Table 1. Note that the demand to be processed in the period [10,30]
is higher than the capacity of the network, giving rise to an origin queue for
each destination. The capacities on the links directly connected to the ori-
gin and destination nodes are assumed to be high enough so that no queues
are formed on them, and the travel time on these links is assumed to be neg-
ligible. The maximum capacities associated with the links between the inter-
nal nodes are C1=1900 veh/h, C2=2000 veh/h, C3=1800 veh/h, C4=1600 veh/h,
C5=1000 veh/h, and C6=1000 veh/h. Depending on the speed and length of
each link, different travel times can be obtained, which are characterised by (cf.
(8)) κ1=10, κ2=9, κ3=6, κ4=7, κ5=2, and κ6=2. For the proposed scenario the
initial state of the network is taken to be empty.

We consider three different cases:

• Case A: no control,

• Case B: controlled using the MILP solution,

• Case C: controlled using the exact solution.

3.8.2. Results and analysis

We have used Matlab to compute the optimal route choice solutions in Cases
B and C. More specifically, the MILP problem of Case B has been solved us-
ing CPLEX, implemented through the cplex interface function of the Matlab
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Case Jqueue improvement CPU time11

(veh.h) (s)
no control 1434 0% –
MILP 1081 24.6% 0.27
SQP (5 initial points) 1067 25.6% 90.0
SQP (50 initial points) 1064 25.8% 983
SQP (with the MILP solution

as initial point)
1064 25.8% 1.29

Table 2: Results for the case study of Section 3.8. The improvement is expressed with respect
to the no-control case
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(b) Queue length for the uncontrolled case.

Figure 5: Simulations for the uncontrolled case.

Tomlab toolbox. For Case C we have used the SQP function SNOPT, imple-
mented via the function snopt of the Matlab Tomlab toolbox. For Case C we
have considered three different choices for the starting points: 5 random initial
points, 50 random initial points, and the MILP solution as the initial point.
The results of the numerical experiments are listed in Table 2.

In case of no control (Case A), the capacities of the direct links l1, l2, l3,
and l4 are consumed up to their maximum while the links l5 and l6 are not used
due to the fact that all vehicles and platoons want to take the shortest routes
as shown in Fig. 5(a). At the point when the demand exceeds the maximum
capacity of the links (i.e., during the period from 10 to 30 minutes, where the
total demand 10000 veh/h exceeds the maximum capacity 4000 veh/h) an origin
queue is formed as shown in Fig. 5(b). As the simulation advances further, the
queue length also increases linearly with time, thus leading to a large total time
spent of 1434 veh.h.

When control is applied, the area controller assigns the routes to the pla-
toons in a system optimum manner. By system optimum, we mean that some
of the platoons and vehicles can even be assigned a longer route rather than the
direct or shortest routes, if this leads to an improvement of the total traffic per-
formance. This results in a performance improvement of 24.6% for the MILP
solution (Case B), and — depending also on the number of initial points con-

11On a 1 GHz Athlon 64 X2 Dual Core 3800+ processor with 3 GB of RAM.
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(a) Flow for the controlled case.
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(b) Queue length for the controlled case.

Figure 6: Simulations for the controlled case using MILP solution.

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Time (min)

F
lo

w
 (

v
eh

/h
)

L1

L2

L3

L4

L5

L6

(a) Flow for the controlled case.

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600

1800

Time (min)

Q
u

eu
e 

L
en

g
th

 (
v

eh
)

O1D1

O1D2

(b) Queue length for the controlled case.

Figure 7: Simulations for the controlled case using exact solution.
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sidered — in a performance improvement of up to 25.8% for the exact solution
(Case C). For the controlled cases (Case B and C) as shown in Fig. 6(a) and
Fig. 7(a), the link l5 is consumed as this route is considered to be optimum by
the controller. The oscillatory behaviour observed in Fig. 7(a) can be removed
by adding a penalty on variations in the control signal. Note that for this case
study using the MILP solution as the starting point for SQP yields the optimal
solution at very low computational costs (1.29 s). In Fig. 6(b) and Fig. 7(b), we
can clearly see that the number of vehicles that are queued at the origin are less
when compared to the uncontrolled case and the vehicles in the queue reduces
as the simulation advances further.

Although the exact solution performs better than the MILP solution, this
comes at the cost of an increased computation time due to the multi-start SQP,
which results in a total computation time that can be much larger than Ts

(1min). In practice, where the approach will typically be applied on-line in a
moving horizon approach, this excessive computation time makes the multi-start
SQP approach infeasible, whereas the MILP solution can be computed within
the sampling time interval Ts while having almost the same performance as the
multi-start SQP solution.

4. Optimal routing for AHS using a macroscopic traffic flow model

In Section 3, we have used a rough approximation of the real network traffic
dynamics. An alternative but somewhat more refined way to obtain a simplified
model to describe the traffic flows in AHS is to use some of the existing macro-
scopic traffic flow models for human drivers such as the METANET model and
to adapt them to fit the AHS framework.

4.1. Macroscopic traffic flow characteristics for human drivers

Consider a traffic network consisting a several links, each of which is divided
in one or more segments. Let Ts be the sampling or simulation time step for the
macroscopic network model. The traffic dynamics in each segment i of the traffic
network at time instant kTs can characterised by three macroscopic variables:

• space-mean speed vi(k),

• traffic density ρi(k),

• traffic flow, intensity or volume qi(k).

The traffic density12 ρi is the number of vehicles per kilometre i.e., it char-
acterises at a specific point of time, how crowded the particular segment i of a
road is. In relation to the microscopic traffic variables, the traffic density can be
derived using the average distance headway (si), and number of vehicles Nveh,i

in that segment as

ρi =
Nveh,i

Lseg,i
≈

Nveh,i
∑Nveh,i

l=1 si,l
=

1

si
(23)

12For the sake of simplicity of notation we drop the time index k in the remainder of this
section.
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where Lseg,i is the length of the given road segment and si,l is the space headway
for vehicle l in segment i (i.e., the distance difference in position between the rear
of vehicle l and the rear of its predecessor). The average distance headway (si)
can be expressed as the product of space mean speed and average time headway.
The time headway of a vehicle is defined as the time difference between the
passing of the rear ends of the vehicle’s predecessor and the vehicle itself at a
certain location.

The traffic flow or volume qi is the number of vehicles Npass,i passing through
a freeway location (marked by, e.g., a detector) per time unit. In relation to
the microscopic variables, the traffic flow can be defined as a reciprocal of the
average time headway (hi). Assuming a certain time period ∆T , the flow can
expressed as:

qi =
Npass,i

∆T
≈

Npass,i
∑Npass,l

l=1 hi,l

=
1

hi

(24)

where the time headway hi,l of vehicle l in segment i is the amount of time
necessary for the rear of vehicle l to reach the current position of the rear of its
predecessor.

The three basic macroscopic variables are related to each other by the fun-
damental relation

qi = ρivi (25)

This means that out of these three variables only two are independent. In the
sequel we will consider vi and ρi to be the independent variables.

Let us now consider the (equilibrium) relation between the speed vi and the
density ρi. When the density on the road is very low and the average distance
headway is large, the drivers travel at their desired speed. This is called free-
flow driving. As the density starts to increase due to the increasing demand,
the vehicles will start to reduce their speed slightly and follow their predecessor
while maintaining a safe time headway. Once the critical density (i.e., the
density at which the capacity of the network is being utilised at its maximum)
is reached, the speed starts to decrease significantly resulting in a traffic jam.
When the density is at its maximum (ρmax,i), the vehicle speed drops to almost
zero. The (equilibrium) relation between the speed vi and the density ρi can be
modelled as [27]:

V (ρi) = vfree,i exp

[

−
1

ai

(

ρi

ρcrit,i

)ai
]

(26)

where ρcrit,i is the critical density, vfree,i is the free-flow speed, and ai is a
model parameter. Typical values for these parameters are vfree,i=120 km/h,
ρcrit,i =33.5 veh/km/lane, ai = 1.867, and ρmax,i=180 veh/km/lane [22]. The
fundamental relation given in (26) can be depicted using the so-called funda-
mental diagram as shown in Figure 8 for a single lane. This figure shows the
maximum flow qmax,i, and the critical density ρcrit,i.

4.2. Macroscopic traffic flow for IVs

When semi-automatic or intelligent vehicles are used on the road, the macro-
scopic traffic flow will change. An example of such a change is described by Bose
and Ioannou [9], where Adaptive Cruise Control (ACC) is considered with a
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Figure 8: Fundamental diagram for human drivers

constant time headway policy. The constant time headway policy is the control
form most often used for ACC [9, 36, 41]. The spacing is given in [41] as

dref,i(ℓ) = S0 + vi(ℓ)Thead,i , (27)

where dref,i is the desired distance headway, S0 is the gap at zero speed, Thead,i

is the time headway, and vi is the velocity of the vehicle of interest (the following
vehicle), and Lveh is the length of the vehicle, which, for the sake of simplicity,
is assumed to be the same for all vehicles (if this is not the case, the average
vehicle length L̄veh should be used in the equations below).

Using (23), for a given speed vi and (average) space headway si the maximal
density with intelligent vehicles (IVs) can be expressed as the reciprocal of the
inter-vehicle spacing:

ρACC,i =
1

si
=

1

hdesvi + Lveh
(28)

Rewriting (28) gives an expression for the (maximally possible) speed as

vi =
1

hdes

(

1

ρACC,i

− Lveh

)

Now taking into account that the speed cannot exceed the free-flow speed vfree,i,
the expression for the desired speed using 100% ACC-equipped vehicles becomes

vACC,i =

{

vfree,i, if ρi ≤ ρACC,crit,i

1
hdes

(

1
ρi

− Lveh

)

, if ρi > ρACC,crit,i
(29)

For a situation with 100% ACC-equipped vehicles the critical density ρACC,crit,i

at which the maximal flow is obtained, is thus given by:

ρACC,crit,i =
1

hdesvfree,i + Lveh
. (30)

Using (29) and (25) the relation between the flow and density becomes

qACC,i =

{

ρivfree,i, if ρi ≤ ρACC,crit,i

1
hdes

(1− ρiLveh) , if ρi > ρACC,crit,i

(31)
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For typical values of hdes = 0.5 s, Lveh = 4m, and vfree,i = 120 km/h, we obtain
ρACC,criti=48.39 veh/km and the speed-density and flow-density curves shown
in Figure 9. The flow-density curve illustrates that traffic with IVs will always
yield a better performance than that of human drivers, and it also shows that
the maximum flow is more than doubled.

Remark 3. The value of ρACC,crit,i in (30) was determined without considering
the inter-platoon separations. So for platoon-based AHS the capacity flow will
be somewhat smaller, also depending on the (average) platoon size.

Therefore, we will now determine a more refined expression for the critical
density ρ̃platoon,crit,i by considering the inter-platoon separations. We consider
a given platoon p and assume for the sake of simplicity that the vehicles in the
platoon are numbered 1 (last vehicle), 2 (one but last vehicle), . . . , np (platoon
leader). We will determine the critical density ρ̃platoon,crit,i by approximating
the average space headway si in segment i in terms of inter-platoon distances
and length of platoons. The speed-dependent length Lplatoon,p of the platoon is
given by

Lplatoon,p = (np − 1)S0 + (np − 1)hdes,intravnp
+ npLveh , (32)

where S0 the minimum safe distance that is to be maintained at zero speed,
hdes,intra is the desired time headway for vehicles inside the platoon, vnp

the
speed of the platoon (leader), and Lveh the (average) length of the vehicles.

The inter-platoon distance Splatoon,p for the platoon can be expressed as fol-
lows:

Splatoon,p = Sinter + hdes,intervnp
, (33)

where Sinter the minimum inter-platoon safe distance that is to be maintained at
zero speed, hdes,inter is the desired time headway for platoons, and vnp

the speed
of the platoon (leader).

From (32) and (33) it follows that the average space headway si in segment
i is given by:

si =
Lplatoon,p + Splatoon,p

np

=
Sinter + hdes,intervnp

+ (np − 1)S0 + (np − 1)hdes,intravnp
+ npLveh

np

.

Hence, the maximal density ρ̃platoon,crit,i with platoons of IVs is given by

ρ̃platoon,crit,i =
1

si

=
1

(

hdes,inter
1
np

+ hdes,intra
np−1
np

)

vnp
+ Lveh + Sinter−S0

np
+ S0

.

(34)

Note the similarity between this equation and (30).
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Figure 9: Fundamental diagram for IVs

4.3. A METANET-like macroscopic model for IVs

The METANET model is a second-order macroscopic traffic flow model for
human drivers that has been proposed by Papageorgiou and his co-workers
[21, 22, 28, 31]. The METANET model is discretised in time and space. As it
deals with macroscopic variables rather than the variables or states of individual
vehicles, it is suited for on-line computational purposes. In order to make the
METANET model suitable for IVs, we will integrate the traffic flow equations
for IVs presented in Section 4.2 into the existing METANET model.

The METANETmodel can be classified as destination-oriented or destination-
independent. Since we will use the METANET model for solving routing prob-
lems, we will adopt the destination-oriented model, which explicitly models the
traffic flows for different destinations. The METANET model consists of link
equations and node equations (nodes can represent a junction or a bifurcation
point). The link model describes the behaviour of the traffic in the highway
stretches, and the node model describes the behaviour of the traffic at the
nodes in the network. At each node with two or more outgoing links, the model
associates splitting rates to each reachable destination from that node. These
splitting rates describe how the traffic flow at the node destined to a particular
destination must be distributed among the set of leaving links.

For the simulation of splitting rates with human drivers, the choice of driver’s
decision is based on the user optimum strategy (determined by selecting the
shortest route under free-flow conditions for each user). However, in the case
of AHS, the splitting rates can considered to be a controllable input, since here
the traffic management system has full control over the IVs. Therefore, in
the controlled cases, the splitting rates are determined by MPC-based control
approach, which is primarily aimed at providing system optimum solutions (i.e.,
minimising the total system costs). These splitting rates are then imposed by
the traffic management control centres.

4.3.1. Link model

The METANET model represents a network as a directed graph with the
links corresponding to freeway stretches as shown in Figure 10. Each freeway
link has uniform characteristics, i.e., no on-ramps or off-ramps, and no major
changes in geometry. Where major changes occur in the characteristics of the
link or in the road geometry (e.g., on-ramp or an off-ramp), a node is placed.

22



traffic flow

freeway link m

. . .. . .segment 1 segment i segment Nm

Figure 10: Freeway link in METANET

In the METANET each link m is divided into Nm segments with length Lm.
The number of lanes on link m is denoted by λm. The traffic flow in segment
i of link m destined to destination j at time step k is characterised by three
macroscopic variables:

• space-mean speed vm,i(k) [km/h]

• partial density ρm,i,j(k) [veh/km/lane]

• traffic flow qm,i(k) [veh/h]

where time step k corresponds to time instant t = kTs where Ts is the simulation
time step (typically around 10 seconds) and where we set ρm,i,j(k) = 0 for all
i, k if destination j is not reachable from link m

Note that we use partial densities ρm,i,j(k) to distinguish between traffic
flows with different destinations. However, the same mean speed vm,i(k) is as-
signed to all the vehicles travelling in a segment irrespective of their destination.

The segment length Lm is usually in the range of 0.5 to 1 km. For stability
reasons, a vehicle travelling in a segment at its free speed is not allowed to pass
the segment in one simulation time step. So, the following condition should be
satisfied:

Lm > vfree,mTs (35)

where vfree,m is the free-flow speed in link m (a typical value of vfree,m is
120 km/h). Note that for the values of Lm, vfree,m, and Ts given above this
condition is satisfied.

For each segment in a link, for all possible destinations reachable via the
link, the conservation of vehicles in a segment can be expressed as

ρm,i,j(k+1) = ρm,i,j(k)+
T

Lmλm

(γm,i−1,j(k)qm,i−1(k)− γm,i,j(k)qm,i(k)) (36)

where γm,i,j(k) is the composition rate for the traffic flow in segment i of link
m with destination as j at simulation time step k, defined as:

γm,i,j(k) =
ρm,i,j(k)

ρm,i(k)
(37)

where the total density ρm,i(k) in segment i of link m is defined as

ρm,i(k) =
∑

j∈Jm

ρm,i,j(k)
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with Jm the set of destinations reachable via link m.
The update of the mean speed is calculated based on a convection term, a

relaxation term, and an anticipation term. More specifically, the mean speed in
segment i of link m at the next time step k + 1 is given by

vm,i(k + 1) = vm,i(k) + vfree,m exp

[

−
1

am

(

ρm,i(k)

ρcrit,m

)am
]

+
Ts

Lm

vm,i(k) (vm,i−1(k)− vm,i(k))−
ηTs

τLm

ρm,i+1(k)− ρm,i(k)

ρm,i(k) + κ
(38)

where τ , κ, and η are model parameters and where V (ρm,i(k) can be derived
either for human drivers or for IVs. For human drivers a typical value for τ is
18 s [22]. For IVs this value will be much lower, e.g., 8 s. Typical values for κ and
η are κ=40 veh/km/lane and η=60 km2/h [22]. For human drivers, V (ρm,i(k)
is given by (cf. (26))

V (ρm,i(k)) = vfree,m exp

[

−
1

am

(

ρm,i(k)

ρcrit,m

)am
]

. (39)

The expression of V (ρm,i(k) for IVs is given by (cf. (29)):

V (ρm,i(k)) =

{

vfree, if ρm,i(k) ≤ ρACC,crit,m

1
hdes

(

1
ρm,i(k)

− Lveh

)

, if ρm,i(k) > ρACC,crit,m .
(40)

The partial traffic flow for each segment can be described as follows:

qm,i,j(k) = ρm,i,j(k)vm,i(k)λm (41)

4.3.2. Origin model

Origins receive traffic demand and forward it to the freeway. Origins are
modelled using a simple queue model. The queue length wo,j(k + 1) destined
to destination j at origin o can be determined from the previous queue length
and the total demand do(k) at time step k as follows:

wo,j(k + 1) = wo,j(k) + Tsγo,j(k) (do(k)− qo(k)) (42)

with γo,j(k) is the fraction of the demand travelling to destination j from origin
o. The outflow or service rate at origin qo(k) can be expressed as:

qo(k) = min

[

do(k) +
wo(k)

Ts
, Qcap,o min

(

1,
ρmax − ρµ,1(k)

ρmax − ρcrit,µ

)]

(43)

where Qcap,o is the capacity (veh/h) of the origin o under free-flow conditions,
ρmax is the maximum density of a segment, and µ is the index of the link to
which the origin is connected.

4.3.3. Node model

The node model describes how the traffic should be routed among the set of
entering and leaving links of a node. For a given node n, let In denote the set of
input links, and let On denote the set of output links. The traffic flow Qn,j(k)
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with destination j that enters the node n at simulation step k is distributed to
the output links according to

Qn,j(k) =
∑

µ∈In

qµ,Nµ
(k)γµ,Nµ,j(k) (44)

qn,m,out(k) =
∑

j∈Jm

βn,m,j(k)Qn,j(k) (45)

where qµ,Nµ
(k) is the flow leaving the last segment of link µ, βn,m,j(k) is the

splitting rate in node n that is defined as the fraction of the traffic flow heading
towards destination j that leaves node n via output link m, and qn,m,out(k) is
the total traffic flow that leaves node n via output link m at simulation step k.

The composition rate γn,m,out,j(k) of the traffic flow out of node n into link
m is given by:

γn,m,out,j(k) =
βn,m,j(k)Qn,j(k)

qm,out(k)
(46)

4.3.4. Downstream density

Consider a node n with input linkm ∈ In. Note that the anticipation term of
the speed update equation (38) for segment i of link m contains the downstream
density ρm,i+1(k). Hence, we also need an expression for the downstream density
for the last segment (segment Nm) of link m. To this aim we introduce a virtual
segment Nm+1 at the end of linkm and we capture the effect of the downstream
density of the output links leaving node n by the following expression:

ρm,Nm+1
(k) =

∑

µ∈On
ρ2µ,1(k)

∑

µ∈On
ρµ,1(k)

(47)

where ρµ,1(k) is the density of the first segment of output link µ.

4.3.5. Upstream speed

Similarly as above, when a node n has two or more input links (junction
node), then the downstream speed for the first segment i = 1 of an outgoing
link required in the convection term of (38) is captured by adding a virtual
segment at the beginning of the link and by setting

vm,0(k) =

∑

µ∈In
vµ,Nµ

(k)qµ,Nµ
(k)

∑

µ∈In
qµ,Nµ

(k)
(48)

where Nµ is the index of the last segment of link µ.

4.3.6. Extensions

Hegyi et al. [16, 17] have extended the METANET model to include traffic
control measures such as dynamic speed limits, and mainstream metering, to
account for anticipation behaviour of drivers to varying downstream densities,
and to model main-stream origins. These extensions can also be integrated in
the proposed METANET-like traffic flow model for AHS.
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Figure 11: Schematic view of the MPC structure.

4.4. Model predictive route choice control

Now we use the model of the previous subsection to derive a model-based
predictive control approach that can be used by the area controllers to determine
the optimal splitting rates.

More specifically, we adopt the model predictive control (MPC) scheme [11,
26, 29, 33] (see Figure 11). In the MPC control scheme a discrete-time model
is used to predict the future behaviour of the process, and the MPC controller
uses (numerical) optimisation to determine the control signals that result in
an optimal process behaviour over a given prediction horizon. The resulting
optimal control inputs are applied using a rolling horizon scheme. Let Tc be the
control sample time, i.e., the time interval between two updates of the control
signal settings. For the sake of simplicity we will assume that Tc is an integer
multiple of Ts, i.e., Tc = MTs for some integerM . A typical value for Tc is 1min.
At each control step ℓ the state of the traffic system is measured or estimated,
and an optimisation is performed over the prediction horizon [ℓTc, (ℓ + Np)Tc]
to determine the optimal control inputs, where Np is the prediction horizon.
Only the first value of the resulting control signal (the control signal for control
time step ℓ) is then applied to the process. At the next control step ℓ + 1 this
procedure is repeated.

To reduce the computational complexity and to improve stability often a
control horizon Nc (≤ Np) is introduced in MPC, and after the control horizon
has been passed the control signal is taken to be constant.

There are two loops involved in MPC: the rolling horizon loop and the opti-
misation loop inside the controller. The optimisation loop inside the controller
of Figure 11 is executed as many times as needed to find the optimal control
signals at control step ℓ, for the given Np, Nc, traffic state, and expected de-
mands. The loop connecting the controller and the traffic system is performed
once for each control step ℓ and provides the state feedback to the controller.
This feedback is necessary to correct for (the ever present) prediction errors,
and to provide disturbance rejection (i.e., compensation for unexpected traffic
demand variations). The advantage of this rolling horizon approach is that it
results in an on-line adaptive control scheme that also allows us to take gradual
changes in the system or in the system parameters into account by regularly
updating the model of the system.

For our case the control variables in this set-up are the splitting rates βctrl

at the nodes with more than one outgoing link. The optimisation signals in-
clude the control variables as well as the state variables of the macroscopic
METANET-like traffic flow model for AHS derived above.
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One can also include various constraints such as maximum flows on certain
links, maximal speeds, maximal travel times for selected origin-destination pairs,
etc. Moreover, there is a physical constraint that for a given node the sum of
the splitting rates should be equal to 1:

∑

m∈On

∑

j∈Jm

βctrl
n,m,j(ℓ) = 1 (49)

for all n, k.
A typical objective function to be used is the total time spent (TTS) by

all the vehicles in the network13. This includes both the time spent travelling
through the network and the time spent waiting in the queues, if any. Since
Tc = MTs with M an integer, the time instant t = ℓTc with ℓ the control step
can also be expressed as t = MℓTs. So at control step ℓ we get the following
expression for the total time spent in the period [ℓTc, (ℓ+Np)Tc]:

JTTS(ℓ) =

M(ℓ+Np)−1
∑

l=Mℓ

(

∑

(m,i)∈Lls

ρm,i(l)Lmλm +
∑

(o,j)∈Ood

wo,j(l)

)

Ts (50)

where Lls is the set of all link-segment index pairs (m, i) of the network, and
Ood the set of all origin-destination pairs (o, j). Note that in (50) the expression
between the brackets gives the total number of vehicles present in the links and
queues of the network. This value is multiplied by the simulation time step Ts

and summed to obtain the total time spent.
The control splitting rates βctrl (expressed as a function of the control step

ℓ) are mapped to the splitting rates β of the simulation model (expressed as a
function of the simulation step k) using a zero-order hold strategy, i.e.,

βn,m,j(Mℓ+ l) = βctrl
n,m,j(ℓ) (51)

for l=0,. . . , M − 1.
Minimising JTTS then results in a nonlinear non-convex optimisation prob-

lem with real-valued variables. In general this is an NP-hard problem [15] just
like the original route choice problem. In fact with (50), we now have an op-
timisation problem with real-valued variables, which offers a major advantage
compared to the mixed-integer optimisation of the original route choice problem
of Section 3.7, since the real-valued optimisation will require a lower computa-
tional effort to find (sub)optimal solutions.

To solve the nonlinear optimisation problem we can use a global or a multi-
start local optimisation method such as multi-start sequential quadratic pro-
gramming, pattern search, genetic algorithms, or simulated annealing [32].

The optimisation problem (cf. (49) – (51)) is a nonlinear, non-convex opti-
misation problem, which in general is NP-hard [15]. Therefore, the computa-
tional effort and the CPU time required for solving the problem will increase
tremendously for realistic traffic scenarios. In such cases, we can use distributed
controllers and high speed parallel processors to tackle the complexity of the
problem. For large networks, we can use area and regional controllers as de-
scribed in our paper [6], where regional controllers provide control inputs (using

13Note however that other (multi-objective) performance criteria can also be included easily.
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Figure 12: Set-up of case study network of Section 4.5

Period (min) 0–10 10–30 30–40 40–60
Do1,d1

(veh/h) 5000 8000 2500 0
Do1,d2

(veh/h) 1000 2000 1000 0

Table 3: Demand profiles used in the case study of Section 4.5

MPC) on links to area controllers. For sub-networks, fast MPC methods can
be developed as shown in paper [24], where fast MPC is effectively applied for
traffic sub-networks with up to 17 nodes and 46 links. Our proposed approach
should be able to tackle the networks of a similar size. Fast MPC approaches
for other application are described in [7, 14].

4.5. Case study

Now we present a simple case study involving a basic set-up to illustrate the
area-level control approach for AHS proposed in this section. First, we describe
the set-up and the details of the scenario used for our simulations. Next, we
discuss and analyse the obtained results.

4.5.1. Scenario

We consider a simple network of highways with one origin o1 and two desti-
nations d1, d2, and three internal nodes v1, v2, and v3 (see Figure 12). Note that
this example is similar to the one of Section 3.8. However, due to the different
type of model used, the way the case study is specified will differ.

The network of Figure 12 consists of three links14 connecting o1 to v1, v2
to d1, and v3 to d2, as well as six links connecting the internal nodes allowing
four possible routes to each destination (e.g., d1 can be reached via l2, l3, l4+l9,
and l5+l9). In Figure 12, the value within brackets indicates the number of
segments (Nm) in that particular link. The length of a segment (Lm) in any
link is taken to be 1 km.

We consider three different cases (due to the use of two fundamental dia-
grams):

• Case A: no control case with human drivers,

• Case B: controlled case with humans drivers,

14In contrast to the example of Section 3.8 we now explicitly consider these origin and
destination links in order to account for the effect of the boundary conditions.
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• Case C: controlled case with platoons.

We use the following values for the parameters of the METANET(-like)
model for all the links (see also [22] and the previous subsections): vfree=120 km/h,
a = 1.867, κ=40 veh/km/lane and η=60 km2/h. For the case of human drivers
we use ρcrit=33.5 veh/km/lane, τ=18 s, and the fundamental V –ρ relation (39),
while for the IV case we use ρcrit =48.39 veh/km/lane, κ=40 veh/km/lane and
η=60 km2/h, τ=8 s 15, and the fundamental V –ρ relation (40). We have Sinter

= 20m, S0 = 3m, hdes,intra = 0.5 s, hdes,inter = 1.2 s for all vehicles 16.
We simulate a period of 60min. The simulation time step Ts is set to 20 s

and the control sample step Tc is set to 20 s as well. The demand pattern is
piecewise constant during the simulation period and is given in Table 3. The
demand to be processed in the period [10,30] will be higher than the capacity
of the network, giving rise to an origin queue for each destination. For the
proposed scenario the initial state of the network is taken to be empty. We
choose Np = 20 and Nc = 6. For the sake of simplicity we take the simulation
model to be equal to the prediction model.

4.5.2. Control problem

The control variables considered for this case study are the splitting rates
βctrl
n,m,j(ℓ) associated with all reachable destinations via outgoing links for each

internal node for ℓ = 0, 1, . . . , Nsim − 1 where Nsim = 180 is the total number
of simulation or control steps (of length Ts = 20 s) within the entire simulation
period of 60min.

Since it makes no sense to send vehicles reaching node v2 and going to
destination 1, towards link l8 we set βctrl

v2,l6,1
(ℓ) = 1 and βctrl

v2,l8,1
(ℓ) = 0 for all

ℓ. Likewise, we set βctrl
v2,l6,2

(ℓ) = 0 and βctrl
v2,l8,2

(ℓ) = 1 for all ℓ. For node v3

we have similar expressions: βctrl
v3,l7,1

(ℓ) = 0 and βctrl
v3,l9,1

(ℓ) = 1, βctrl
v3,l7,2

(ℓ) = 1,

βctrl
v3,l9,2

(ℓ) = 0 for all ℓ. So in fact the actual optimisation variables are βctrl
v1,m,j(ℓ)

for m = l2, l3, l4, l5 and j = 1, 2.
We have the following constraints (cf. (49)):

βctrl
v1,l2,j

(ℓ) + βctrl
v1,l3,j

(ℓ) + βctrl
v1,l4,j

(ℓ) + βctrl
v1,l5,j

(ℓ) = 1

for j = 1, 2 and for all ℓ.
The goal of our area controller is to improve the traffic performance. The

objective that we consider for our case study is minimisation of the total time
spent (TTS) by all the vehicles in the network using routing as the control
measure. The TTS for the entire simulation period can be expressed as (cf.
(50)):

JTTS,sim =

Nsim−1
∑

k=1

(

∑

(m,i)∈Lls

ρm,i(k)Lmλm +
∑

(o,j)∈Ood

wo,j(k)

)

Ts (52)

where Lls is the set of all link-segment index pairs (m, i) of the network, and
Ood the set of all origin-destination pairs (o, j).

15Determining appropriate values for τ for IVs is indeed an important topic for our future
research.

16Please note that our framework assumes that the vehicles in the platoons are equipped
with V2V and CACC.
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Case JTTS,sim improvement
(veh.h) (%)

no control 686.28 0%
controlled human 670.91 3%
controlled IVs 366.07 46%

Table 4: Results for the case study of Section 4.5. The improvement is expressed with respect
to the no-control case with human drivers.

4.5.3. Results and analysis

The results of the numerical experiments are listed in Table 4.
In case of no control (Case A), the capacities of the direct links l1, l2, l3,

and l4 are consumed up to their maximum while the links l8 and l9 are not used
due to the fact that all vehicles and platoons want to take the shortest routes.
At the point when the demand exceeds the maximum capacity of the links, an
origin queue is formed. As the simulation advances, the queue length increases
with time, thus leading to a huge total time spent.

For the controlled cases (Cases B and C) the area controller assigns the
splitting rates at the internal node v1 and routes the traffic flow (human drivers
or platoons) in a system-optimum manner such that the traffic performance is
improved. When platoons of IVs are deployed in the traffic system, the traffic
performance is improved more than the human drivers case. For these cases we
have used the SQP function SNOPT, implemented via the function snopt of the
Matlab Tomlab toolbox and applied in a multi-start mode with 20 different ran-
dom initial starting points to compute the optimal splitting rates. Compared to
Case A this results in a performance improvement of about 3% for Case B and
of about 46% for Case C. In Table 417, the main improvement in the controlled
approach is obtained from automated platooning (along with advanced intelli-
gent vehicle techniques such as CACC, ISA, dynamic route guidance system,
etc.).

5. Interface between area and roadside controllers

The area controllers will provide flow targets to the roadside controllers (e.g.,
using the approaches proposed in Sections 3 and 4), which then have to control
the platoons that are under their supervision in such a way that these targets
are met as well as possible. In practice, we could implement the control using
dynamic tolling systems, interaction with on-board route guidance devices, etc.
In our AHS framework, the area and roadside controllers use a different level
of representation of the traffic. However, consistency between the macroscopic
traffic characteristics (such as flows, splitting rates) and the platoons has to be
established to ensure efficiency of the approach. Hence, our approach requires
an interface between these controllers, which is implemented as follows.

Once the optimal target flows are determined by the area controller, the
roadside controller has to realise the target flows on each link as well as possible
by using the available control measures such as speed limits, ramp metering,

17On a 1 GHz Athlon 64 X2 Dual Core 3800+ processor with 3 GB of RAM.
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route guidance, and lane allocation control. (see paper [2]). In order to achieve
the specified optimal flows on the links, the roadside controller will use MPC
and a performance criterion based on the minimisation of the difference between
the reference flows and the actual flows. The roadside controller is aware of the
complete information of the IVs (i.e., position, speed, lane, origin, destination)
and hence can determine the actual flow xl,o,d(k) on each link l for all (o, d) ∈
O×D. At each control step ℓ, the roadside controller will be updated with this
flow information. Let Trd be the control sample time for the roadside controller.
For the sake of simplicity we will assume that Trd is an integer multiple of Ts

(and an integer divisor of the area control sample time Tc). Let Trd = PTs for
some integer P . The performance function Jperf used by the roadside controller
at control step ℓ is then given by

Jperf(ℓ) =

(ℓ+Np)P−1
∑

k=ℓP

∑

(o,d)∈O×D

∑

l∈Lo,d

(xopt
l,o,d(k)− xl,o,d(k))

2 (53)

where x
opt
l,o,d(k) is the optimal flow — as specified by the area controller — of

vehicles from origin o to destination d that enter link l in the time interval
[kTs, (k + 1)Ts).

6. Summary

We have considered the optimal route guidance problem for AHS. Since
the resulting optimisation problem is a nonlinear mixed-integer optimisation
problem that in general is too involved for on-line, real-time implementation, we
have explored approximations resulting in simplified but fast simulation models
that yield mixed-integer linear or nonlinear real-valued optimisation problems,
for both of which efficient solvers exist.

The first approach we have proposed is based on a simplified model that
describes the movement of the platoons in the network via flows. We have
shown that using this model the optimal route choice control problem can be
approximated by a linear or a mixed-integer linear problem. With a case study
we have illustrated that the resulting approach can offer a balanced trade-off
between computational efficiency and optimality.

In the second approach we have developed a new model to describe the flow of
platoons in AHS based on the macroscopic METANET traffic flow model, which
has been adapted to fit the case of platoons of intelligent vehicles equipped with
ACC. This model has subsequently been used in a model predictive control
approach for determining optimal splitting rates of the platoon flows at the
nodes in the network. This approach has also been illustrated via a simple case
study.

Since our framework is a generic approach, we can also use MPC for MILP
routing methods and use optimal control for the METANET case.

The proposed approach allow area controllers in a hierarchical traffic man-
agement system for AHS to determine optimal flows and splitting rates. The
lower-level roadside controllers can then translate these flows and splitting rates
into actual route instructions for the platoons.

In our future research, we will extensively compare the two approaches (using
a microscopic model as simulation model), assess the effects of routing in ad-
dition to platooning, consider more extensive case studies, include and explore
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the platoon formation mechanism, carry out an in-depth analysis of circum-
stances under which Remark 2 (about allowing vehicles closer to their destina-
tion than at the periphery) applies, and assess the performance improvement of
the proposed approaches with respect to an approach based on mixed-integer
optimisation for the original route choice problem. We will also investigate the
coordination and mutual interaction between various area controllers and be-
tween the area controllers and the roadside controllers. In addition, we will
perform simulations for different sets of parameter values for the platoons(for
both CACC and regular ACC), investigate the scalability of our approach, and
assess the size of the networks our approach can be applied to in practice.
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