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Abstract—This paper considers the routing problem of DCVs
in state-of-the-art baggage handling systems. In previous work,
this problem was considered within the framework of model
predictive control, where the optimization problem was recast
as a mixed integer linear programming problem. We make two
significant improvements with respect to this previous work. We
show that by choosing an alternative model, the optimization
problem can be recast as a linear programming problem, which
has significant computational advantages. Furthermore, we use
a new cost function that reflects the control objectives in a better
way. This leads to a computationally efficient routing controller.

I. INTRODUCTION

Many big airports nowadays implement modern baggage

handling systems. Such systems help to automate the baggage

handling process in an efficient way achieving high baggage

throughput otherwise unreachable by traditional baggage han-

dling systems. This enables the airport to accommodate higher

baggage demands with less delays, hence reducing the baggage

handling costs. State-of-the-art baggage handling systems are

composed of the following elements: loading stations, where

the luggage originating from a check-in desk or a transit

flight enters the system; unloading stations, which are the

final destinations of the luggage from where the luggage are

transported to the aircraft; a network of tracks that connects

the loading stations to the unloading stations; and destination

coded vehicles (DCVs), which are high-speed vehicles moving

on the network of tracks transporting pieces of luggage from

their origins (loading stations) to their destinations (unloading

stations). The tracks of the network are composed of links con-

nected via junctions. At each junction a switch will determine

the next link to travel along. Given the origin and destination

for each DCV, the switch controller determines a route for

each DCV by manipulating the switches.

From a control perspective there are usually two sets of

control challenges associated with modern baggage handling

systems; low-level control issues and high-level control issues.

Low-level control problems are mostly related to the safety
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and operational requirements of the baggage handling system

such as controlling the speeds of the DCVs, keeping a mini-

mum safe distance between two consecutive DCVs traveling

on the same link, collision avoidance, synchronization of

loading each piece of baggage into a DCV, etc. High-level

control problems relate to the performance requirements of

the baggage handling system such as on-time delivery of

the baggage at the unloading stations and minimizing the

energy consumption and wear and tear due to switching and

dispatching of DCVs.

The high-level control issues can be further divided into three

categories: i) routing of DCVs, ii) line balancing, and iii)

empty-cart management. The routing problem is the problem

of assigning a route for each DCV from its origin to its

destination such that a certain performance criterion is satisfied

[1], [2]. Once the DCVs deliver the baggage at the end point,

they have be re-assigned to the loading stations. Line balancing

is the problem of dynamically assigning empty DCVs to the

loading stations [3]. Very closely related to this problem,

is empty-cart management, which is the problem of route

assignment for empty DCVs from their end points to the

loading stations such that they cause as little interruption as

possible with the flow of loaded DCVs.

In [2], optimal control and model predictive control (MPC)

based schemes are developed for dynamic route assignment

of DCVs by controlling the switches at the junctions in an

optimal way. Of particular interest are the MPC approaches

due to their capability to directly include constraints. One

particular approach in [2] is MPC-based routing based on

flow models, where it is shown the associated optimization

problem can be recast as a mixed integer linear program

(MILP). However, for a large-scale baggage handling system,

MPC based on MILP (MILP-MPC) with a large prediction

horizon becomes computationally prohibitive [1], [4]. To avoid

this issue, in [2] a short prediction horizon was used, which

comes at the cost of a loss in performance.

In this paper, the dynamic route assignment problem for DCVs

considered in [2] is revisited. A slightly different flow-based

model of the baggage handling system is presented, which will

be used within the framework of MPC to compute optimal



routes for DCVs. In particular, we will show that using this

model, the associated optimization problem can be recast as

a linear program. This allows us to achieve a better closed-

loop performance, in a feasible amount of time, by choosing

longer horizons. As a second improvement with respect to the

work of [2], the cost function will be modified in such a way

to better reflect the control requirements, hence improving the

overall performance of the closed-loop system.

II. COMMON NOTATION AND ASSUMPTIONS

First, we will present some notation and assumptions that

are common for the model of [2] and the alternative model,

which will be presented in Section V. We make the following

assumptions:

A0 Each link in the network of tracks belongs to at least one

directed path from an origin node (i.e., a loading station)

to a destination node (i.e., an unloading station).

A1 A DCV is present at the loading station whenever a piece

of baggage arrives.

A2 There is a unique outgoing link for each loading station

and a unique incoming link for each unloading station.

A3 The movement of the DCVs is approximated by contin-

uous flow variables.

A4 The DCV queue lengths are very short compared to the

length of the link and the DCV travel time on each link

is an integer multiple of the controller sampling time Ts.

By Assumption A0, there are no redundant links in the

network. By Assumption A1, the pieces of baggage are im-

mediately dispatched from the loading stations as they arrive.

This also implies that we do not need to distinguish between

baggage flows and DCV flows within the system. Otherwise,

the movement of empty DCVs from the unloading stations to

the loading stations would have to be modeled as well. One

then needs to distinguish between baggage and DCV flows.

Assumption A2 is necessary to properly define the inflow

of the link connected to a loading station and the outflow

of the link connected to an unloading station. Assumption

A3 is necessary for tractability of the control problem. Even

though the number of DCVs is an integer in reality, for a

fairly large number of DCVs, the movement of DCVs can be

approximated by continuous flows without introducing a large

error. The actual time required to travel from the beginning

of the link to the end of the link depends on the length of

the DCV queue, which is formed at the end of the link.

However,by assumption A4, when the queue lengths are small

compared to the length of the links, the variation in the travel

time is negligible.

The baggage handling system can be represented by a directed

graph G = (V, L) with V = Vorg∪Vinter∪Vdes, where the Vorg is

the set of origin nodes, Vinter is the set of intermediate nodes,

and Vdes is the set of destination nodes. The set of links of

the network is L = Lorg ∪ Linter ∪ Ldes, where Lorg is set of

origin links (i.e., the links that are directly connected to the

loading stations), Linter is the set of intermediate links, and Vdes

is the set of destination links (i.e., the links that are directly

connected to the unloading stations).

III. ORIGINAL MODEL

In this section we briefly present the flow-based model as

proposed in [2]. The model uses the nodes of the graph to

describe the system. First we consider the following notation:

• Ld denotes the set of links that are on some directed path

to destination node d, d ∈ Vdes.

• Lin
v is the set of incoming links of node v, v ∈ V .

• Lout
v is the set of outgoing links of node v, v ∈ V .

• For each d ∈ Vdes and for each o ∈ Vorg, Qo,d(k)
is the baggage inflow (demand) at origin node o with

destination d during the time interval [kTs, (k + 1)Ts),
with Ts being the sampling time.

For each destination node d ∈ Vdes and for each link l ∈
Ld, ql,d(k) is defined as the flow of DCVs moving towards

destination node d that enter link l during the time interval

[kTs, (k+1)Ts). This model assumes that at each node v, with

exception of destination nodes, the DCVs stack up in vertical

queues according to their destination. The queue lengths at

destination nodes are considered to be zero. This is because

we assume either destination nodes have unlimited capacity or

there is no restriction on the outflow of destination nodes so

the baggage are immediately taken to the planes upon arrival.

Let xv,d(k) denote the length of the vertical queue at node v
for DCVs going to destination node d ∈ Vdes during the time

interval [kTs, (k+1)Ts). Then, the evolution of queue lengths

in discrete time is given by

xv,d(k + 1) = max
(

0, xv,d(k) + Ts(F
in
v,d(k)− F out

v,d(k))
)

(1)

where F in
v,d(k) is the total inflow of node v to destination d

being defined as

F in
v,d(k) =







Qv,d(k) if v ∈ Vorg
∑

l∈ Lin
v
∩ Ld

ql,d(k − kl) if v /∈ Vorg
(2a)

with klTs being the travel time on link l1. F out
v,d(k) is the total

outflow of node v to destination d being defined as

F out
v,d(k) =

∑

l∈Lout
v
∩Ld

ql,d(k) (2b)

In [2], it is assumed the total outflow from node v satisfies

the following condition:

F out
v,d(k) ≤ F in

v,d(k) +
xv,d(k)

Ts

(3)

Additionally, the following constraints on the DCV queue

lengths and on the total DCV flows of the links are imposed:
∑

d∈Vdes

xv,d(k) ≤ xmax
z (4a)

∑

d∈Vdes

ql,d(k) ≤ qmax
l (4b)

where xmax
v is the maximum queue length at node v and qmax

l

is the maximum flow on link l.

1Assuming a constant speed for DCVs vDCV, kl is given by kl =
sl

TsvDCV
,

where sl is the length of link l.



The evolution of the queue length as given by (1) is a

piecewise affine function in the control variable ql,d(k). By

introducing some binary variables as described in [5], the

evolution of the queue lengths as well as the above mentioned

constraints is recast as system of equalities and inequalities of

the following form [2]:

xk+1 = µeq(xk, qk)

µineq(xk, qk) ≤ 0

where xk is the state vector that includes all queue lengths

xv,d(k) for (v, d) ∈ V × Vdes and delayed samples of ql,d(k)
and Qo,d(k), and qk is the input vector that includes all flows

ql,d(k) for each l ∈ Ld and each d ∈ Vdes.

IV. REAL AND VIRTUAL FLOWS

k k + 1

lDCV(k)

Fig. 1. Evolution of a queue length associated with real flow (solid line) and
virtual flow (dashed-line) models between time-steps k and k+1. The queue
length computed using the virtual flow model is only valid at time instants
kTs and (k+1)Ts whereas the one of real flow is valid for the whole interval.

The model presented in [2] is based on “real flows”, which,

for a sufficiently small sampling time, can model the evolution

of the queue lengths during the time interval [kTs, (k+1)Ts).
However, if we are only interested in the queue lengths at time

instants kTs, “virtual flows” can be used, where the flows are

artificially restricted such that the queue lengths are always

non-negative during the time interval [kTs, (k + 1)Ts). Note

that the two models yield the same queue lengths at time

instants t = kTs for integer k. The difference between these

two models is highlighted in Fig. 1

Even though [2] uses (1) to describe the evolution of queue

lengths using the ”real flows“, it is easily observed that

constraint (3) restricts the flows such that the queue lengths

will never be zero during the time interval [kTs, (k + 1)Ts).
This is essentially equivalent to modeling the system with

virtual flows, which makes the max operator in (1) redundant.

However, this fact is not noticed in [2] as the model is

expressed by mixed linear equalities and inequalities as men-

tioned in Section III. Since [2] uses a linear objective function,

the optimal control problem in [2] is an MILP problem.

V. NEW ALTERNATIVE MODEL

This model is based on the links of the graph. The queue

lengths are associated with the links and the control variables

are defined as the flow of DCVs from a link to its neighbor

links. In a similar manner to the model in [2], the flows are in-

dexed by their destination, enabling us to distinguish between

baggage with different destinations. This is important as the

baggage must end up in the right destination. Accordingly, at

the end of each link l ∈ L there is a partial queue of DCVs

associated with destination d ∈ Ldes. Consider the following

notation:

• Ld denotes the set of links that are on some directed path

to destination link d, d ∈ Ldes.

• Lin
l is the set of incoming links of link l, l ∈ L.

• Lout
l is the set of outgoing links of link l, l ∈ L.

• For each d ∈ Ldes and for each o ∈ Lorg, Qo,d(k) is the

baggage inflow (demand) at origin link o with destination

d during the time interval [kTs, (k + 1)Ts).

For each link l ∈ Ld and each link p ∈ Lout
l and each d ∈ Ldes,

we define the control variable qdl,p(k) that is the partial flow

of DCVs with destination link d from link l to link p during

the time interval [kTs, (k+1)Ts). Accordingly, xd
l (k) denotes

the partial queue length at the end of link l associated with

destination link d. The total inflow of DCVs, associated with

destination link d, to link z is given by

F in
l,d(k) =















∑

p∈Lin
l

qdp,l(k) if l ∈ Ld ∩ (Linter ∪ Ldes)

Ql,d(k) if l ∈ Ld ∩ Lorg

0 otherwise

(5)

Equation (5) states that the total inflow to link l ∈ Ld

with destination link d ∈ Ldes is the sum of the flows with

destination link d from the incoming links of l. Obviously,

if l is not on a path to destination link d, its inflow with

destination d is zero. If l is an origin link (i.e., l ∈ Lorg), then

its inflow with destination d is equal to the demand.

The total outflow of DCVs, associated with destination link d,

from link l is given by

F out
l,d (k) =















∑

p∈Lout
l
∩Ld

qdl,p(k) if l ∈ Ld ∩ (Lorg ∪ Linter)

F in
l,d(k − kl) if l ∈ Ld ∩ Ldes

0 otherwise
(6)

Equation (6) states that the total outflow of link l ∈ L with

destination link d ∈ Ldes is the sum of flows with destination

link d from link l to each outgoing link that is on a path to the

destination link d. Clearly, if l is not on a path to destination

d, its outflow to destination link d is zero. If l is a link that is

directly connected to an unloading station (i.e., l ∈ Ldes) then

its outflow to destination d is considered to be equal to the

delayed version of its inflow. This implies that there will be

no queue shaping up at the end of such link.

Finally, the evolution of the partial queue length of DCVs with

destination link d at the end of link l, xd
l in discrete time is

given by

xd
l (k + 1) = xd

l (k) + Ts(F
in
l,d(k − kl)− F out

l,d (k)) (7a)

xd
l (k) ≥ 0 (7b)

qdl,p(k) ≥ 0 (7c)

where Ts is the sampling time of the system and kl is the

number of time steps that the DCVs need to travel the length



of link l. The control variables are the partial outflows qdl,p(k).
Equation (7a) describes the evolution of the queue lengths.

Constraint (7b) is equivalent to (3). Constraint (7c) guarantees

non-negativity of the control variables. Let x(k) be the state

vector that includes all queue lengths xl,d(k) and delayed

samples of qdl,p(k) and Qo,d(k) and let q(k) be the input vector

that includes all flows ql,d(k), we obtain

x(k + 1) = Ax(k) +B1q(k) +B2d(k)

x(k) ≥ 0

q(k) ≥ 0

where d(k) is the demand vector composed of all individual

demand Qo,d(k) and the matrices A, B1, and B2 are defined

properly.

VI. OPTIMAL CONTROL PROBLEM

In this section, we define the MPC problem for routing the

DCVs through the network. At each controller sampling time,

given the current state of the system as the initial state and an

estimate of future demand, the model presented in Section V

is used to predict the trajectories of the system. Based on this

prediction, a constrained optimal control problem is solved

over a horizon yielding an optimal sequence of control actions.

According to the receding horizon policy, only the first step

of such sequence will be applied to the system. This process

is then repeated at the next controller sampling time [6].

The objective function must reflect the following performance

criteria: i) the pieces of baggage assigned to a certain des-

tination (unloading station) must be reach the destination

within a given time window, ii) the energy consumption of

the system should be minimized. The time window represents

the time duration in which the end point is ready to receive

the luggage. It is undesirable to have the luggage arrive at the

destination out of this time window. If the pieces of luggage

arrive too late, they will miss the flight. Too early arrival

of the luggage to the destination point also might inflict a

high cost on the operator for storing them until they can be

loaded on the plain. The energy consumption is associated

with manipulating the actuators in the system and wear and

tear inflicted on the actuators. There are two contributors to

the energy consumption in the system: i) movements of DCVs

in the system, which is related to the magnitude of DCV

flows, and ii) variation in the DCV flows. This is particularly

important when the DCV flows obtained here will be realized

using switch controllers at each junction of the network.

The variation in the flow then translates to the frequency of

switching.

The constrained linear model proposed in Section V cannot

determine the time instant at which a certain flow of baggage

reaches to its destination explicitly. However, we can consider

a cost function to indirectly penalize baggage arrival time

deviation from a given time window. The cost function is

composed of three penalty terms. The first penalty term

penalizes the queue lengths being defined as

J tw
d (k) = C tw

d (k)
∑

l∈Ld

xd
l (k) (8)

where C tw
d (k) as illustrated in Fig. 2 is given as

C tw
d (k) =











0 if k ≤ kopen

d

ctw(k − kopen

d ) if kopen

d < k ≤ kclose
d

ctw(kopen

d − kclose
d ) if k > kclose

d

(9)

where kclose
d and kclose

d are respectively the opening time instant

and closing time instant of destination d. Since the C tw
d (k) is

zero before the destination is open, the queue lengths associ-

ated with destination d are not penalized before the destination

is open. Therefore, the controller will not try to minimize the

cost by increasing the DCV flows to destination d to reduce the

queue length of DCVs associated with destination d. During

the time window the penalty of DCV queues to destination

d increases linearly with time. This will make the controller

send more DCVs to destination d as the end of time window

is approaching. The penalty function saturates to its maximum

value at the end of time window otherwise late arrival of DCVs

would be preferred.

In line with this objective, the second penalty term penalizes

the flows given by

Jflow
d (k) = Cflow

d (k)
∑

l∈Ld

∑

p∈Lout
l
∩Ld

qdl,p(k) (10)

with Cflow
d as depicted in Fig. 3 being

Cflow
d (k) =











−cflow
1 (k − kopen

d ) if k ≤ kopen

d

0 if kopen

d < k ≤ kclose
d

cflow
2 (k − kclose

d ) if k > kclose
d

(11)

Before the opening time of the destination d, all flows to

destination d are assigned a large penalty that is reducing

linearly as the opening time is approaching. During the time

window the penalty term is zero, which allows sending more

DCVs to destination d. After the time window, the penalty

term increases with time to penalize late arrival of DCVs.

However, the slope is smaller to allow late luggage to reach

destination.

The last two terms of the cost function penalize the energy

consumption. We consider a the following penalty terms:

J e(k) =
∑

d∈D

∑

l∈Ld

∑

p∈Lout
l
∩Ld

qdl,p(k) (12)

J sw(k) =
∑

d∈D

∑

l∈Ld

∑

p∈Lout
l
∩Ld

|qdl,p(k)− qdl,p(k − 1)| (13)

The total cost at time step k is therefore given as

J(k) =
∑

d∈D

J tw
d (k) + α1

∑

d∈D

Jflow
d (k) + α2J

e(k) + α3J
sw(k)

(14)

where 0 < αi is the weight factor showing the relative

importance of the associated term in the objective function.



The MPC performance index over the prediction horizon of

Np is thus given as

J(k,Np) =

k+Np−1
∑

i=k

J(i) (15)

Now we would like to highlight the following remarks:

R1 The plots of Fig. 2 and Fig. 3 show respectively coeffi-

cients of the penalty terms (8) and (10), not the penalty

terms themselves. In fact, at the given time step k and for

a prediction horizon Np the value of this coefficients is

known for k, . . . , k+Np−1. Therefore, these coefficients

have fixed values and hence the associated penalty terms

(8) and (10) are linear in the control variable.

R2 By introducing some dummy variables according to stan-

dard techniques in optimization [7], terms of the form

(13) can be recast as a linear programming problem with

linear constraints.

Therefore, at every time step k we solve the following opti-

mization problem:

min
y(k)

F Ty(k) (16)

subject to

Cy(k) ≤ b (17)

where the vector F is defined based on the MPC objective

function (14) and the vector y(k) includes the control inputs

q(k), . . . , q(k+Np−1) and the dummy variables mentioned in

Remark R2. Moreover, b is a constant vector that depends on

the current state x(k) and the demand values d(k), . . . ,d(k+
Np − 1).

t
t

open

l
t

close
l

C
TW
d

Fig. 2. The coefficient for the queue length penalty term.

t
t

open

l
t

close
l

C
flow
d

Fig. 3. The coefficient for the flow penalty term.

VII. CASE STUDY

In this section we will illustrate the closed-loop performance

of our LP-based control scheme under a given scenario for the

simulation parameters listed in Table. I, where the numerical

values for the average speed of DCVs vDCV, the sampling time

10m

4m

4m

4m

4m

6m

8m

8m

6m 8

2
1

3

6

47

5

9

Fig. 4. The network layout. The link label (in circle) and the length of each
link in meter is shown next to each link.

TABLE I
SIMULATION PARAMETERS

vDCV

[m/s]
Ts

[s]
Np Nsim α1 α2 α2

2 1 15 40 1 1 1

Ts, the prediction horizon Np, the total number of simulation

steps Nsim and the weights used in (15) are listed. Then we also

compare our method with the MILP-based controller based on

the work in [2] in the sense of computational efficiency.

We consider the network layout depicted in Fig. 4, in which

the length of each link in meter is indicated. The loading

stations are connected to links 1 and 2. The destination

links are links 6 and 8. A demand profile as shown in

Fig. 5 arrives at the loading stations. We have assigned the

time window [10Ts, 17Ts] for destination link 6 and the time

window [20Ts, 25Ts] for destination link 8. The demands with

destination link 6 originate from origin links 1 and 2 and

arrive at destination link 6 via links 1, 3 or 6. The demands

with destination 8 originate from origin link 2 and arrive at

destination link 8 via links 4 or 9. Note that there is no path

from the origin link 1 to destination link 8. Hence, the demand

to destination 8 can only originate from origin link 2.

To analyze the optimal performance of the system, we consider

the flow of DCVs arriving at the destination links. See Fig. 5.

It it observed from Fig. 6(a) that the flows arrive within the

specified time window for destination 6. The DCV flow from

link 3 to link 6 falls slightly outside the specified time window

as the demand Q2,6(k) of Fig. 5(b) is generated too late. The

flow to destination link 8 arrives within the specified time

window as depicted in Fig. 6(b). The MILP-based approach

with objective function (15) yields the same results closed-loop

results under this scenario and for the simulation parameters

of Table I.

Table II lists the average CPU times for the closed-loop simu-

lation based on the LP approach and on the MILP approach for

Np = 4, 8, 12, where the LP programming problem is solved

using SIMPLEX solver of MATLAB Optimization Toolbox

and the MILP programming problem is solved using the
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Fig. 5. Demand profile on the loading stations.
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Fig. 6. DCV flows at the unloading stations.

TABLE II
THE AVERAGE, MINIMUM AND MAXIMUM COMPUTATION TIMES FOR LP

AND MILP APPROACHES.

Np method avg. min. max.
cpu time[s] cpu time[s] cpu time[s] cpu time[s]

4 LP
MILP

0.0146
0.0692

0.0049
0.0200

0.0342
0.2316

8 LP
MILP

0.0150
0.1330

0.0053
0.0033

0.0351
0.6590

12 LP
MILP

0.0165
1.4200

0.0055
0.0055

0.3595
31.644

CPLEX solver. Clearly, the LP-based approach is much faster

than the MILP-based approach and the difference increases

sharply as the prediction horizon Np increases.

VIII. CONCLUSIONS AND FUTURE WORK

The routing problem in the baggage handling system has

been considered. In particular, we addressed an MPC formu-

lation for optimal routing of DCVs within the network of

tracks. Previous work in this context had arrived at an MILP

formulation. Since MILP is NP hard, a short prediction horizon

has to be used then, which comes at a loss of performance.

In this paper we have proposed an alternative model for the

baggage handling system. Using this model, we showed that

due to some assumptions made in the original model, the MPC

optimization problem can be recast as an LP problem, which

has obvious computational advantages over MILP. Moreover,

we have modified the cost function used in the original work

to better reflect the objectives of the control system. Closed-

loop simulation shows that the LP based approach achieves

the same performance as the MILP based approach with far

less computational effort. Closed-loop simulation for a simple

case study show that the LP approach can be up to 1-2 orders

of magnitude faster than the MILP approach in particular if

large prediction horizons are considered.

For future work, the optimality of the LP approach will be

compared to the optimal solution of a nonlinear optimization

approach based on a detailed simulation model of the system.
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