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Abstract—Transportation of water is necessary to manage the
water levels in rivers to ensure minimum depths for freight, to
buffer water to avoid flooding downstream during wet periods,
or to save water for anticipated dry periods. This manipulation
of water flows influences the speed of the water in the rivers and
canals, and thereby it affects the speed and energy consumption
of vessels used for transportation over water. When considering
the problem of scheduling micro-ferries in a harbour, the
influence of fluctuating water speeds (due to the tide or river
flows) can be taken into account in the aim of providing energy-
efficient schedules for pick-ups and deliveries of passengers. This
paper introduces the effect of flowing water on energy-efficient
scheduling, and it proposes a mixed-integer linear programming
formulation for solving the problem.

I. INTRODUCTION

This paper discusses the micro-ferry scheduling problem as
introduced in [1], with the extension of taking into account the
effect of flowing water. With micro-ferries we mean small,
autonomous water-taxis with a limited amount of energy
that can recharge (or refuel) at stations located throughout a
harbour. The problem consists in finding an optimal schedule
for a fleet of micro-ferries that ensures that all transportation
requests from one station to another are handled. The aim is
to obtain a schedule for the micro-ferries that minimises the
energy consumption, ensures the micro-ferries do not run out
of energy, and tries to serve the passengers within their desired
pick-up time-window as much as possible.

The main focus is on minimising energy consumption, and
the problem can be seen as a variant of the travelling salesman
problem (TSP) [2], [3]. Traditionally, variants of the TSP —
such as the pick-up and delivery problem [4] and the vehicle
routing problem [5], [6]— focus on minimising the travel
distance or travel time. However, these problems do not take
into account the energy needed to fulfil a route or schedule.

Recently some work on energy consumption in routing and
scheduling has appeared in the literature. Energy consumption
is considered for the vehicle routing problem in [7], where the
energy consumption is defined by multiplying the load of the
vehicle by the travelled distance, independent of the speed of
the vehicle. In [8] the pollution routing problem is proposed,
where a trade-off is made in minimising the travel distances,
travel times, transport costs, and greenhouse emissions. The
pollution is related to the energy consumption and dependent
on both the speed and the load of the vehicle. A vehicle routing
problem where the fuel cost is minimised is proposed in [9].

Fuel costs are defined as unit fuel cost × fuel consumption rate
× road length; minimising the fuel costs equals minimising the
fuel consumption.

In the micro-ferry scheduling problem as proposed in [1]
the aim is to minimise the total energy consumption, while
picking up the passengers from a station within their desired
time-window. Charging of the micro-ferries has been taken
into account in [10], ensuring that all requests can be handled
without running out of energy. For still water the problem
can be modelled as a non-linear programming problem that
can easily and efficiently be approximated by a mixed-integer
linear program (MILP) [11]. In these papers the speed of
the micro-ferries has been taken as one of the optimisation
variables, thereby influencing both the energy consumption
and the travel times. Note that the term speed represents
the amplitude of the vessel velocity. In the current paper the
previous work is extended by taking into account the effect of
flowing water on the travel time of the micro-ferries, and its
influence on the energy consumption. Taking into account the
water flows is important for the scheduling problem, otherwise

• the micro-ferries could run out of energy on the water,
• the communicated pick-up times become inaccurate.

As opposed to the authors’ previous work [1], [10], [11], in this
paper the speed of the vessels is constant; combining flowing
water and variable speeds is considered for future work.

II. EFFECTS OF FLOWING WATER

When considering still water the time it takes to travel
from one station to another is simply the along-path distance1

between the stations divided by the speed of the vessel. For
still water the speed of the vessel relative to the water equals
the speed of the vessel relative to the land. When the water is
flowing, the speed relative to the water no longer equals the
speed relative to the land, as will be discussed in this section.

A. Definition of velocities

Velocities can conveniently be described using vectors.
Throughout this paper three different velocity vectors are used:
v⃗b vessel velocity relative to the water,
v⃗i vessel velocity relative to the land,
v⃗r water velocity relative to the land.

1With the along-path distance we mean the total distance along the curve
describing the path; it can be a straight line but also a non-linear path.
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ẋi
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ẋb

ẋr
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Fig. 1. The velocity v⃗i with respect to the land is the sum of the velocity v⃗b
of the micro-ferry plus the velocity v⃗r of the water.

The three velocities relate to each other as (see Figure 1)

v⃗i = v⃗r + v⃗b, (1)

and they also have the following meaning. The velocity v⃗b
describes the motion of the body-fixed reference frame (B-
frame) of the vessel with respect to the water, the velocity v⃗i
represents the movement of the vessel in the inertial reference
frame (I-frame), whereas v⃗r gives the velocity of the B-frame
relative to the I-frame.

Each of the velocity vectors can be decomposed in speed
components in the x and y direction of the inertial reference
frame, for each ∗ ∈ {b, i,w} written as

v⃗∗ = ẋ∗⃗ı+ ẏ∗ȷ⃗, (2)

where ẋ∗ and ẏ∗ denote the speeds in the xi and yi direction
respectively, whereas ı⃗ and ȷ⃗ denote the unit vector in the
xi and yi direction of the I-frame respectively. The speed u∗
associated with a velocity v⃗∗ can be determined as

u∗ = |⃗v∗|=
√

ẋ2
∗ + ẏ2∗ . (3)

B. Assumptions on water flows

To obtain schedules that take into account the effects of
different water flows within reasonable computation times,
some assumptions are made for modelling the problem:
A1 The water flow is uniform and time-invariant,
A2 Side-slip of the micro-ferries can be neglected,
A3 The acceleration and deceleration close to the stations can

be neglected, as well as the changes of the water flows
near the stations.

The first item ensures that v⃗r is constant, no matter where in
the network the micro-ferries are, and at which time instant.
The second assumption justifies modelling the energy con-
sumption using only the vessel speed (hence it is orientation-
independent). The final assumption is valid if the travelled
distances are long enough to neglect differences in vessel
speeds and water flow at the start and end of a travelled path.

C. Paths of the micro-ferries

Paths are defined as displacements over time in a reference
frame. In the following derivations we will assume that all
micro-ferries travel with the same speed ub relative to the
water and in a straight line. Hence the displacement over time
of a micro-ferry can be represented by a vector. We define the

vectors p⃗i, p⃗b, and p⃗r associated with the velocities discussed
above. A displacement p⃗∗ can be decomposed as

p⃗∗ = x∗⃗ı+ y∗ȷ⃗, (4)

with the associated path length

l∗ = |⃗p∗|=
√
x2
∗ + y2∗ . (5)

The path p⃗i that a micro-ferry should travel in the I-frame
between e.g. the pick-up location and the delivery location for
a transportation request is known beforehand. It is a straight-
line path between both stations, as depicted in Figure 2.
The length of the path p⃗r —representing the contribution of
the water flow to the displacement of the micro-ferry— is
proportional to the travel time T , as p⃗r = T v⃗r. Figure 2 shows
that in order to travel the same path in the I-frame, the travelled
path p⃗b of the vessel on the water will change as the travel
time (and hence the velocity v⃗b) changes.

III. SCHEDULING IN FLOWING WATER

With respect to the scheduling problem for micro-ferries,
the velocity of the micro-ferry has an effect on two distinct
properties; both the travel time and the energy consumption
of the micro-ferries change when changing the velocity. Which
velocity is needed to correctly determine the value of these two
quantities is discussed next.

A. Effect of flowing water on time

Due to the flowing water the time it takes to travel from
one location to another will be affected. This section explains
how the currents affect the travel times, and it introduces the
concept of request times.

1) Travel time: The travel time of a micro-ferry equals the
distance travelled divided by the travel speed; more specifically
it is the time it takes to travel from one station to the next. Due
to the current, the path p⃗b of the micro-ferry relative to the
water will be dependent on the velocity v⃗r of the water relative
to the land, and the travel time T . Note that for a micro-ferry
travelling with a velocity v⃗i in the I-frame, the travel time T
and the travelled path p⃗i are related as

p⃗i = T v⃗i. (6)

Combined with the relation between the different velocities
as given in (1), the velocity of the micro-ferry relative to the
water can be written as

v⃗b =
1

T
p⃗b =

1

T
p⃗i − v⃗r. (7)

p⃗r p⃗r p⃗r

p⃗b p⃗b p⃗bp⃗i p⃗i p⃗i

Fig. 2. The same path p⃗i in the inertial frame can be accomplished at
different velocities, resulting in different paths p⃗b in the body frame



Since both p⃗i and v⃗r are constants, the velocity of the micro-
ferry through the water only varies with the travel time T . The
speed ub is related to the water flow and the displacement by

u2
b = |⃗vb|2 = ẋ2

b + ẏ2b =
(xi
T

− ẋr

)2

+
(yi
T

− ẏr

)2

(8)

=
(
ẋ2
r + ẏ2r

)
− 2 (xiẋr + yiẏr)

1

T
+
(
x2
i + y2i

) 1

T 2

= u2
r − 2 (xiẋr + yiẏr)

1

T
+ l2i

1

T 2
.

Since lb = ubT , we have

l2b = u2
bT

2 = u2
r T

2 − 2 (xiẋr + yiẏr)T + l2i . (9)

This equation has the form αT 2 + βT + γ = 0 with

α = u2
r − u2

b , β = −2 (xiẋr + yiẏr) , γ = l2i , (10)

and hence T can be determined using the quadratic formula.
To ensure that the micro-ferries can move forward against the
current, the speed of the micro-ferry ub should be larger than
the speed of the water ur, resulting in α < 0. Furthermore,
γ > 0 since it represents the distance between two stations.
Therefore, using the variables defined in (10) the discriminant
of Equation (9) satisfies

∆ = β2 − 4αγ > β2 > 0. (11)

The second inequality shows that there are two distinct real-
valued solutions for T , whereas the first inequality shows that

−β+
√
∆ > −β+|β|≥ 0, −β−

√
∆ < −β−|β|≤ 0. (12)

Since α < 0, positive travel times T can be found by

T =
−β −

√
β2 − 4αγ

2α
=

− 1
2β −

√
1
4β

2 − αγ

α
(13)

=
(xiẋr + yiẏr)−

√
(xiẋr + yiẏr)

2 − (u2
r − u2

b)l
2
i

u2
r − u2

b

.

Note that the water flow-related coefficients ẋr, ẋr, ur are
constant for all possible trajectories between the stations,
whereas the coefficients xi, yi, li depend on the start and end
location a and z for a certain transportation. The speed ub
of the micro-ferry in the water could be varied (as was
done in e.g. [11]), but since the introduction of currents in
the scheduling problem results in highly non-linear energy-
consumption terms (as will be shown next) in the speed
variable ub, it is chosen to be constant in this paper. Therefore,
the travel time Taz from location a to z can be determined a
priori for solving the optimisation problem, but it will vary
with the current velocity.

2) Request time: A transportation of passengers associated
with request j consists of the following steps (see Figure 3):

• a micro-ferry should relocate from some station towards
the pick-up location for request j,

• the customer(s) should embark the micro-ferry,
• the micro-ferry should transport the customer(s) to the

delivery location for request j,
• the customer(s) should disembark the micro-ferry.

Each of these four steps take time, which should be accounted
for in the scheduling of pick-up times tj .

For embarking and disembarking the micro-ferries a (com-
bined) duration td can be chosen by the operator, which will be
a trade-off between giving the customers enough time to safely
enter and exit the micro-ferry, and not wasting time at the
station. The duration for the relocation of the micro-ferry from
the delivery station of request i towards the pick-up location
of station j is given by the travel time Tdipj

calculated using
(13), where di and pj denote the index number of the delivery
station of request i and the index number of the pick-up station
of request j respectively. The duration for the transportation
of the customers from pick-up station pj to delivery station
dj is given by the travel time Tpjdj in (13), where pj and dj
denote the index number of the pick-up and delivery station
of request j respectively. We define the request time θij as the
time it would take to handle request j after request i given by

θij = Tdipj
+ Tpjdj

+ td, (14)

which is constant for a steady water flow; the value of this
constant depends on the travel time that depends on the
amplitude and direction of the water flow through (13).

Note: The request time θij does not provide the actual time
it takes to handle request j, but it represents the time it takes
to handle request j if it would be preceded by request i.

B. Effect of flowing water on energy consumption

Due to the flowing water the micro-ferries might need
more or less energy to travel from one location to another
as compared to still water, depending on whether or not they
are travelling against the current. This section explains how
the currents affect the energy consumption, and it introduces
the concept of request consumption.

1) Energy consumption: In [1] it was argued that the
instantaneous power of a micro-ferry can be described by

P = π2u
2 + π1u+ π0, (15)

such that —when the vessel speed u is constant and T is the
travel time— the energy consumption becomes

E = PT =
(
π2u

2 + π1u+ π0

)
T. (16)

The speed u used in these equations should be the speed of
the vessel relative to the water (i.e. ub), since this is the speed
that determines the energy consumption. The time T in (16)
equals the travel time T = Taz between stations a and z given
by (13). Therefore, the energy consumption from a to z is

Eaz = PTaz =
(
π2u

2
b + π1ub + π0

)
Taz (17)

which is a non-linear equation in the variables ub representing
vessel speed; the travel time Taz is a non-linear function in
the vessel speed ub as given by (13). By choosing a constant
speed ub, the travel time will be constant for a certain current,
and hence the energy consumption Eaz needed to travel from
a to z is constant, and can be determined a priori for the
optimisation problem using (17).
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2) Request consumption: Similar to the request time de-
fined in (14), we define the request consumption ϵij as the
consumed energy when request j would succeed request i —
combining the energy consumption during the relocation phase
and transportation phase (see Figure 3)— given by

ϵij = Edipj + Epjdj , (18)

where the terms Edipj
and Epjdj

can be obtained using (17).

Note: The term ϵij represents the energy that is needed to
handle request j if it would be preceded by request i.

IV. FLOWING-WATER MICRO-FERRY SCHEDULING

A. Description of the problem

The scheduling problem for micro-ferries over water can
be described as follows. Using a fleet of M micro-ferries one
wants to handle N requests to transport customers between
several locations. Representing the micro-ferries by a set of
nodes M = {1, . . . ,M}, and the new requests by a set of
nodes N = {M + 1, . . . , R} with R = M +N , the problem
can be stated as (a variant of) a multi-depot travelling salesman
problem [2]. The micro-ferry nodes in M represent the depots,
whereas the request nodes in N represent the cities. Nodes
in R = {1, . . . , R} are associated with transportations of
customers between pick-up and delivery locations, whereas
arcs between the nodes are associated with relocations between
the delivery and pick-up locations without customers aboard.

B. Optimisation variables

To describe the micro-ferry scheduling problem for flowing
water, the following variables are used:

• xij ∈ {0, 1}: binary variable representing whether
(xij = 1) or not (xij = 0) request j succeeds request i,

• yj ∈ {0, 1}: binary variable representing whether
(yj = 1) or not (yj = 0) the micro-ferry is recharged
after request j,

• tj ∈ R+: pick-up time for the passengers of request j,
• sj ∈ R+: time window mismatch for request j,
• τj ∈ R+: charging time after handling request j,
• θij ∈ R+: time for handling request j if preceded by i,
• kj ∈ {1, . . . ,M}: micro-ferry number handling request j,
• ej ∈ [0,E]: energy level after completion of request j,
• ξj ∈ [0,E]: energy charged after handling request j,
• ϵij ∈ [0,E]: energy consumed during request j if pre-

ceded by request i.

The charging time τj is defined as the fixed time tc it takes to
couple and decouple the micro-ferry to the charger, plus the
time 1

rc
ξj it takes to increase the energy level by ξj . This gives

τj = tcyj +
1

rc
ξj . (19)

Due to the relation (19) it possible to use either the charging
time τj or the charged energy ξj as optimisation variable;
both are used in the description of the problem for ease of
presentation and understanding. For the actual optimisation
only the variable τj is used, where ξj is substituted using (19)
to represent it in terms of τj and yj . For the optimisation
variables τj and yj it should hold that

τj = 0 ⇔ yj = 0, (20)

meaning that the charging time will be zero if and only if
no charging is scheduled (yj = 0). Notice that through (19)
this also means that the charged energy ξj = 0 if τj = 0 and
yj = 0. The equivalence (20) will be assured by the constraints
of the optimisation problem presented next (see Appendix A).

C. Mixed-integer linear programming formulation

In previous work the micro-ferry scheduling problem has
been developed for still water, using the micro-ferry speed
as an optimisation variable [1], [10], [11]. For flowing water
the energy consumption term becomes a highly non-linear
function in the speed ub as discussed in Section III-B. To keep
the focus on the effect of flowing water the speed is fixed in
this paper.

Using the variables defined above, the micro-ferry schedul-



ing problem for flowing water can be stated as the MILP

min. αec
∑
i∈R

∑
j∈R

ϵijxij + αtw
∑
j∈R

sj (21a)

s.t.
∑
i∈R

xij = 1;
∑
i∈R

xji = 1 ∀ j∈R (21b)

ti−tj+θij+τi ≤ T(1−xij) ∀ i∈R, j∈N (21c)
tcyj ≤ τj ∀ j∈R (21d)
ta,j−sj ≤ tj ≤ tb,j+sj ∀ j∈R (21e)
|ei−ej+ξi−ϵij |≤ E(1−xij) ∀ i∈R, j∈N (21f)
ξj ≤ Eyj ∀ j∈R (21g)
ej+ξj ≤ E ∀ j∈R (21h)
ξj = rcτj − rctcyj ∀ j∈R (21i)
ki−kj ≤ (M−1)(1−xij−xji) ∀ i∈R, j∈N (21j)
tj = to,j ; ej = eo,j ; kj = ko,j ∀ j∈M (21k)
xij , yj ∈ {0, 1} ∀ i, j∈R (21l)

where E is the upper bound on the energy levels ej , and T
should be chosen larger than the latest expected pick-up time
(conform the big-M method [12]). The constants rc, tc, and
td represent the charging rate, the fixed charging time, and
the disembarking plus embarking time respectively. The initial
conditions for the pick-up times, the energy levels, and the
index numbers of the micro-ferries are represented by to,j ,
eo,j , and ko,j respectively.

The objective function (21a) consists of the total energy
consumption (first term) and the total time-window misfit
(second term). A trade-off between using less energy and
assigning less pick-up times outside the desired time windows
can be made by changing the weights αec and αtw.

Equalities (21b) are the assignment constraints ensuring
that every request is handled once and only once, (21c)
ensures consistency in the pick-up times, (21d) ensures that the
charging time is larger than the fixed charging time (needed
to connect the micro-ferry to the charger) when charging, and
(21e) assigns values to the slack variables sj representing the
misfit to the desired time-window [ta,j , tb,j ].

Inequalities (21f) set the energy levels after delivery for
request j equal to the energy level after delivery for request i,
plus the charged energy during request i, minus the energy
consumption during request j, when xij = 1 (see Figure 3).
Inequality (21g) ensures that the energy increase ξj is zero
when no charging is scheduled, whereas (21h) avoids over-
charging by limiting the charged energy to the maximum
level E minus the level ej before charging. Either the equality
constraint (21i) should be used to enforce (19), or ξj can be
eliminated from (21f–21h) by using the equivalence (21i), and
removing this equality constraint from the MILP.

Due to (21j) each request is assigned a unique index number,
and the initial conditions for the micro-ferries are set by (21k).
The variables xij and yj should be treated as binary variables,
as stated by (21l).

V. CASE STUDY

As a case study the current-dependent program (21) is used
to schedule micro-ferries in a part of the Rotterdam harbour.
All computations are performed on a desktop computer with
an Intel Core2 Quad Q8400 processor and 4 GB of RAM,
running 64-bit versions of SUSE Linux Enterprise Desktop
11, Matlab R2012a, and Tomlab 7.8 using CPLEX 12.2.

A schematic drawing of the harbour is shown in Figure 4.
The dotted line indicates the centre of the river Maas passing
through the city, flowing downstream (from the east to the
west) in the direction of the North Sea. Several fictive docking
stations have been added to the map, where passengers may
enter and exit the micro-ferries.
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Fig. 4. Schematic drawing of the Rotterdam harbour, including docking
locations for the micro-ferries

As the main flow of the current will follow the shape of
the river, the dotted line can be considered the axis along
which the water moves in parallel. Therefore, the scheduling
problem along the curved river as shown at the top of Figure 4
can be transformed into the equivalent problem of solving
the scheduling problem in the network shown at the bottom
of Figure 4 with a uniform current in parallel to the dotted
line. The along-path distances (in [km]) are shown along the
horizontal axis, whereas the vertical distance to the centre axis
is 250 [m] for all locations. The locations are labelled as s1
to s8, with their index number increasing from left to right.

Since the current flows in parallel with the xi-axis (the dot-
ted line), the relative speed ẏr ≡ 0 whereas ẋr can have a non-
zero value. Currents in the range from -5 to +5 [m/s] are used
to investigate the effect of a current on the energy consumption
and time-window mismatch for the micro-ferry scheduling
problem. We choose ub = 10 [m/s] as the relative speed of the
micro-ferries, and the energy level ej ∈ [0, 100] represents the
percentage of energy left. The instantaneous power is chosen
such that a fully charged micro-ferry (ej = 100) can travel for
20 [km], resulting in P = 100

20000 · 10
[
%
m · m

s

]
= 0.05

[
%
s

]
. A

test case with M = 8 micro-ferries and N = 40 new request is
randomly generated. The resulting energy consumption Jec in
[%], time-window mismatch Jtw in [s], and empty travel time2

Jtw in [s] are given in Table I for different current speeds ẋr.

2The time a micro-ferry relocates without a passenger aboard.



TABLE I
RESULTS FOR FLOW-DEPENDENT SCHEDULING

ẋr -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5

Jec 651 594 547 526 517 506 517 532 560 618 694

Jtw 97 42 30 22 19 18 13 10 9 10 13

Jet 983 906 828 786 763 743 751 804 847 858 959

The results show that both the energy consumption and the
empty travel time are minimal when no current is present,
and their values increase with an increasing amplitude of
the current. Even though the problem is a multi-objective
optimisation problem, this result can be accounted for by the
fact that the average travel time increases when the strength
of the current increases. Therefore, for a random set of pick-
up and delivery locations it is to be expected to see an
increase in the energy consumption (which equals a constant
instantaneous power times the travel time) and the empty travel
distance (which equals the constant micro-ferry speed times
the travel time) when the amplitude of the current increases.
See Appendix B for more details.

The minimum of the time-window mismatch is not obtained
when no current exists, but when the current has a speed of
ẋr = 3 [m/s]. Although there are as many transportations
from west to east as from east to west, due to the desired time
windows, it is easier to schedule the pick-ups on time when
a small current exists flowing from west to east. Since these
time windows are obtained randomly, it is expected that the
minimum of Jtw can be different for every set of transportation
requests.

VI. CONCLUSION

This paper has introduced the effect of currents in a micro-
ferry scheduling problem. To avoid schedules where micro-
ferries run out of energy on the water, and to provide accurate
pick-up times, it is important to take the effect of the flowing
water into account. The influence of the current on the travel
time is determined, and it was shown in theory and by example
that the energy consumption will increase when the amplitude
of the current will increase, irrespective of the direction.
Although the energy consumption will always increase with
larger currents, a different schedule using less energy may
be obtained for a certain current compared to the obtained
schedule without taking into account the currents.

This paper has discussed the effect of constant currents that
flow perpendicular to the paths of the vessels; extensions to
time-varying currents and flows from different directions are
considered as future research. Furthermore, the vehicle speed
is fixed in this paper while results exist for variable speeds
and still water [1], [10], [11]; energy-efficient scheduling in
flowing water with variable speeds is considered as future
research.
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APPENDIX

A. No charging means zero charging time

The MILP (21) ensures that the relationship (20) holds.
Indeed, by inequality (21d) and the integrality condition (21l)
we have for τj = 0 and tc > 0 that

tcyj ≤ τj = 0 ⇒ yj = 0.

Also, by (19) and (21g) we have for yj = 0 and rc > 0 that

ξj = rc(τj − tcyj) = rcτj ≤ Eyj = 0 ⇒ τj = 0.

Therefore, we conclude that τj = 0 ⇔ yj = 0.

B. Current versus travel times

In the example —where the current flows in parallel to the
riverbed such that ẏr ≡ 0— the travel times defined in (6) only
change with the current speed ẋr. This gives

T =

√
(xiẋr)

2
+ (u2

b − u2
r )l

2
i − xiẋr

u2
b − u2

r

.

The travel time Taz from location a to z can be found by
considering the displacement p⃗i,az = (xi,az, yi,az), which is a
fixed vector in the I-frame. The displacement from location z
to a is given by p⃗i,za = −p⃗i,az = (−xi,az,−yi,az), such that
li,az = li,za. When u2

b − u2
r > 03 the difference in travel time

of going one way or the other between a and z is

∆T = Taz − Tza =
−2xiẋr√
u2
b − u2

r

which shows that the travel times are different if there is a cur-
rent (ẋr ̸= 0) as expected. Perhaps less obvious is the fact that
the travel time for a round trip (from a to z and back to a)
has a larger travel time when the current’s amplitude increases:

ΣT = Taz + Tza =
2
√

(xiẋr)
2
+ (u2

b − u2
r ) l

2
i

u2
b − u2

r

,

which has a minimum of

ΣT,min = 2
li√

u2
b − u2

r

(22)

for ẋr = 0, and ΣT increases for larger currents. Hence, the
larger |ẋr|, the larger the travel times within the micro-ferry
network, and —by (17)— the larger the energy consumption
needed to handle the requests.
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